SLCO1B1 and SLC19A1 gene variants and irinotecan-induced rapid response and survival: a prospective multicenter pharmacogenetics study of metastatic colorectal cancer

Liu Huang, Tao Zhang, Conghua Xie, Xin Liao, Qianqian Yu, Jueping Feng, Hong Ma, Jing Dai, Min Li, Jigui Chen, Aihua Zang, Qian Wang, Shuwang Ge, Kai Qin, Juan Cai, Xianglin Yuan, Liu Huang, Tao Zhang, Conghua Xie, Xin Liao, Qianqian Yu, Jueping Feng, Hong Ma, Jing Dai, Min Li, Jigui Chen, Aihua Zang, Qian Wang, Shuwang Ge, Kai Qin, Juan Cai, Xianglin Yuan

Abstract

Background: Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens.

Materials and methods: Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing.

Results: Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher's exact test p=0.002). Their significances were all maintained even after multiple testing (all p c < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival.

Conclusions: Polymorphisms of solute carriers' may be useful to predict rapid response to irinotecan plus fluoropyrimidine and PFS in mCRC patients.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Flow chart.
Figure 1. Flow chart.
Figure 2. Receiver operating characteristic (ROC) analysis…
Figure 2. Receiver operating characteristic (ROC) analysis of OCF, Age and AGene in predicting RRR.
OCF (other clinical factors) includes sex, surface area, performance status and smoking status. Agene includes age, rs2306283 and rs1051266. SE, standard error.
Figure 3. PFS (A, D, G), IR-TTF…
Figure 3. PFS (A, D, G), IR-TTF (B, E, H) and OS (C, F, I) in patients according to rs2306283, rs1051266 and rs4149056 genotypes (log-rank test).

References

    1. Siegel R, Ward E, Brawley O, Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61: 212-236. doi:10.3322/caac.20121. PubMed: .
    1. Si-wei Z, Zheng-long L, Guang-lin L (2010) A Report of Cancer Incidence and Mortality from 34 Cancer Registries in China, 2006. China Cancer 19: 356-365.
    1. Pulitanò C, Bodingbauer M, Aldrighetti L, de Jong MC, Castillo F et al. (2011) Liver resection for colorectal metastases in presence of extrahepatic disease: results from an international multi-institutional analysis. Ann Surg Oncol 18: 1380-1388. doi:10.1245/s10434-010-1459-4. PubMed: .
    1. Martinez-Balibrea E, Abad A, Martínez-Cardús A, Ginés A, Valladares M et al. (2010) UGT1A and TYMS genetic variants predict toxicity and response of colorectal cancer patients treated with first-line irinotecan and fluorouracil combination therapy. Br J Cancer 103: 581-589. doi:10.1038/sj.bjc.6605776. PubMed: .
    1. Colucci G, Gebbia V, Paoletti G, Giuliani F, Caruso M et al. (2005) Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell'Italia Meridionale. J Clin Oncol 23: 4866-4875. doi:10.1200/JCO.2005.07.113. PubMed: .
    1. Tournigand C, André T, Achille E, Lledo G, Flesh M et al. (2004) FOLFIRI followed by FOLFOX6 or the reverse sequence in advanced colorectal cancer: A randomized GERCOR study. J Clin Oncol 22: 229-237. PubMed: .
    1. Carlini LE, Meropol NJ, Bever J, Andria ML, Hill T et al. (2005) UGT1A7 and UGT1A9 polymorphisms predict response and toxicity in colorectal cancer patients treated with capecitabine/irinotecan. Clin Cancer Res 11: 1226-1236. PubMed: .
    1. McLeod HL, Sargent DJ, Marsh S, Green EM, King CR et al. (2010) Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer: results from North American Gastrointestinal InterGroup Trial N9741. J Clin Oncol 28: 3227-3233. doi:10.1200/JCO.2009.21.7943. PubMed: .
    1. Cecchin E, Innocenti F, D'Andrea M, Corona G, De Mattia E et al. (2009) Predictive role of the UGT1A1, UGT1A7, and UGT1A9 genetic variants and their haplotypes on the outcome of metastatic colorectal cancer patients treated with fluorouracil, leucovorin, and irinotecan. J Clin Oncol 27: 2457-2465. doi:10.1200/JCO.2008.19.0314. PubMed: .
    1. Liu CY, Chen PM, Chiou TJ, Liu JH, Lin JK et al. (2008) UGT1A1*28 polymorphism predicts irinotecan-induced severe toxicities without affecting treatment outcome and survival in patients with metastatic colorectal carcinoma. Cancer 112: 1932-1940. doi:10.1002/cncr.23370. PubMed: .
    1. Dias MM, McKinnon RA, Sorich MJ (2012) Impact of the UGT1A1*28 allele on response to irinotecan: a systematic review and meta-analysis. Pharmacogenomics 13: 889-899. doi:10.2217/pgs.12.68. PubMed: .
    1. Walther A, Johnstone E, Swanton C, Midgley R, Tomlinson I et al. (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9: 489-499. doi:10.1038/nrc2645. PubMed: .
    1. Thomas F, Motsinger-Reif AA, Hoskins JM, Dvorak A, Roy S et al. (2011) Methylenetetrahydrofolate reductase genetic polymorphisms and toxicity to 5-FU-based chemoradiation in rectal cancer. Br J Cancer 105: 1654-1662. doi:10.1038/bjc.2011.442. PubMed: .
    1. Nozawa T, Minami H, Sugiura S, Tsuji A, Tamai I (2005) Role of organic anion transporter OATP1B1 (OATP-C) in hepatic uptake of irinotecan and its active metabolite, 7-ethyl-10-hydroxycamptothecin: in vitro evidence and effect of single nucleotide polymorphisms. Drug Metab Dispos 33: 434-439. PubMed: .
    1. Takane H, Miyata M, Burioka N, Kurai J, Fukuoka Y et al. (2007) Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 allele. Ther Drug Monit 29: 666-668. doi:10.1097/FTD.0b013e3181357364. PubMed: .
    1. Sai K, Saito Y, Maekawa K, Kim SR, Kaniwa N et al. (2010) Additive effects of drug transporter genetic polymorphisms on irinotecan pharmacokinetics/pharmacodynamics in Japanese cancer patients. Cancer Chemother Pharmacol 66: 95-105. doi:10.1007/s00280-009-1138-y. PubMed: .
    1. Han JY, Lim HS, Park YH, Lee SY, Lee JS (2009) Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer 63: 115-120. doi:10.1016/j.lungcan.2007.12.003. PubMed: .
    1. Chango A, Emery-Fillon N, de Courcy GP, Lambert D, Pfister M et al. (2000) A polymorphism (80G-> A) in the reduced folate carrier gene and its associations with folate status and homocysteinemia. Mol Genet Metab 70: 310-315. doi:10.1006/mgme.2000.3034. PubMed: .
    1. Hinken M, Halwachs S, Kneuer C, Honscha W (2011) Subcellular localization and distribution of the reduced folate carrier in normal rat tissues. Eur J Histochem 55: e3 PubMed: .
    1. Backus HH, Pinedo HM, Wouters D, Padrón JM, Molders N et al. (2000) Folate depletion increases sensitivity of solid tumor cell lines to 5-fluorouracil and antifolates. Int J Cancer 87: 771-778. doi:10.1002/1097-0215(20000915)87:6. PubMed: .
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D et al. (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45: 228-247. doi:10.1016/j.ejca.2008.10.026. PubMed: .
    1. Pazdur R (2008) Endpoints for assessing drug activity in clinical trials. Oncologist 13 Suppl 2: 19-21. doi:10.1634/theoncologist.13-S2-19. PubMed: .
    1. Luo HY, Wang ZQ, Wang FH, Qiu MZ, Teng KY et al. (2011) Phase 2 study of capecitabine and irinotecan combination chemotherapy (modified XELIRI regimen) in patients with advanced gastric cancer. Am J Clin Oncol 34: 555-560. doi:10.1097/COC.0b013e3181f47ac1. PubMed: .
    1. Fuchs CS, Marshall J, Mitchell E, Wierzbicki R, Ganju V et al. (2007) Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 25: 4779-4786. doi:10.1200/JCO.2007.11.3357. PubMed: .
    1. Koopman M, Antonini NF, Douma J, Wals J, Honkoop AH et al. (2007) Sequential versus combination chemotherapy with capecitabine, irinotecan, and oxaliplatin in advanced colorectal cancer (CAIRO): a phase III randomised controlled trial. Lancet 370: 135-142. doi:10.1016/S0140-6736(07)61086-1. PubMed: .
    1. van der Bol JM, Mathijssen HJ, Loos WJ, Friberg LE, van Schaik RHN et al. (2007) Cigarette smoking and irinotecan treatment: Pharmacokinetic interaction and effects on neutropenia. J Clin Oncol 25: 2719-2726. doi:10.1200/JCO.2006.09.6115. PubMed: .
    1. Pasanen MK, Neuvonen PJ, Niemi M (2008) Global analysis of genetic variation in SLCO1B1. Pharmacogenomics 9: 19-33. doi:10.2217/14622416.9.1.19. PubMed: .
    1. He J, Qiu Z, Li N, Yu Y, Lu Y et al. (2011) Effects of SLCO1B1 polymorphisms on the pharmacokinetics and pharmacodynamics of repaglinide in healthy Chinese volunteers. Eur J Clin Pharmacol 67: 701-707. doi:10.1007/s00228-011-0994-7. PubMed: .
    1. DeLap RJ (1988) The effect of leucovorin on the therapeutic index of fluorouracil in cancer patients. Yale J Biol Med 61: 23-34. PubMed: .
    1. Valone FH, Friedman MA, Wittlinger PS, Drakes T, Eisenberg PD et al. (1989) Treatment of patients with advanced colorectal carcinomas with fluorouracil alone, high-dose leucovorin plus fluorouracil, or sequential methotrexate, fluorouracil, and leucovorin: a randomized trial of the Northern California Oncology Group. J Clin Oncol 7: 1427-1436. PubMed: .
    1. Erlichman C, Fine S, Wong A, Elhakim T (1988) A randomized trial of fluorouracil and folinic acid in patients with metastatic colorectal carcinoma. J Clin Oncol 6: 469-475. PubMed: .
    1. Petrelli N, Herrera L, Rustum Y, Burke P, Creaven P et al. (1987) A prospective randomized trial of 5-fluorouracil versus 5-fluorouracil and high-dose leucovorin versus 5-fluorouracil and methotrexate in previously untreated patients with advanced colorectal carcinoma. J Clin Oncol 5: 1559-1565. PubMed: .
    1. Xiang X, Jada SR, Li HH, Fan L, Tham LS et al. (2006) Pharmacogenetics of SLCO1B1 gene and the impact of *1b and *15 haplotypes on irinotecan disposition in Asian cancer patients. Pharmacogenet Genomics 16: 683-691. doi:10.1097/01.fpc.0000230420.05221.71. PubMed: .
    1. Kameyama Y, Yamashita K, Kobayashi K, Hosokawa M, Chiba K (2005) Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics 15: 513-522. doi:10.1097/01.fpc.0000170913.73780.5f. PubMed: .
    1. Han JY, Lim HS, Shin ES, Yoo YK, Park YH et al. (2008) Influence of the organic anion-transporting polypeptide 1B1 (OATP1B1) polymorphisms on irinotecan-pharmacokinetics and clinical outcome of patients with advanced non-small cell lung cancer. Lung Cancer 59: 69-75. doi:10.1016/j.lungcan.2007.07.019. PubMed: .
    1. Niemi M, Pasanen MK, Neuvonen PJ (2011) Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 63: 157-181. doi:10.1124/pr.110.002857. PubMed: .
    1. Ramsey LB, Bruun GH, Yang W, Treviño LR, Vattathil S et al. (2012) Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res 22: 1-8. doi:10.1101/gr.129668.111. PubMed: .
    1. Treviño LR, Shimasaki N, Yang W, Panetta JC, Cheng C et al. (2009) Germline genetic variation in an organic anion transporter polypeptide associated with methotrexate pharmacokinetics and clinical effects. J Clin Oncol 27: 5972-5978. doi:10.1200/JCO.2008.20.4156. PubMed: .
    1. Lopez-Lopez E, Martin-Guerrero I, Ballesteros J, Angeles Pinan M, Garcia-Miguel P et al. (2011) Polymorphisms of the SLCO1B1 Gene Predict Methotrexate-Related Toxicity in Childhood Acute Lymphoblastic Leukemia. Pediatr Blood Cancer 57: 612-619. doi:10.1002/pbc.23074. PubMed: .

Source: PubMed

3
구독하다