Pain Related Cortical Oscillations: Methodological Advances and Potential Applications

Weiwei Peng, Dandan Tang, Weiwei Peng, Dandan Tang

Abstract

Alongside the time-locked event-related potentials (ERPs), nociceptive somatosensory inputs can induce modulations of ongoing oscillations, appeared as event-related synchronization or desynchronization (ERS/ERD) in different frequency bands. These ERD/ERS activities are suggested to reflect various aspects of pain perception, including the representation, encoding, assessment, and integration of the nociceptive sensory inputs, as well as behavioral responses to pain, even the precise details of their roles remain unclear. Previous studies investigating the functional relevance of ERD/ERS activities in pain perception were normally done by assessing their latencies, frequencies, magnitudes, and scalp distributions, which would be then correlated with subjective pain perception or stimulus intensity. Nevertheless, these temporal, spectral, and spatial profiles of stimulus induced ERD/ERS could only partly reveal the dynamics of brain oscillatory activities. Indeed, additional parameters, including but not limited to, phase, neural generator, and cross frequency couplings, should be paid attention to comprehensively and systemically evaluate the dynamics of oscillatory activities associated with pain perception and behavior. This would be crucial in exploring the psychophysiological mechanisms of neural oscillation, and in understanding the neural functions of cortical oscillations involved in pain perception and behavior. Notably, some chronic pain (e.g., neurogenic pain and complex regional pain syndrome) patients are often associated with the occurrence of abnormal synchronized oscillatory brain activities, and selectively modulating cortical oscillatory activities has been showed to be a potential therapy strategy to relieve pain with the application of neurostimulation techniques, e.g., repeated transcranial magnetic stimulation (rTMS) and transcranial alternating current stimulation (tACS). Thus, the investigation of the oscillatory activities proceeding from phenomenology to function, opens new perspectives to address questions in human pain psychophysiology and pathophysiology, thereby promoting the establishment of rational therapeutic strategy.

Keywords: cortical oscillations; electroencephalography (EEG); event-related desynchronization (ERD); event-related synchronization (ERS); pain.

Figures

Figure 1
Figure 1
Flowchart describing the identification of pain related electrophysiological features and applications in both basic and clinical pain study. Nociceptive somatosensory inputs can elicit transient changes in the ongoing electroencephalography (EEG) activities, including phase-locked event-related potentials (ERPs) and non-phase-locked modulations of ongoing oscillatory activities in multiple frequency bands (appeared as event-related desynchronization or synchronization, ERD or ERS). The phase-locked ERPs activities could be obtained by the classical across-trial averaging process, characterized by their peak latency, amplitude, scalp topography, and neural generators, while the non-phase-locked ERD/ERS activities could be identified using time-frequency analysis (TFA), characterized by several parameters including latency, frequency, magnitude, scalp topography, phase, neural generator, casual information flows, and cross-frequency couplings (CFCs). The assessment of the relationship between human pain perception and electrophysiological responses has the potential applications in both basic and clinical pain study, including: (1) exploring electrophysiological signatures coding subjective pain perception; (2) predicting subjective pain intensity; (3) exploring pathological mechanisms of chronic pain; and (4) relieving pain modulating the cortical oscillatory activities using neurofeedback techniques.

References

    1. Babiloni C., Brancucci A., Del Percio C., Capotosto P., Arendt-Nielsen L., Chen A. C., et al. . (2006). Anticipatory electroencephalography alpha rhythm predicts subjective perception of pain intensity. J. Pain 7, 709–717. 10.1016/j.jpain.2006.03.005
    1. Babiloni C., Del Percio C., Brancucci A., Capotosto P., Le Pera D., Marzano N., et al. . (2008). Pre-stimulus alpha power affects vertex N2–P2 potentials evoked by noxious stimuli. Brain Res. Bull. 75, 581–590. 10.1016/j.brainresbull.2007.09.009
    1. Bromm B., Chen A. C. (1995). Brain electrical source analysis of laser evoked potentials in response to painful trigeminal nerve stimulation. Electroencephalogr. Clin. Neurophysiol. 95, 14–26. 10.1016/0013-4694(95)00032-t
    1. Bromm B., Jahnke M. T., Treede R. D. (1984). Responses of human cutaneous afferents to CO2 laser stimuli causing pain. Exp. Brain Res. 55, 158–166. 10.1007/bf00240510
    1. Busch N. A., Dubois J., VanRullen R. (2009). The phase of ongoing EEG oscillations predicts visual perception. J. Neurosci. 29, 7869–7876. 10.1523/JNEUROSCI.0113-09.2009
    1. Buzsáki G., Draguhn A. (2004). Neuronal oscillations in cortical networks. Science 304, 1926–1929. 10.1126/science.1099745
    1. Canolty R. T., Edwards E., Dalal S. S., Soltani M., Nagarajan S. S., Kirsch H. E., et al. . (2006). High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628. 10.1126/science.1128115
    1. Canolty R. T., Knight R. T. (2010). The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515. 10.1016/j.tics.2010.09.001
    1. Carmon A., Mor J., Goldberg J. (1976). Evoked cerebral responses to noxious thermal stimuli in humans. Exp. Brain Res. 25, 103–107. 10.1007/bf00237330
    1. Cheyne D., Gaetz W., Garnero L., Lachaux J. P., Ducorps A., Schwartz D., et al. . (2003). Neuromagnetic imaging of cortical oscillations accompanying tactile stimulation. Brain Res. Cogn. Brain Res. 17, 599–611. 10.1016/s0926-6410(03)00173-3
    1. Cruccu G., Sommer C., Anand P., Attal N., Baron R., Garcia-Larrea L., et al. . (2010). EFNS guidelines on neuropathic pain assessment: revised 2009. Eur. J. Neurol. 17, 1010–1018. 10.1111/j.1468-1331.2010.02969.x
    1. de Hemptinne C., Ryapolova-Webb E. S., Air E. L., Garcia P. A., Miller K. J., Ojemann J. G., et al. . (2013). Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. U S A 110, 4780–4785. 10.1073/pnas.1214546110
    1. Del Percio C., Le Pera D., Arendt-Nielsen L., Babiloni C., Brancucci A., Chen A. C., et al. . (2006). Distraction affects frontal alpha rhythms related to expectancy of pain: an EEG study. Neuroimage 31, 1268–1277. 10.1016/j.neuroimage.2006.01.013
    1. Doesburg S. M., Green J. J., Mcdonald J. J., Ward L. M. (2009). Rhythms of consciousness: binocular rivalry reveals large-scale oscillatory network dynamics mediating visual perception. PLoS One 4:e6142. 10.1371/journal.pone.0006142
    1. Dong L., Gong D. K., Valdes-Sosa P. A., Xia Y., Luo C., Xu P., et al. . (2014). Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. Neuroimage 99, 28–41. 10.1016/j.neuroimage.2014.05.029
    1. Drewes A. M., Gratkowski M., Sami S. A., Dimcevski G., Funch-Jensen P., Arendt-Nielsen L. (2008). Is the pain in chronic pancreatitis of neuropathic origin? Support from EEG studies during experimental pain. World J. Gastroenterol. 14, 4020–4027. 10.3748/wjg.14.4020
    1. Fellinger R., Klimesch W., Gruber W., Freunberger R., Doppelmayr M. (2011). Pre-stimulus alpha phase-alignment predicts P1-amplitude. Brain Res. Bull. 85, 417–423. 10.1016/j.brainresbull.2011.03.025
    1. Feurra M., Paulus W., Walsh V., Kanai R. (2011). Frequency specific modulation of human somatosensory cortex. Front. Psychol. 2:13. 10.3389/fpsyg.2011.00013
    1. Fregni F., Dasilva D., Potvin K., Ramos-Estebanez C., Cohen D., Pascual-Leone A., et al. . (2005). Treatment of chronic visceral pain with brain stimulation. Ann. Neurol. 58, 971–972. 10.1002/ana.20651
    1. Fries P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu. Rev. Neurosci. 32, 209–224. 10.1146/annurev.neuro.051508.135603
    1. Gaetz W. C., Cheyne D. O. (2003). Localization of human somatosensory cortex using spatially filtered magnetoencephalography. Neurosci. Lett. 340, 161–164. 10.1016/s0304-3940(03)00108-3
    1. Garcia-Larrea L., Frot M., Valeriani M. (2003). Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol. Clin. 33, 279–292. 10.1016/j.neucli.2003.10.008
    1. Gross J., Schnitzler A., Timmermann L., Ploner M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biol. 5:e133. 10.1371/journal.pbio.0050133
    1. Gruber W. R., Klimesch W., Sauseng P., Doppelmayr M. (2005). Alpha phase synchronization predicts P1 and N1 latency and amplitude size. Cereb. Cortex 15, 371–377. 10.1093/cercor/bhh139
    1. Haig A. R., Gordon E. (1998). Prestimulus EEG alpha phase synchronicity influences N100 amplitude and reaction time. Psychophysiology 35, 591–595. 10.1017/s0048577298970512
    1. Hauck M., Lorenz J., Engel A. K. (2007). Attention to painful stimulation enhances gamma-band activity and synchronization in human sensorimotor cortex. J. Neurosci. 27, 9270–9277. 10.1523/jneurosci.2283-07.2007
    1. Hipp J. F., Engel A. K., Siegel M. (2011). Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69, 387–396. 10.1016/j.neuron.2010.12.027
    1. Hoechstetter K., Bornfleth H., Weckesser D., Ille N., Berg P., Scherg M. (2004). BESA source coherence: a new method to study cortical oscillatory coupling. Brain Topogr. 16, 233–238. 10.1023/b:brat.0000032857.55223.5d
    1. Hu L., Peng W., Valentini E., Zhang Z., Hu Y. (2013). Functional features of nociceptive-induced suppression of alpha band electroencephalographic oscillations. J. Pain 14, 89–99. 10.1016/j.jpain.2012.10.008
    1. Hu L., Valentini E., Zhang Z. G., Liang M., Iannetti G. D. (2014a). The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. Neuroimage 84, 383–393. 10.1016/j.neuroimage.2013.08.057
    1. Hu L., Xiao P., Zhang Z. G., Mouraux A., Iannetti G. D. (2014b). Single-trial time-frequency analysis of electrocortical signals: baseline correction and beyond. Neuroimage 84, 876–887. 10.1016/j.neuroimage.2013.09.055
    1. Hu L., Zhang Z. G., Mouraux A., Iannetti G. D. (2015). Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 111, 442–453. 10.1016/j.neuroimage.2015.01.062
    1. Huang G., Xiao P., Hung Y. S., Iannetti G. D., Zhang Z. G., Hu L. (2013). A novel approach to predict subjective pain perception from single-trial laser-evoked potentials. Neuroimage 81, 283–293. 10.1016/j.neuroimage.2013.05.017
    1. Iannetti G. D., Hughes N. P., Lee M. C., Mouraux A. (2008). Determinants of laser-evoked EEG responses: pain perception or stimulus saliency? Neuroimage 100, 815–828. 10.1152/jn.00097.2008
    1. Iannetti G. D., Truini A., Romaniello A., Galeotti F., Rizzo C., Manfredi M., et al. . (2003). Evidence of a specific spinal pathway for the sense of warmth in humans. J. Neurophysiol. 89, 562–570. 10.1152/jn.00393.2002
    1. Jurkiewicz M. T., Gaetz W. C., Bostan A. C., Cheyne D. (2006). Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings. Neuroimage 32, 1281–1289. 10.1016/j.neuroimage.2006.06.005
    1. Klein M. M., Treister R., Raij T., Pascual-Leone A., Park L., Nurmikko T., et al. . (2015). Transcranial magnetic stimulation of the brain: guidelines for pain treatment research. Pain 156, 1601–1614. 10.1097/j.pain.0000000000000210
    1. Kruglikov S. Y., Schiff S. J. (2003). Interplay of electroencephalogram phase and auditory-evoked neural activity. J. Neurosci. 23, 10122–10127.
    1. Lakatos P., Shah A. S., Knuth K. H., Ulbert I., Karmos G., Schroeder C. E. (2005). An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911. 10.1152/jn.00263.2005
    1. Lange J., Halacz J., van Dijk H., Kahlbrock N., Schnitzler A. (2012). Fluctuations of prestimulus oscillatory power predict subjective perception of tactile simultaneity. Cereb. Cortex 22, 2564–2574. 10.1093/cercor/bhr329
    1. Laufs H., Kleinschmidt A., Beyerle A., Eger E., Salek-Haddadi A., Preibisch C., et al. . (2003a). EEG-correlated fMRI of human alpha activity. Neuroimage 19, 1463–1476. 10.1016/s1053-8119(03)00286-6
    1. Laufs H., Krakow K., Sterzer P., Eger E., Beyerle A., Salek-Haddadi A., et al. . (2003b). Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc. Natl. Acad. Sci. U S A 100, 11053–11058. 10.1073/pnas.1831638100
    1. Lefaucheur J. P., Drouot X., Menard-Lefaucheur I., Keravel Y., Nguyen J. P. (2008). Motor cortex rTMS in chronic neuropathic pain: pain relief is associated with thermal sensory perception improvement. J. Neurol. Neurosurg. Psychiatry 79, 1044–1049. 10.1136/jnnp.2007.135327
    1. Lei X., Xu P., Luo C., Zhao J. P., Zhou D., Yao D. Z. (2011). fMRI functional networks for EEG source imaging. Hum. Brain Mapp. 32, 1141–1160. 10.1002/hbm.21098
    1. Lenz F. A., Krauss G., Treede R. D., Lee J. L., Boatman D., Crone N., et al. . (2000). Different generators in human temporal-parasylvian cortex account for subdural laser-evoked potentials, auditory-evoked potentials and event-related potentials. Neurosci. Lett. 279, 153–156. 10.1016/s0304-3940(99)00986-6
    1. López-Azcárate J., Tainta M., Rodríguez-Oroz M. C., Valencia M., González R., Guridi J., et al. . (2010). Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson’s disease. J. Neurosci. 30, 6667–6677. 10.1523/JNEUROSCI.5459-09.2010
    1. Mathewson K. E., Gratton G., Fabiani M., Beck D. M., Ro T. (2009). To see or not to see: prestimulus alpha phase predicts visual awareness. J. Neurosci. 29, 2725–2732. 10.1523/JNEUROSCI.3963-08.2009
    1. May E. S., Butz M., Kahlbrock N., Brenner M., Hoogenboom N., Kircheis G., et al. . (2014). Hepatic encephalopathy is associated with slowed and delayed stimulus-associated somatosensory alpha activity. Clin. Neurophysiol. 125, 2427–2435. 10.1016/j.clinph.2014.03.018
    1. Miskovic V., Moscovitch D. A., Santesso D. L., McCabe R. E., Antony M. M., Schmidt L. A. (2011). Changes in EEG cross-frequency coupling during cognitive behavioral therapy for social anxiety disorder. Psychol. Sci. 22, 507–516. 10.1177/0956797611400914
    1. Mouraux A., Guérit J. M., Plaghki L. (2003). Non-phase locked electroencephalogram (EEG) responses to CO2 laser skin stimulations may reflect central interactions between A partial partial differential- and C-fibre afferent volleys. Clin. Neurophysiol. 114, 710–722. 10.1016/s1388-2457(03)00027-0
    1. Mouraux A., Iannetti G. D. (2008). Across-trial averaging of event-related EEG responses and beyond. Magn. Reson. Imaging 26, 1041–1054. 10.1016/j.mri.2008.01.011
    1. Mouraux A., Iannetti G. D. (2009). Nociceptive laser-evoked brain potentials do not reflect nociceptive-specific neural activity. J. Neurophysiol. 101, 3258–3269. 10.1152/jn.91181.2008
    1. Palva S., Palva J. M. (2011). Functional roles of alpha-band phase synchronization in local and large-scale cortical networks. Front. Psychol. 2:204. 10.3389/fpsyg.2011.00204
    1. Pascual-Marqui R. D., Michel C. M., Lehmann D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65. 10.1016/0167-8760(84)90014-x
    1. Peng W. W., Hu L., Zhang Z. G., Hu Y. (2012). Causality in the association between P300 and Alpha event-related desynchronization. PLoS One 7:e34163. 10.1371/journal.pone.0034163
    1. Peng W., Hu L., Zhang Z., Hu Y. (2014). Changes of spontaneous oscillatory activity to tonic heat pain. PLoS One 9:e91052. 10.1371/journal.pone.0091052
    1. Pfurtscheller G., Lopes da Silva F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110, 1842–1857. 10.1016/s1388-2457(99)00141-8
    1. Ploner M., Gross J., Timmermann L., Pollok B., Schnitzler A. (2006a). Oscillatory activity reflects the excitability of the human somatosensory system. Neuroimage 32, 1231–1236. 10.1016/j.neuroimage.2006.06.004
    1. Ploner M., Gross J., Timmermann L., Pollok B., Schnitzler A. (2006b). Pain suppresses spontaneous brain rhythms. Cereb. Cortex 16, 537–540. 10.1093/cercor/bhj001
    1. Rahn E., Başar E. (1993a). Enhancement of visual-evoked potentials by stimulation during low prestimulus EEG stages. Int. J. Neurosci. 72, 123–136. 10.3109/00207459308991629
    1. Rahn E., Başar E. (1993b). Prestimulus EEG-activity strongly influences the auditory evoked vertex response: a new method for selective averaging. Int. J. Neurosci. 69, 207–220. 10.3109/00207459309003331
    1. Raij T. T., Forss N., Stancák A., Hari R. (2004). Modulation of motor-cortex oscillatory activity by painful Aδ- and C-fiber stimuli. Neuroimage 23, 569–573. 10.1016/j.neuroimage.2004.06.036
    1. Rajkai C., Lakatos P., Chen C. M., Pincze Z., Karmos G., Schroeder C. E. (2008). Transient cortical excitation at the onset of visual fixation. Cereb. Cortex 18, 200–209. 10.1093/cercor/bhm046
    1. Romei V., Brodbeck V., Michel C., Amedi A., Pascual-Leone A., Thut G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb. Cortex 18, 2010–2018. 10.1093/cercor/bhm229
    1. Saalmann Y. B., Pinsk M. A., Wang L., Li X., Kastner S. (2012). The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337, 753–756. 10.1126/science.1223082
    1. Sarnthein J., Jeanmonod D. (2008). High thalamocortical theta coherence in patients with neurogenic pain. Neuroimage 39, 1910–1917. 10.1016/j.neuroimage.2007.10.019
    1. Sarnthein J., Stern J., Aufenberg C., Rousson V., Jeanmonod D. (2006). Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129, 55–64. 10.1093/brain/awh631
    1. Schlee W., Hartmann T., Langguth B., Weisz N. (2009). Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci. 10:11. 10.1186/1471-2202-10-11
    1. Schnitzler A., Gross J. (2005). Normal and pathological oscillatory communication in the brain. Nat. Rev. Neurosci. 6, 285–296. 10.1038/nrn1650
    1. Schnitzler A., Gross J., Timmermann L. (2000). Synchronised oscillations of the human sensorimotor cortex. Acta Neurobiol. Exp. (Wars) 60, 271–287.
    1. Schulz E., May E. S., Postorino M., Tiemann L., Nickel M. M., Witkovsky V., et al. . (2015). Prefrontal Gamma oscillations encode tonic pain in humans. Cereb. Cortex 25, 4407–4414. 10.1093/cercor/bhv043
    1. Schulz E., Tiemann L., Schuster T., Gross J., Ploner M. (2011). Neurophysiological coding of traits and states in the perception of pain. Cereb. Cortex 21, 2408–2414. 10.1093/cercor/bhr027
    1. Tallon-Baudry C., Bertrand O. (1999). Oscillatory gamma activity in humans and its role in object representation. Trends Cogn. Sci. 3, 151–162. 10.1016/s1364-6613(99)01299-1
    1. Tarkka I. M., Treede R. D. (1993). Equivalent electrical source analysis of pain-related somatosensory evoked potentials elicited by a CO2 laser. J. Clin. Neurophysiol. 10, 513–519. 10.1097/00004691-199310000-00009
    1. Thut G., Nietzel A., Brandt S. A., Pascual-Leone A. (2006). Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J. Neurosci. 26, 9494–9502. 10.1523/jneurosci.0875-06.2006
    1. Treede R. D. (2003). Neurophysiological studies of pain pathways in peripheral and central nervous system disorders. J. Neurol. 250, 1152–1161. 10.1007/s00415-003-0237-7
    1. Treede R. D., Lorenz J., Baumgärtner U. (2003). Clinical usefulness of laser-evoked potentials. Neurophysiol. Clin. 33, 303–314. 10.1016/j.neucli.2003.10.009
    1. Tu Y. H., Zhang Z. G., Tan A., Peng W. W., Hung Y. S., Moayedid M., et al. . (2016). Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming stimuli. Hum. Brain Mapp. 37, 501–514. 10.1002/hbm.23048
    1. Valentini E., Hu L., Chakrabarti B., Hu Y., Aglioti S. M., Iannetti G. D. (2012). The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. Neuroimage 59, 1571–1581. 10.1016/j.neuroimage.2011.08.069
    1. Vanni S., Revonsuo A., Hari R. (1997). Modulation of the parieto-occipital alpha rhythm during object detection. J. Neurosci. 17, 7141–7147.
    1. von Stein A., Sarnthein J. (2000). Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38, 301–313. 10.1016/s0167-8760(00)00172-0
    1. Walton K. D., Dubois M., Llinás R. R. (2010). Abnormal thalamocortical activity in patients with Complex Regional Pain Syndrome (CRPS) type I. Pain 150, 41–51. 10.1016/j.pain.2010.02.023
    1. Wang J., Li D., Li X. L., Liu F. Y., Xing G. G., Cai J., et al. . (2011). Phase-amplitude coupling between theta and gamma oscillations during nociception in rat electroencephalography. Neurosci. Lett. 499, 84–87. 10.1016/j.neulet.2011.05.037
    1. Wang L., Saalmann Y. B., Pinsk M. A., Arcaro M. J., Kastner S. (2012). Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity. Neuron 76, 1010–1020. 10.1016/j.neuron.2012.09.033
    1. Yao D. Z. (2001). A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 22, 693–711. 10.1088/0967-3334/22/4/305
    1. Zhang Z. G., Hu L., Hung Y. S., Mouraux A., Iannetti G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex-a direct and obligatory correlate of subjective pain intensity. J. Neurosci. 32, 7429–7438. 10.1523/JNEUROSCI.5877-11.2012

Source: PubMed

3
구독하다