Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV

Jiabao Xu, Shizhe Zhao, Tieshan Teng, Abualgasim Elgaili Abdalla, Wan Zhu, Longxiang Xie, Yunlong Wang, Xiangqian Guo, Jiabao Xu, Shizhe Zhao, Tieshan Teng, Abualgasim Elgaili Abdalla, Wan Zhu, Longxiang Xie, Yunlong Wang, Xiangqian Guo

Abstract

After the outbreak of the severe acute respiratory syndrome (SARS) in the world in 2003, human coronaviruses (HCoVs) have been reported as pathogens that cause severe symptoms in respiratory tract infections. Recently, a new emerged HCoV isolated from the respiratory epithelium of unexplained pneumonia patients in the Wuhan seafood market caused a major disease outbreak and has been named the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus causes acute lung symptoms, leading to a condition that has been named as "coronavirus disease 2019" (COVID-19). The emergence of SARS-CoV-2 and of SARS-CoV caused widespread fear and concern and has threatened global health security. There are some similarities and differences in the epidemiology and clinical features between these two viruses and diseases that are caused by these viruses. The goal of this work is to systematically review and compare between SARS-CoV and SARS-CoV-2 in the context of their virus incubation, originations, diagnosis and treatment methods, genomic and proteomic sequences, and pathogenic mechanisms.

Keywords: SARS-CoV; SARS-CoV-2; clinical manifestations; coronaviruses; genomic comparison; pathogenic mechanism; proteomic comparison.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Timeline of SARS (a) and COVID-19 (b) epidemic development.
Figure 2
Figure 2
(a) Comparison of the number of SARS and COVID-19 patients in China (including Hong Kong, Macao and Taiwan) and other countries; (b) the number of SARS patients in different provinces of China; (c) an increased number of COVID-19 patients over time was showed in a histogram. On Feb. 11th, Hubei Province had added a “clinical diagnosis case” classification, and identified suspected cases with pneumonia imaging features as clinical diagnosis cases so that patients can receive standardized treatment as soon as possible. (d) The number of COVID-19 patients in different provinces of China. The time period shown in the picture was in the Spring Festival transportation.
Figure 3
Figure 3
The distribution of COVID-2019 patients in China (a) and Hubei Province (b). XJ, Xinjiang; XZ, Xizang; GS, Gansu; QH, Qinghai; SC, Sichuan; YN, Yunnan; IM, Inner Mongolia; NX, Ningxia; SN, Shaanxi; CQ, Chongqing; GZ, Guizhou; GX, Guangxi; HI, Hainan; SX, Shanxi, HA, Henan; HB, Hubei; HN, Hunan; GD, Guangdong; HK, Hong Kong; HE, Hebei; BJ, Beijing; TJ, Tianjin; SD, Shandong; AH, Anhui; JX, Jiangxi; JS, Jiangsu; SH, Shanghai; ZJ, Zhejiang; FJ, Fujian; TW, Taiwan; HL, Heilongjiang; JL, Jilin; LN, Liaoning.
Figure 4
Figure 4
(a) Genomic sequence alignment between SARS-CoV-2 and SARS-CoV; (b) Dot plot matrix calculated for the complete genomes of SARS-CoV-2 and SARS-CoV.

References

    1. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006;12:1834. doi: 10.3201/eid1212.060401.
    1. Ge X.-Y., Li J., Yang X.-L., Chmura A., Zhu G., Epstein J.H., Mazet J.K., Hu B., Zhang W., Peng C., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503:535–538. doi: 10.1038/nature12711.
    1. Chen Y., Guo D. Molecular mechanisms of coronavirus RNA capping and methylation. Virol. Sin. 2016;31:3–11. doi: 10.1007/s12250-016-3726-4.
    1. Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019;17:181–192. doi: 10.1038/s41579-018-0118-9.
    1. Cauchemez S., Van Kerkhove M.D., Riley S., Donnelly C.A., Fraser C., Ferguson N.M. Transmission scenarios for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and how to tell them apart. Euro Surveill. 2013;18:18.
    1. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. Severe acute respiratory syndrome-related coronavirus: The species and its viruses—A statement of the Coronavirus Study Group. bioRxiv. 2020 doi: 10.1101/2020.02.07.937862.
    1. WHO Named the New Pneumonia “COVID-19”. [(accessed on 12 February 2020)]; Available online: .
    1. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Butt K.M., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003;302:276–278. doi: 10.1126/science.1087139.
    1. Ki M. 2015 MERS outbreak in Korea: Hospital-to-hospital transmission. Epidemiol. Health. 2015;37:37. doi: 10.4178/epih/e2015033.
    1. Azhar E.I., El-Kafrawy S.A., Farraj S.A., Hassan A.M., Al-Saeed M.S., Hashem A.M., Madani T.A. Evidence for camel-to-human transmission of MERS coronavirus. N. Engl. J. Med. 2014;370:2499–2505. doi: 10.1056/NEJMoa1401505.
    1. Chan J.F.W., Kok K.H., Zhu Z., Chu H., To K.K.W., Yuan S., Yuen K.Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes. Infect. 2020;9:221–236. doi: 10.1080/22221751.2020.1719902.
    1. Zhao W.M., Song S.H., Chen M.L., Zou D., Ma L.N., Ma Y.K., Li R.J., Hao L.L., Li C.P., Tian D.M., et al. The 2019 Novel Coronavirus Resource. Hereditas. 2020;36:1–9.
    1. NCBI Database. 2019-nCoV. [(accessed on 14 February 2020)]; Available online: .
    1. GSAID Database. 2020 Coronavirus. [(accessed on 14 February 2020)]; Available online:
    1. NCBI Blast. [(accessed on 30 January 2020)]; Available online: .
    1. Zpicture. [(accessed on 1 February 2020)]; Available online: .
    1. Kumar S., Stecher G., Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016;33:1870–1874. doi: 10.1093/molbev/msw054.
    1. Tamura K., Nei M., Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA. 2004;101:11030–11035. doi: 10.1073/pnas.0404206101.
    1. Cheng V.C., Lau S.K., Woo P.C., Yuen K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007;20:660–694. doi: 10.1128/CMR.00023-07.
    1. World Health Organization Weekly Epidemiological Record, 2013, vol. 88, 35 [full issue] Wkly. Epidemiol. Rec. 2013;88:365–380.
    1. Lee N., Hui D.S., Wu A., Chan P.K.S., Cameron P., Joynt G., Ahuja A.T., Yung M.Y., Leung C., To K., et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 2003;348:1986–1994. doi: 10.1056/NEJMoa030685.
    1. Poutanen S., Low N.E., Henry B., Finkelstein S., Rose D., Green K., Tellier R., Draker R., Adachi D., Ayers M., et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 2003;348:1995–2005. doi: 10.1056/NEJMoa030634.
    1. Leo Y.S., Chen M., Heng B.H., Lee C.C. Severe acute respiratory syndrome-Singapore, 2003. MMWR Morb. Mortal. Wkly. Rep. 2003;52:405.
    1. World Health Organization Summary of Probable SARS Cases with Onset of Illness from 1 November 2002 to 31 July 2003. [(accessed on 27 January 2020)]; Available online:
    1. Nuttall I., Dye C. The SARS wake-up call. Science. 2013;339:1287–1288. doi: 10.1126/science.1236434.
    1. Al-Tawfiq J.A., Zumla A., Memish Z.A. Travel implications of emerging coronaviruses: SARS and MERS-CoV. Travel. Med. Infect. Dis. 2014;12:422–428. doi: 10.1016/j.tmaid.2014.06.007.
    1. Chinese Center for Disease Control and Prevention Epidemic Update and Risk Assessment of 2019 Novel Coronavirus. [(accessed on 28 January 2020)]; Available online: .
    1. Gralinski L.E., Menachery V.D. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12:135. doi: 10.3390/v12020135.
    1. Wang J.T., Sheng W.H., Fang C.T., Chen Y.C., Wang J.L., Yu C.J., Yang P.C. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 2004;10:818. doi: 10.3201/eid1005.030640.
    1. Fehr A.R., Channappanavar R., Perlman S. Middle East respiratory syndrome: Emergence of a pathogenic human coronavirus. Annu. Rev. Med. 2017;68:387–399. doi: 10.1146/annurev-med-051215-031152.
    1. National Health Commission of the People’s Republic of China Diagnosis and Treatment of Pneumonia Caused by 2019-nCoV (Trial Version 4) [(accessed on 6 February 2020)]; Available online: .
    1. Yang F. Pulmonary rehabilitation guidelines in the principle of 4S for patients infected with 2019 novel coronavirus (2019-nCoV) Zhonghua Jie He He Hu Xi Za Zhi. 2020;43:E004.
    1. Lessler J., Reich N.G., Brookmeyer R., Perl T.M., Nelson K.E., Cummings D.A. Incubation periods of acute respiratory viral infections: A systematic review. Lancet. Infect. Dis. 2009;9:291–300. doi: 10.1016/S1473-3099(09)70069-6.
    1. Meltzer M.I. Multiple contact dates and SARS incubation periods. Emerg. Infect. Dis. 2004;10:207. doi: 10.3201/eid1002.030426.
    1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382:727–733. doi: 10.1056/NEJMoa2001017.
    1. Yang Y., Lu Q., Liu M., Wang Y., Zhang A., Jalali N., Dean N., Longini I., Halloran M.E., Xu B., et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. medRxiv. 2020 doi: 10.1101/2020.02.10.20021675.
    1. Chan-Yeung M., Xu R.H. SARS: Epidemiology. Respirology. 2003;8:S9–S14. doi: 10.1046/j.1440-1843.2003.00518.x.
    1. Wang C., Horby P.W., Hayden F.G., Gao G.F. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473. doi: 10.1016/S0140-6736(20)30185-9.
    1. Peiris J.S., Yuen K.Y., Osterhaus A.D., Stöhr K. The severe acute respiratory syndrome. N. Engl. J. Med. 2003;349:2431–2441. doi: 10.1056/NEJMra032498.
    1. Leung G.M., Hedley A.J., Ho L.-M., Chau P., Wong I.O., Thach T.Q., Ghani A.C., Donnelly C., Fraser C., Riley S., et al. The epidemiology of severe acute respiratory syndrome in the 2003 Hong Kong epidemic: An analysis of all 1755 patients. Ann. Intern. Med. 2004;141:662–673. doi: 10.7326/0003-4819-141-9-200411020-00006.
    1. Infectious Disease Expert Li Lanjuan Responded to Six Questions of 2019-nCoV. [(accessed on 23 January 2020)]; Available online: .
    1. Li Q., Guan X., Wu P., Wang X., Zhou L., Tong Y., Ren R., Leung K.S., Lau E.H., Wong J.Y., et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001316.
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 2020;395:507–513. doi: 10.1016/S0140-6736(20)30211-7.
    1. Press Conference of the National Health Commission of the People’s Republic of China on 3 February 2020. [(accessed on 4 February 2020)]; Available online: .
    1. Yuan J., Hon C.-C., Li Y., Wang D., Xu G., Zhang H., Zhou P., Poon L., Lam T.Y., Leung F.C.-C., et al. Intraspecies diversity of SARS-like coronaviruses in Rhinolophus sinicus and its implications for the origin of SARS coronaviruses in humans. J. Gen. Virol. 2010;91:1058–1062. doi: 10.1099/vir.0.016378-0.
    1. Phan T. Novel coronavirus: From discovery to clinical diagnostics. Infect. Genet. Evol. 2020;79:104211. doi: 10.1016/j.meegid.2020.104211.
    1. Wang M., Yan M., Xu H., Liang W., Kan B., Zheng B., Chen H., Zheng H., Xu Y., Zhang E., et al. SARS-CoV infection in a restaurant from palm civet. Emerg. Infect. Dis. 2005;11:1860. doi: 10.3201/eid1112.041293.
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. bioRxiv. 2020 doi: 10.1101/2020.01.22.914952.
    1. Guo Q., Li M., Wang C., Wang P., Fang Z., Tan J., Wu S., Xiao Y., Zhu H. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm. bioRxiv. 2020 doi: 10.1101/2020.01.21.914044.
    1. Ji W., Wang W., Zhao X., Zai J., Li X. Homologous recombination within the spike glycoprotein of the newly identified coronavirus may boost cross-species transmission from snake to human. J. Med. Virol. 2020;92:433–440. doi: 10.1002/jmv.25682.
    1. South China Agricultural University: Pangolin May Be a Potential Intermediate Host of New Coronavirus. [(accessed on 7 February 2020)]; Available online: .
    1. Chowell G., Castillo-Chavez C., Fenimore P.W., Kribs-Zaleta C.M., Arriola L., Hyman J.M. Model parameters and outbreak control for SARS. Emerg. Infect. Dis. 2004;10:1258. doi: 10.3201/eid1007.030647.
    1. Lau E.H.Y., Hsiung C.A., Cowling B.J., Chen C.-H., Ho L.-M., Tsang T., Chang C.-W., Donnelly C., Leung G.M. A comparative epidemiologic analysis of SARS in Hong Kong, Beijing and Taiwan. BMC Infect. Dis. 2010;10:50. doi: 10.1186/1471-2334-10-50.
    1. Chinese Center for Disease Control and Prevention Distribution of Pneumonia Infected by 2019-nCoV. [(accessed on 15 February 2020)]; Available online:
    1. Real-time Updates of COVID-19 Epidemic in China. [(accessed on 15 February 2020)]; Available online: .
    1. Nishiura H., Jung S.-M., Linton N., Kinoshita R., Yang Y., Hayashi K., Kobayashi T., Yuan B., Akhmetzhanov A.R. The extent of transmission of novel coronavirus in Wuhan, China, 2020. J. Clin. Med. 2020;9:330. doi: 10.3390/jcm9020330.
    1. Li X., Zai J., Wang X., Li Y. Potential of large ‘first generation’ human-to-human transmission of 2019-nCoV. J. Med. Virol. 2020;92:448–454. doi: 10.1002/jmv.25693.
    1. Carlos W.G., Dela Cruz C.S., Cao B., Pasnick S., Jamil S. Novel Wuhan (2019-nCoV) Coronavirus. Am. J. Respir. Crit. Care Med. 2020;201:7–8. doi: 10.1164/rccm.2014P7.
    1. National Health Commission of the People’s Republic of China The Role of Fecal-Oral Transmission in All transmission Still Need Further Observation and Research. [(accessed on 13 February 2020)]; Available online: .
    1. Chinese Center for Disease Control and Prevention There Is No Evidence That the New Coronavirus Can Be Transmitted through Aerosol. [(accessed on 9 February 2020)]; Available online: .
    1. Lau J.T., Tsui H., Lau M., Yang X. SARS transmission, risk factors, and prevention in Hong Kong. Emerg. Infect. Dis. 2004;10:587. doi: 10.3201/eid1004.030628.
    1. Lu H., Stratton C.W., Tang Y.W. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: The Mystery and the Miracle. J. Med. Virol. 2020;92:401–402. doi: 10.1002/jmv.25678.
    1. Rouquet P., Froment J.-M., Bermejo M., Kilbourn A., Karesh W., Reed P., Kumulungui B., Yaba P., Delicat A., Rollin P.E., et al. Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg. Infect. Dis. 2005;11:283. doi: 10.3201/eid1102.040533.
    1. Yoo J.H. The Fight against the 2019-nCoV Outbreak: An Arduous March Has Just Begun. J. Korean Med. Sci. 2020;35:e56. doi: 10.3346/jkms.2020.35.e56.
    1. De Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: Recent insights into emerging coronaviruses. Nat. Rev. Microbiol. 2016;14:523. doi: 10.1038/nrmicro.2016.81.
    1. Chinese Center for Disease Control and Prevention The First New Coronavirus Species Information Was Published by the National Pathogen Microorganism Resource Bank. [(accessed on 1 February 2020)]; Available online: .
    1. Zeng Q., Khan K., Wu J., Zhu H. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Math. Biosci. Eng. 2007;4:739.
    1. Wang N., Luo C., Liu H., Yang X.-L., Hu B., Zhang W., Li B., Zhu Y., Zhu G., Shen X., et al. Characterization of a New Member of Alphacoronavirus with Unique Genomic Features in Rhinolophus Bats. Viruses. 2019;11:379. doi: 10.3390/v11040379.
    1. Bhadra S., Jiang Y.S., Kumar M.R., Johnson R.F., Hensley L.E., Ellington A.D. Real-time sequence-validated loop-mediated isothermal amplification assays for detection of Middle East respiratory syndrome coronavirus (MERS-CoV) PLoS ONE. 2015;10:e0123126. doi: 10.1371/journal.pone.0123126.
    1. Chan J.F.-W., Choi G.K.-Y., Tsang A.K.-L., Tee K.-M., Lam H.-Y., Yip C.C.-Y., To K.K.-W., Cheng V.C.-C., Yeung M.L., Lau S.K., et al. Development and evaluation of novel real-time reverse transcription-PCR assays with locked nucleic acid probes targeting leader sequences of human-pathogenic coronaviruses. J. Clin. Microbiol. 2015;53:2722–2726. doi: 10.1128/JCM.01224-15.
    1. Wu P., Hao X., Lau E.H.Y., Wong J.Y., Leung K.S.M., Wu J.T., Cowling B.J., Leung G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Euro. Surveill. 2020;25:2000044. doi: 10.2807/1560-7917.ES.2020.25.3.2000044.
    1. National Medical Products Administration National Medical Products Administration Examined and Approved the New Nucleic Acid Test Reagent of Coronavirus Again. [(accessed on 28 January 2020)]; Available online: .
    1. Chen Y., Liu Q., Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020;92:418–423. doi: 10.1002/jmv.25681.
    1. Cinatl J., Morgenstern B., Bauer G., Chandra P., Rabenau H., Doerr H.W. Treatment of SARS with human interferons. Lancet. 2003;362:293–294. doi: 10.1016/S0140-6736(03)13973-6.
    1. Chu C.M., Cheng V.C.C., Hung I.F.N., Wong M.M.L., Chan K., Kao R.Y., Poon L., Wong C.L.P., Guan Y., Peiris J.S.M., et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59:252–256. doi: 10.1136/thorax.2003.012658.
    1. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV) Biosci. Trends. 2020 doi: 10.5582/bst.2020.01020.
    1. Beijing Municipal Health Commission Explanation on the Situation that Drugs for AIDS Can Be Tried to Treat Pneumonia Caused by 2019-nCoV Infection. [(accessed on 26 January 2020)]; Available online: .
    1. The Joint Research Team of Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and ShanghaiTech University Discovered a Batch of Old Drugs and Traditional Chinese Medicines with Therapeutic Potential for COVID-19. [(accessed on 25 January 2020)]; Available online: .
    1. High-Resolution Crystal Structure of 2019-nCoV Coronavirus 3CL Hydrolase (Mpro) was Announced by the Joint Research Team of Shanghai Institute of Materia Medica, Chinese Academy of Sciences, and ShanghaiTech University. [(accessed on 26 January 2020)]; Available online: .
    1. Xu Z., Peng C., Shi Y., Zhu Z., Mu K., Wang X., Zhu W. Nelfinavir was predicted to be a potential inhibitor of 2019 nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. bioRxiv. 2020 doi: 10.1101/2020.01.27.921627.
    1. Sheahan T.P., Sims A.C., Leist S.R., Schäfer A., Won J., Brown A.J., Montgomery S.A., Hogg A., Babusis D., Clarke M.O., et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat. Commun. 2020;11:222. doi: 10.1038/s41467-019-13940-6.
    1. Mulangu S., Dodd L.E., Davey R.T., Mbaya O.T., Proschan M., Mukadi D., Manzo M.L., Nzolo D., Oloma A.T., Ibanda A., et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 2019;381:2293–2303. doi: 10.1056/NEJMoa1910993.
    1. Holshue M.L., DeBolt C., Lindquist S., Lofy K.H., Wiesman J., Bruce H., Spitters C., Ericson K., Wilkerson S., Tural A., et al. First Case of 2019 Novel Coronavirus in the United States. N. Engl. J. Med. 2020 doi: 10.1056/NEJMoa2001191.
    1. Song G., Cheng M.Q., Wei X.W. Research progress on novel coronavirus (2019-nCoV) related drugs in vitro/vivo. Bing Du Xue Bao. 2020 doi: 10.13242/j.cnki.bingduxuebao.003646.
    1. China-Japan Friendship Hospital: Clinical Experimental Research Work Is Being Carried Out on Remdesivir. [(accessed on 12 February 2020)]; Available online: .
    1. Lai M.M. Recombination in large RNA viruses: Coronaviruses. Semin. Virol. 1996;7:381–388. doi: 10.1006/smvy.1996.0046.
    1. Woo P.C.Y., Lau S.K., Lam C.S.F., Lau C.C.Y., Tsang A.K.L., Lau J.H.N., Bai R., Teng J.L.L., Tsang C.C.C., Wang M., et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012;86:3995–4008.
    1. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H., Wang W., Song H., Huang B., Zhu N., et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 2020;395:565–574. doi: 10.1016/S0140-6736(20)30251-8.
    1. Shi C.S., Nabar N.R., Huang N.N., Kehrl J.H. SARS-Coronavirus Open Reading Frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes. Cell Death Discov. 2019;5:101. doi: 10.1038/s41420-019-0181-7.
    1. Menachery V.D., Graham R.L., Baric R.S. Jumping species—A mechanism for coronavirus persistence and survival. Curr. Opin. Virol. 2017;23:1–7. doi: 10.1016/j.coviro.2017.01.002.
    1. Wang N., Li S.-Y., Yang X.-L., Huang H.-M., Zhang Y.-J., Guo H., Luo C.-M., Miller M., Zhu G., Chmura A., et al. Serological evidence of bat SARS-related coronavirus infection in humans, China. Virol. Sin. 2018;33:104–107. doi: 10.1007/s12250-018-0012-7.
    1. Xia S., Yan L., Xu W., Agrawal A.S., Algaissi A., Tseng C.-T.K., Wang Q., Du L., Tan W., Wilson I.A., et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci. Adv. 2019;5:eaav4580. doi: 10.1126/sciadv.aav4580.
    1. Nicholls J., DONG X.P., Jiang G., Peiris M. SARS: Clinical virology and pathogenesis. Respirology. 2003;8:S6–S8. doi: 10.1046/j.1440-1843.2003.00517.x.
    1. He L., Ding Y., Zhang Q., Che X., He Y., Shen H., Wang H., Li Z., Zhao L., Geng J., et al. Expression of elevated levels of pro-inflammatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J. Pathol. 2006;210:288–297. doi: 10.1002/path.2067.
    1. Hamming I., Timens W., Bulthuis M.L.C., Lely A.T., Navis G.J., van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203:631–637. doi: 10.1002/path.1570.
    1. Perlman S., Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009;7:439–450. doi: 10.1038/nrmicro2147.
    1. Ding Y., Wang H., Shen H., Li Z., Geng J., Han H., Cai J., Li X., Kang W., Weng D., et al. The clinical pathology of severe acute respiratory syndrome (SARS): A report from China. J. Pathol. 2003;200:282–289. doi: 10.1002/path.1440.
    1. Ding Y., He L., Zhang Q., Huang Z., Che X.-Y., Hou J.-L., Wang H., Shen H., Qiu L., Li Z., et al. Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways. J. Pathol. 2004;203:622–630. doi: 10.1002/path.1560.
    1. HUI D.S.C., WONG P.C., Wang C. SARS: Clinical features and diagnosis. Respirology. 2003;8:S20–S24. doi: 10.1046/j.1440-1843.2003.00520.x.
    1. Millet J.K., Whittaker G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus. Res. 2015;202:120–134. doi: 10.1016/j.virusres.2014.11.021.
    1. Zhou P., Yang X.-L., Wang X.-G., Hu B., Zhang L., Zhang W., Si H.-R., Zhu Y., Li B., Huang C.-L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 doi: 10.1038/s41586-020-2012-7.
    1. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B., Huan Y., Yang P., Zhang Y., Deng W., et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi: 10.1038/nature02145.
    1. Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS. J. Virol. 2020 doi: 10.1128/JVI.00127-20.
    1. Bassetti M., Vena A., Roberto Giacobbe D. The Novel Chinese Coronavirus (2019-nCoV) Infections: Challenges for fighting the storm. Eur. J. Clin. Investig. 2020 doi: 10.1111/eci.13209.
    1. Su S., Wong G., Shi W., Liu J., Lai A.C., Zhou J., Liu W., Bi Y., Gao G.F. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends. Microbiol. 2016;24:490–502. doi: 10.1016/j.tim.2016.03.003.
    1. Chu D.K.W., Poon L., Gomaa M., Shehata M., Perera R.A., Abu Zeid D., El Rifay A.S., Siu L.Y., Guan Y., Webby R.J., et al. MERS coronaviruses in dromedary camels, Egypt. Emerg. Infect. Dis. 2014;20:1049. doi: 10.3201/eid2006.140299.

Source: PubMed

3
구독하다