Innate immunity in COVID-19 patients mediated by NKG2A receptors, and potential treatment using Monalizumab, Cholroquine, and antiviral agents

Ahmed Yaqinuddin, Junaid Kashir, Ahmed Yaqinuddin, Junaid Kashir

Abstract

Following the outbreak of a novel coronavirus (SARS-CoV-2), studies suggest that the resultant disease (COVID-19) is more severe in individuals with a weakened immune system. Cytotoxic T-cells (CTLs) and Natural Killer (NK) cells are required to generate an effective immune response against viruses, functional exhaustion of which enables disease progression. Patients with severe COVID-19 present significantly lower lymphocyte, and higher neutrophil, counts in blood. Specifically, CD8+ lymphocytes and NK cells were significantly reduced in cases of severe infection compared to patients with mild infection and healthy individuals. The NK group 2 member A (NKG2A) receptor transduces inhibitory signalling, suppressing NK cytokine secretion and cytotoxicity. Overexpression of NKG2A has been observed on CD8+ and NK cells of COVID-19 infected patients compared to healthy controls, while NKG2A overexpression also functionally exhausts CD8+ cells and NK cells, resulting in a severely compromised innate immune response. Blocking NKG2A on CD8+ cells and NK cells in cancers modulated tumor growth, restoring CD8+ T and NK cell function. A recently proposed mechanism via which SARS-CoV-2 overrides innate immune response of the host is by over-expressing NKG2A on CD+ T and NK cells, culminating in functional exhaustion of the immune response against the viral pathogen. Monalizumab is an inhibiting antibody against NKG2A which can restore the function of CD8 + T and NK cells in cancers, successfully ceasing tumor progression with no significant side effects in Phase 2 clinical trials. We hypothesize that patients with severe COVID-19 have a severely compromised innate immune response and could be treated via the use of Monalizumab, interferon α, chloroquine, and other antiviral agents.

Keywords: COVID-19; Innate immunity; Monalizumab; NKG2A; SARS.

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Copyright © 2020 Elsevier Ltd. All rights reserved.

References

    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed PMID: 31986264.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507–513. doi: 10.1016/S0140-6736(20)30211-7. PubMed PMID: 32007143.
    1. Meijuan Zheng Yong Gao Gang Wang Guobin Song Siyu Liu Dandan Sun Yuanhong Xu Zhigang Tian Functional exhaustion of antiviral lymphocytes in COVID-19 patients 2020 10.1038/s41423-020-0402-2 .
    1. Zhang C, Wang XM, Li SR, Twelkmeyer T, Wang WH, Zhang SY, et al. NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun. 2019;10(1):1507. Epub 2019/04/05. doi: 10.1038/s41467-019-09212-y. PubMed PMID: 30944315; PubMed Central PMCID: PMCPMC6447531.
    1. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38(1):1-9. Epub 2020/02/28. doi: 10.12932/AP-200220-0772. PubMed PMID: 32105090.
    1. Symptoms of Novel Cornovirus (2019-nCOV) Atlanta: Center of Disease Control and Prevention; 2020. Available from: .
    1. Chan J.F., Yuan S., Kok K.H., To K.K., Chu H., Yang J. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020;395(10223):514–523. doi: 10.1016/S0140-6736(20)30154-9. PubMed PMID: 31986261.
    1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–269. doi: 10.1038/s41586-020-2008-3. PubMed PMID: 32015508.
    1. Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T., Leung C.Y. Lung pathology of fatal severe acute respiratory syndrome. Lancet. 2003;361(9371):1773–1778. doi: 10.1016/s0140-6736(03)13413-7. PubMed PMID: 12781536.
    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7. PubMed PMID: 32015507.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017. PubMed PMID: 31978945.
    1. Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin Exp Immunol. 2004;136(1):95–103. doi: 10.1111/j.1365-2249.2004.02415.x. PubMed PMID: 15030519; PubMed Central PMCID: PMCPMC1808997.
    1. Mahallawi W.H., Khabour O.F., Zhang Q., Makhdoum H.M. Suliman BA. MERS-CoV infection in humans is associated with a pro-inflammatory Th1 and Th17 cytokine profile. Cytokine. 2018;104:8–13. doi: 10.1016/j.cyto.2018.01.025. PubMed PMID: 29414327.
    1. Andre P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J, Arnoux T, et al. Anti-NKG2A mAb Is a Checkpoint Inhibitor that Promotes Anti-tumor Immunity by Unleashing Both T and NK Cells. Cell. 2018;175(7):1731-43 e13. Epub 2018/12/07. doi: 10.1016/j.cell.2018.10.0PubMed PMID: 30503213; PubMed Central PMCID: PMCPMC6292840.
    1. van Hall T, Andre P, Horowitz A, Ruan DF, Borst L, Zerbib R, et al. Monalizumab: inhibiting the novel immune checkpoint NKG2A. J Immunother Cancer. 2019;7(1):263. Epub 2019/10/19. doi: 10.1186/s40425-019-0761-3. PubMed PMID: 31623687; PubMed Central PMCID: PMCPMC6798508.
    1. Habif G, Crinier A, Andre P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019;16(5):415-22. Epub 2019/03/27. doi: 10.1038/s41423-019-0224-2. PubMed PMID: 30911118; PubMed Central PMCID: PMCPMC6474204.
    1. Mamessier E, Sylvain A, Thibult ML, Houvenaeghel G, Jacquemier J, Castellano R, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest. 2011;121(9):3609-22. Epub 2011/08/16. doi: 10.1172/JCI45816. PubMed PMID: 21841316; PubMed Central PMCID: PMCPMC3171102.
    1. Gao J., Tian Z., Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73. doi: 10.5582/bst.2020.01047. PubMed PMID: 32074550.
    1. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. Epub 2020/02/06. doi: 10.1038/s41422-020-0282-0. PubMed PMID: 32020029; PubMed Central PMCID: PMCPMC7054408.
    1. Savarino A., Boelaert J.R., Cassone A., Majori G., Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3(11):722–727. doi: 10.1016/s1473-3099(03)00806-5. PubMed PMID: 14592603.
    1. Hu TY, Frieman M, Wolfram J. Insights from nanomedicine into chloroquine efficacy against COVID-19. Nat Nanotechnol. 2020. Epub 2020/03/24. doi: 10.1038/s41565-020-0674-9. PubMed PMID: 32203437; PubMed Central PMCID: PMCPMC7094976.
    1. Stockman LJ, Bellamy R, Garner P. SARS: systematic review of treatment effects. PLoS Med. 2006;3(9):e343. Epub 2006/09/14. doi: 10.1371/journal.pmed.0030343. PubMed PMID: 16968120; PubMed Central PMCID: PMCPMC1564166.
    1. Su B, Wang Y, Zhou R, Jiang T, Zhang H, Li Z, et al. Efficacy and Tolerability of Lopinavir/Ritonavir- and Efavirenz-Based Initial Antiretroviral Therapy in HIV-1-Infected Patients in a Tertiary Care Hospital in Beijing, China. Front Pharmacol. 2019;10:1472. Epub 2020/01/11. doi: 10.3389/fphar.2019.01472. PubMed PMID: 31920659; PubMed Central PMCID: PMCPMC6920196.
    1. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-6. Epub 2004/02/27. doi: 10.1136/thorax.2003.012658. PubMed PMID: 14985565; PubMed Central PMCID: PMCPMC1746980.
    1. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 2020;14(1):58-60. Epub 2020/03/10. doi: 10.5582/ddt.2020.01012. PubMed PMID: 32147628.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020. Epub 2020/03/07. doi: 10.1016/j.cell.2020.02.052. PubMed PMID: 32142651.
    1. Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion. J Virol. 2016;90(19):8924-33. Epub 2016/07/29. doi: 10.1128/JVI.01429-16. PubMed PMID: 27466418; PubMed Central PMCID: PMCPMC5021412.

Source: PubMed

3
구독하다