Feasibility of remotely supervised transcranial direct current stimulation and cognitive remediation: A systematic review

Nicole Gough, Lea Brkan, Ponnusamy Subramaniam, Lina Chiuccariello, Alessandra De Petrillo, Benoit H Mulsant, Christopher R Bowie, Tarek K Rajji, Nicole Gough, Lea Brkan, Ponnusamy Subramaniam, Lina Chiuccariello, Alessandra De Petrillo, Benoit H Mulsant, Christopher R Bowie, Tarek K Rajji

Abstract

With technological advancements and an aging population, there is growing interest in delivering interventions at home. Transcranial Direct Current Stimulation (tDCS) and Cognitive Remediation (CR) as well as Cognitive Training (CT) have been widely studied, but mainly in laboratories or hospitals. Thus, the objectives of this review are to examine feasibility and the interventions components to support the domiciliary administration of tDCS and CR. We performed a systematic search of electronic databases, websites and reference lists of included articles from the first date available until October 31, 2018. Articles included had to meet the following criteria: original work published in English using human subjects, majority of tDCS or CR intervention administered remotely. A total of 39 studies were identified (16 tDCS, 23 CR/CT, 5 using both tDCS & CT). Four studies were single case studies and two were multiple case studies. The remaining 33 studies had a range of 9-135 participants. Five tDCS and nine CR/CT studies were double blind randomized controlled trials. Most studies focused on schizophrenia (8/39) and multiple sclerosis (8/39). Literature examined suggests the feasibility of delivering tDCS or CR/CT remotely with the support of information and communication technologies.

Conflict of interest statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Dr. Bowie received grants from Pfizer, Lundbeck, and Takeda; consulting fees from Boehringer Ingelheim, Lundbeck, and Pfizer; and in-kind research accounts from Scientific Brain Training Pro. Dr. Mulsant Mulsant currently receives research support from Brain Canada, CIHR, the CAMH Foundation, the Patient-Centered Outcomes Research Institute (PCORI), the US NIH, Eli Lilly (medications for a NIH-funded clinical trial), Pfizer (medications for a NIH-funded clinical trial), Capital Solution Design LLC (software used in a study founded by CAMH Foundation), and HAPPYneuron (software used in a study founded by Brain Canada). He has also received research support from Bristol-Myers Squibb (medications for a NIH-funded clinical trial) and Pfizer/Wyeth (medications for a NIH-funded clinical trial). He directly own stocks of General Electric (less than $5,000). Dr. Rajji has received research support from Brain Canada, Brain and Behavior Research Foundation, BrightFocus Foundation, Canada Foundation for Innovation, Canada Research Chair, Canadian Institutes of Health Research, Centre for Aging and Brain Health Innovation, National Institutes of Health, Ontario Ministry of Health and Long-Term Care, Ontario Ministry of Research and Innovation, and the Weston Brain Institute. Dr. Rajji also received in-kind equipment support for an investigator-initiated study from Magstim, and in-kind research accounts from Scientific Brain Training Pro. Other authors have nothing to declare.

Figures

Fig 1. Preferred reporting items for systematic…
Fig 1. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram for tDCS at-home studies.
Fig 2. Preferred reporting items for systematic…
Fig 2. Preferred reporting items for systematic reviews and meta-analyses (PRISMA) flow diagram for cognitive remediation and cognitive training at-home studies.

References

    1. Organization, W. H. (2017). The Top 10 Causes of Death. [cited 2017 December 12]; .
    1. Organization, W. H. (2017). Dementia. [cited 2017 December 12]; .
    1. Livingston G., Sommerlad A., Orgeta V., Costafreda S. G., Huntley J., Ames D., et al. Dementia Prevention, Intervention, and Care. The Lancet, 2017. 390(10113), 2673–2734.
    1. Bowie C. R., Gupta M., Holshausen K., Jokic R., Best M., & Milev R. (2013). Cognitive remediation for treatment resistant depression: Effects on cognition and functioning and the role of online homework. Journal of Nervous and Mental Disorders, 201(8), 680–685. 10.1097/NMD.0b013e31829c5030
    1. Kuo M.-F., Paulus W., & Nitsche M. A. (2014). Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage, 85, 948–960. 10.1016/j.neuroimage.2013.05.117
    1. Rajji T. K. (2018). Impaired brain plasticity as a potential therapeutic target for treatment and prevention of dementia. Expert Opinion on Therapeutic Targets, 23(1), 21–28. 10.1080/14728222.2019.1550074
    1. Karssemeijer E. A. J., Aaronson J., Bossers W. J., Smits T., Rikkert M. G., & Kessels R. P. (2017). Positive effects of combined cognitive and physical exercise training on cognitive function in older adults with mild cognitive impairment or dementia: A meta-analysis. Ageing Research Reviews, 40, 75–83. 10.1016/j.arr.2017.09.003
    1. Maffei L., Picano E., Andreassi M. G., Angelucci A., Baldacci F., Baroncelli L., et al. (2017). Randomized trial on the effects of a combined physical/cognitive training in aged MCI subjects: The Train the Brain study. Scientific Reports, 7(1). 10.1038/srep39471
    1. Sherman D. S., Mauser J., Nuno M., & Sherzai D. (2017). The Efficacy of Cognitive Intervention in Mild Cognitive Impairment (MCI): a Meta-Analysis of Outcomes on Neuropsychological Measures. Neuropsychology Review, 27(4), 440–484. 10.1007/s11065-017-9363-3
    1. Rajji T. K. (2019). Transcranial Magnetic and Electrical Stimulation in Alzheimers Disease and Mild Cognitive Impairment: A Review of Randomized Controlled Trials. Clinical Pharmacology & Therapeutics, 106(4), 776–780. 10.1002/cpt.1574
    1. Ferrucci R., Mameli F., Guidi I., Mrakic-Sposta S., Vergari M., Marceglia S., et al. (2008). Transcranial direct current stimulation improves recognition memory in Alzheimer disease. Neurology, 71(7), 493–498. 10.1212/01.wnl.0000317060.43722.a3
    1. Jacobson L., Koslowsky M., & Lavidor M. (2011). tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Experimental Brain Research, 216(1), 1–10. 10.1007/s00221-011-2891-9
    1. Naismith S. L., Redoblado-Hodge M. A., Lewis S. J., Scott E. M., & Hickie I. B. (2010). Cognitive training in affective disorders improves memory: A preliminary study using the NEAR approach. Journal of Affective Disorders, 121(3), 258–262. 10.1016/j.jad.2009.06.028
    1. Boggio P. S., Khoury L. P., Martins D. C. S., Martins O. E. M. S., Macedo E. C. D., & Fregni F. (2008). Temporal cortex direct current stimulation enhances performance on a visual recognition memory task in Alzheimer disease. Journal of Neurology, Neurosurgery & Psychiatry, 80(4), 444–447. 10.1136/jnnp.2007.141853
    1. Boggio P. S., Ferrucci R., Mameli F., Martins D., Martins O., Vergari M., et al. (2012). Prolonged visual memory enhancement after direct current stimulation in Alzheimers disease. Brain Stimulation, 5(3), 223–230. 10.1016/j.brs.2011.06.006
    1. Grill J. D., & Karlawish J. (2010). Addressing the challenges to successful recruitment and retention in Alzheimers disease clinical trials. Alzheimers Research & Therapy, 2(6), 34 10.1186/alzrt58
    1. Bowie C. (n.d.). Cognitive remediation for major depressive disorder In Cognitive impairment in major depressive disorder: Clinical relevance, biological substrates, and treatment opportunities (pp. 306–320). Cambridge: Cambridge University Press; 10.1017/cbo9781139860567.022
    1. Wykes T., Huddy V., Cellard C., Mcgurk S. R., & Czobor P. (2011). A Meta-Analysis of Cognitive Remediation for Schizophrenia: Methodology and Effect Sizes. American Journal of Psychiatry, 168(5), 472–485. 10.1176/appi.ajp.2010.10060855
    1. Deckersbach T., Nierenberg A. A., Kessler R., Lund H. G., Ametrano R. M., Sachs G., … et al. (2010). RESEARCH: Cognitive Rehabilitation for Bipolar Disorder: An Open Trial for Employed Patients with Residual Depressive Symptoms. CNS Neuroscience & Therapeutics, 16(5), 298–307. 10.1111/j.1755-5949.2009.00110.x
    1. Meusel L. A., McKinnon M., Hall G., & MacQueen G. M. (2009). Evidence for sustained improvement in memory deficits following computer-assisted cognitive remediation in patients with a mood disorder. Biological Psychiatry, 65(8)
    1. Rupp C. I., Kemmler G., Kurz M., Hinterhuber H., & Fleischhacker W. W. (2012). Cognitive Remediation Therapy During Treatment for Alcohol Dependence. Journal of Studies on Alcohol and Drugs, 73(4), 625–634. 10.15288/jsad.2012.73.625
    1. Hagenacker T., Bude V., Naegel S., Holle D., Katsarava Z., Diener H.-C., et al. (2014). Patient-conducted anodal transcranial direct current stimulation of the motor cortex alleviates pain in trigeminal neuralgia. The Journal of Headache and Pain, 15(1).
    1. Park S.-H., Seo J.-H., Kim Y.-H., & Ko M.-H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. NeuroReport, 25(2), 122–126. 10.1097/WNR.0000000000000080
    1. Charvet L., Shaw M., Haider L., Melville P., & Krupp L. (2015). Remotely-delivered cognitive remediation in multiple sclerosis (MS): protocol and results from a pilot study. Multiple Sclerosis Journal—Experimental, Translational and Clinical, 1, 205521731560962. 10.1177/2055217315609629
    1. Kasschau M., Reisner J., Sherman K., Bikson M., Datta A., & Charvet L. E. (2016). Transcranial Direct Current Stimulation Is Feasible for Remotely Supervised Home Delivery in Multiple Sclerosis. Neuromodulation: Technology at the Neural Interface, 19(8), 824–831. 10.1111/ner.12430
    1. Shaw M. T., Kasschau M., Dobbs B., Pawlak N., Pau W., Sherman K., et al. (2017). Remotely Supervised Transcranial Direct Current Stimulation: An Update on Safety and Tolerability. Journal of Visualized Experiments, (128), 1–8. 10.3791/56211
    1. Quayhagen M. P., Quayhagen M., Corbeil R. R., Roth P. A., & Rodgers J. A. (1995). A Dyadic Remediation Program for Care Recipients with Dementia. Nursing Research, 44(3). 10.1097/00006199-199505000-00005
    1. Quayhagen M. P., & Quayhagen M. (2001). Testing of a cognitive stimulation intervention for dementia caregiving dyads. Neuropsychological Rehabilitation, 11(3–4), 319–332. 10.1080/09602010042000024
    1. Regan B., Wells Y., Farrow M., Ohalloran P., & Workman B. (2017). MAXCOG—Maximizing Cognition: A Randomized Controlled Trial of the Efficacy of Goal-Oriented Cognitive Rehabilitation for People with Mild Cognitive Impairment and Early Alzheimer Disease. The American Journal of Geriatric Psychiatry, 25(3), 258–269. 10.1016/j.jagp.2016.11.008
    1. Bystad M., Rasmussen I. D., Grønli O., & Aslaksen P. M. (2017). Can 8 months of daily tDCS application slow the cognitive decline in Alzheimer’s disease? A case study. Neurocase, 23(2), 146–148. 10.1080/13554794.2017.1325911
    1. André S., Heinrich S., Kayser F., Menzler K., Kesselring J., Khader P. H., et al. (2016). At-home tDCS of the left dorsolateral prefrontal cortex improves visual short-term memory in mild vascular dementia. Journal of the Neurological Sciences, 369, 185–190. 10.1016/j.jns.2016.07.065
    1. Charvet L., Shaw M., Dobbs B., Frontario A., Sherman K., Bikson M., et al. (2017). Remotely Supervised Transcranial Direct Current Stimulation Increases the Benefit of At-Home Cognitive Training in Multiple Sclerosis. Neuromodulation: Technology at the Neural Interface, 21(4), 383–389. 10.1111/ner.12583
    1. Charvet L. E., Dobbs B., Shaw M. T., Bikson M., Datta A., & Krupp L. B. (2017). Remotely supervised transcranial direct current stimulation for the treatment of fatigue in multiple sclerosis: Results from a randomized, sham-controlled trial. Multiple Sclerosis Journal, 24(13), 1760–1769. 10.1177/1352458517732842
    1. Kasschau M., Sherman K., Haider L., Frontario A., Shaw M., Datta A., et al. (2015). A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS) in Multiple Sclerosis (MS). Journal of Visualized Experiments, (106). 10.3791/53542
    1. Andrade C. (2013). Once- to Twice-Daily, 3-Year Domiciliary Maintenance Transcranial Direct Current Stimulation for Severe, Disabling, Clozapine-Refractory Continuous Auditory Hallucinations in Schizophrenia. The Journal of ECT, 29(3), 239–242. 10.1097/YCT.0b013e3182843866
    1. Agarwal S., Pawlak N., Cucca A., Sharma K., Dobbs B., Shaw M., et al. (2018). Remotely-supervised transcranial direct current stimulation paired with cognitive training in Parkinson’s disease: An open-label study. Journal of Clinical Neuroscience, 57, 51–57. 10.1016/j.jocn.2018.08.037
    1. Mortensen J., Figlewski K., & Andersen H. (2015). Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disability and Rehabilitation, 38(7), 637–643. 10.3109/09638288.2015.1055379
    1. Hyvärinen P., Mäkitie A., & Aarnisalo A. A. (2016). Self-Administered Domiciliary tDCS Treatment for Tinnitus: A Double-Blind Sham-Controlled Study. Plos One, 11(4). 10.1371/journal.pone.0154286
    1. Carvalho F., Brietzke A. P., Gasparin A., Santos F. P. D., Vercelino R., Ballester R. F., et al. (2018). Home-Based Transcranial Direct Current Stimulation Device Development: An Updated Protocol Used at Home in Healthy Subjects and Fibromyalgia Patients. Journal of Visualized Experiments, (137). 10.3791/57614
    1. Cha Y.-H., Urbano D., & Pariseau N. (2016). Randomized Single Blind Sham Controlled Trial of Adjunctive Home-Based tDCS after rTMS for Mal De Debarquement Syndrome: Safety, Efficacy, and Participant Satisfaction Assessment. Brain Stimulation, 9(4), 537–544. 10.1016/j.brs.2016.03.016
    1. Martens G., Lejeune N., Obrien A. T., Fregni F., Martial C., Wannez S., et al. (2018). Randomized controlled trial of home-based 4-week tDCS in chronic minimally conscious state. Brain Stimulation, 11(5), 982–990. 10.1016/j.brs.2018.04.021
    1. Riggs A., Patel V., Paneri B., Portenoy R. K., Bikson M., & Knotkova H. (2018). At-Home Transcranial Direct Current Stimulation (tDCS) With Telehealth Support for Symptom Control in Chronically-Ill Patients With Multiple Symptoms. Frontiers in Behavioral Neuroscience, 12 10.3389/fnbeh.2018.00093
    1. Ventura J., Wilson S. A., Wood R. C., & Hellemann G. S. (2013). Cognitive training at home in schizophrenia is feasible. Schizophrenia Research, 143(2–3), 397–398. 10.1016/j.schres.2012.11.033
    1. Mariano M. A., Tang K., Kurtz M., & Kates W. R. (2015). Cognitive remediation for adolescents with 22q11 deletion syndrome (22q11DS): A preliminary study examining effectiveness, feasibility, and fidelity of a hybrid strategy, remote and computer-based intervention. Schizophrenia Research, 166(1–3), 283–289. 10.1016/j.schres.2015.05.030
    1. Loewy R., Fisher M., Schlosser D. A., Biagianti B., Stuart B., Mathalon D. H., et al. (2016). Intensive Auditory Cognitive Training Improves Verbal Memory in Adolescents and Young Adults at Clinical High Risk for Psychosis. Schizophrenia Bulletin, 42(suppl 1). 10.1093/schbul/sbw009
    1. Kirk H. E., Gray K. M., Ellis K., Taffe J., & Cornish K. M. (2016). Computerised attention training for children with intellectual and developmental disabilities: a randomised controlled trial. Journal of Child Psychology and Psychiatry, 57(12), 1380–1389. 10.1111/jcpp.12615
    1. Anguera J. A., Brandes-Aitken A. N., Antovich A. D., Rolle C. E., Desai S. S., & Marco E. J. (2017). A pilot study to determine the feasibility of enhancing cognitive abilities in children with sensory processing dysfunction. Plos One, 12(4). 10.1371/journal.pone.0172616
    1. Caller T. A., Ferguson R. J., Roth R. M., Secore K. L., Alexandre F. P., Zhao W.,et al. (2016). A cognitive behavioral intervention (HOBSCOTCH) improves quality of life and attention in epilepsy. Epilepsy & Behavior, 57, 111–117. 10.1016/j.yebeh.2016.01.024
    1. Milman U., Atias H., Weiss A., Mirelman A., & Hausdorff J. M. (2014). Can Cognitive Remediation Improve Mobility in Patients with Parkinsons Disease? Findings from a 12 week Pilot Study. Journal of Parkinsons Disease, 4(1), 37–44. 10.3233/jpd-130321
    1. Mohanty M., & Gupta S. K. (2013). Home based neuropsychological rehabilitation in severe traumatic brain injury: a case report. Annals of Neurosciences, 20(1), 31–35. 10.5214/ans.0972.7531.200111
    1. Charvet L. E., Yang J., Shaw M. T., Sherman K., Haider L., Xu J., et al. (2017). Cognitive function in multiple sclerosis improves with telerehabilitation: Results from a randomized controlled trial. Plos One, 12(5). 10.1371/journal.pone.0177177
    1. Fisher M., Loewy R., Carter C., Lee A., Ragland J. D., Niendam T., et al. (2014). Neuroplasticity-Based Auditory Training Via Laptop Computer Improves Cognition in Young Individuals With Recent Onset Schizophrenia. Schizophrenia Bulletin, 41(1), 250–258. 10.1093/schbul/sbt232
    1. Johnstone S. J., Roodenrys S. J., Johnson K., Bonfield R., & Bennett S. J. (2017). Game-based combined cognitive and neurofeedback training using Focus Pocus reduces symptom severity in children with diagnosed AD/HD and subclinical AD/HD. International Journal of Psychophysiology, 116, 32–44. 10.1016/j.ijpsycho.2017.02.015
    1. Vázquez-Campo M., Maroño Y., Lahera G., Mateos R., & García-Caballero A. (2016). e-Motional Training®: Pilot study on a novel online training program on social cognition for patients with schizophrenia. Schizophrenia Research: Cognition, 4, 10–17. 10.1016/j.scog.2015.11.007
    1. Nahum M., Fisher M., Loewy R., Poelke G., Ventura J., Nuechterlein K. H., et al. (2014). A novel, online social cognitive training program for young adults with schizophrenia: A pilot study. Schizophrenia Research: Cognition, 1(1). 10.1016/j.scog.2014.01.003
    1. Cody S. L., Fazeli P. L., & Vance D. E. (2015). Feasibility of a Home-Based Speed of Processing Training Program in Middle-Aged and Older Adults With HIV. Journal of Neuroscience Nursing, 47(4), 247–254. 10.1097/JNN.0000000000000147
    1. Fisher M., Holland C., Merzenich M. M., & Vinogradov S. (2009). Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia. American Journal of Psychiatry, 166(7), 805–811. 10.1176/appi.ajp.2009.08050757
    1. Boman I.-L., Lindstedt M., Hemmingsson H., & Bartfai A. (2004). Cognitive training in home environment. Brain Injury, 18(10), 985–995. 10.1080/02699050410001672396
    1. McBride R. L., Horsfield S., Sandler C. X., Cassar J., Casson S., Cvejic E., et al. (2017). Cognitive remediation training improves performance in patients with chronic fatigue syndrome. Psychiatry Research, 257, 400–405. 10.1016/j.psychres.2017.08.035
    1. Pyun S.-B., Yang H., Lee S., Yook J., Kwon J., & Byun E.-M. (2009). A home programme for patients with cognitive dysfunction: A pilot study. Brain Injury, 23(7–8), 686–692. 10.1080/02699050902997862
    1. Rajeswaran J., Taksal A., & Jain S. (2017). Rehabilitation in schizophrenia: A brain-behavior and psychosocial persperctive. Indian Journal of Psychological Medicine, 39(6), 797 10.4103/0253-7176.219648
    1. Charvet L. E., Kasschau M., Datta A., Knotkova H., Stevens M. C., Alonzo A., et al. (2015). Remotely-supervised transcranial direct current stimulation (tDCS) for clinical trials: guidelines for technology and protocols. Frontiers in Systems Neuroscience, 9 10.3389/fnsys.2015.00026
    1. Elgamal S., Mckinnon M. C., Ramakrishnan K., Joffe R. T., & Macqueen G. (2007). Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: a proof of principle study. Psychological Medicine, 37(9), 1229–1238. 10.1017/S0033291707001110
    1. Brunoni A. R., Nitsche M. A., Bolognini N., Bikson M., Wagner T., Merabet L., et al. (2012). Clinical research with transcranial direct current stimulation (tDCS): Challenges and future directions. Brain Stimulation, 5(3), 175–195. 10.1016/j.brs.2011.03.002

Source: PubMed

3
구독하다