Safety and immunogenicity of neonatal pneumococcal conjugate vaccination in Papua New Guinean children: a randomised controlled trial

William S Pomat, Anita H J van den Biggelaar, Suparat Phuanukoonnon, Jacinta Francis, Peter Jacoby, Peter M Siba, Michael P Alpers, John C Reeder, Patrick G Holt, Peter C Richmond, Deborah Lehmann, Neonatal Pneumococcal Conjugate Vaccine Trial Study Team, E Aemamero, M Akunaii, H Aole, E Bilam, M Dreyam, S Eza'e, J Francis, N Fufu, E Hasu, L Helivi, G Inapero, T Jack, S James, A Javati, H Keno, W Kirarock, I Ko'ezo, M Lai, A Lapiso, A M Laumaea, S Maraga, M Martin, A Michael, M Michaels, A Mope, P Namuigi, B Nivio, P Ove, C Opa, T Orami, N Paul, S Phuanukoonnon, G Poigeno, W S Pomat, J Reeder, G Saleu, R Sehuko, P Siba, V Siba, A Sie, L Sinke, J Totave, B Uro, G Vengiau, L Wawa'e, T Wayaki, M Yoannes, J Ande, J Apa, D Frank, W Pame, N Pomat, P Keasu, A Pikuri, H Pok, K S Alpers, C Devitt, P G Holt, P Jacoby, I Laing, D Lehmann, M Nadal-Sims, A van den Biggelaar, P C Richmond, G Chidlow, J Harnett, D W Smith, M P Alpers, A J Leach, William S Pomat, Anita H J van den Biggelaar, Suparat Phuanukoonnon, Jacinta Francis, Peter Jacoby, Peter M Siba, Michael P Alpers, John C Reeder, Patrick G Holt, Peter C Richmond, Deborah Lehmann, Neonatal Pneumococcal Conjugate Vaccine Trial Study Team, E Aemamero, M Akunaii, H Aole, E Bilam, M Dreyam, S Eza'e, J Francis, N Fufu, E Hasu, L Helivi, G Inapero, T Jack, S James, A Javati, H Keno, W Kirarock, I Ko'ezo, M Lai, A Lapiso, A M Laumaea, S Maraga, M Martin, A Michael, M Michaels, A Mope, P Namuigi, B Nivio, P Ove, C Opa, T Orami, N Paul, S Phuanukoonnon, G Poigeno, W S Pomat, J Reeder, G Saleu, R Sehuko, P Siba, V Siba, A Sie, L Sinke, J Totave, B Uro, G Vengiau, L Wawa'e, T Wayaki, M Yoannes, J Ande, J Apa, D Frank, W Pame, N Pomat, P Keasu, A Pikuri, H Pok, K S Alpers, C Devitt, P G Holt, P Jacoby, I Laing, D Lehmann, M Nadal-Sims, A van den Biggelaar, P C Richmond, G Chidlow, J Harnett, D W Smith, M P Alpers, A J Leach

Abstract

Background: Approximately 826,000 children, mostly young infants, die annually from invasive pneumococcal disease. A 6-10-14-week schedule of pneumococcal conjugate vaccine (PCV) is efficacious but neonatal PCV may provide earlier protection and better coverage. We conducted an open randomized controlled trial in Papua New Guinea to compare safety, immunogenicity and priming for memory of 7-valent PCV (PCV7) given in a 0-1-2-month (neonatal) schedule with that of the routine 1-2-3-month (infant) schedule.

Methods: We randomized 318 infants at birth to receive PCV7 in the neonatal or infant schedule or no PCV7. All infants received 23-valent pneumococcal polysaccharide vaccine (PPV) at age 9 months. Serotype-specific serum IgG for PCV7 (VT) serotypes and non-VT serotypes 2, 5 and 7F were measured at birth and 2, 3, 4, 9, 10 and 18 months of age. Primary outcomes were geometric mean concentrations (GMCs) and proportions with concentration ≥ 0.35 µg/ml of VT serotype-specific pneumococcal IgG at age 2 months and one month post-PPV.

Results: We enrolled 101, 105 and 106 infants, respectively, into neonatal, infant and control groups. Despite high background levels of maternally derived antibody, both PCV7 groups had higher GMCs than controls at age 2 months for serotypes 4 (p<0.001) and 9V (p<0.05) and at age 3 months for all VTs except 6B. GMCs for serotypes 4, 9V, 18C and 19F were significantly higher (p<0.001) at age 2 months in the neonatal (one month post-dose2 PCV7) than in the infant group (one month post-dose1 PCV7). PPV induced significantly higher VT antibody responses in PCV7-primed than unprimed infants, with neonatal and infant groups equivalent. High VT and non-VT antibody concentrations generally persisted to age 18 months.

Conclusions: PCV7 is well-tolerated and immunogenic in PNG neonates and young infants and induces immunologic memory to PPV booster at age 9 months with antibody levels maintained to age 18 months.

Trial registration: ClinicalTrials.gov NCT00219401.

Conflict of interest statement

Competing Interests: The authors have read the journal’s policy and have the following conflicts: P Richmond has been a member of vaccine advisory boards for Wyeth and CSL Ltd and has received institutional funding for investigator-initiated research from GlaxoSmithKline Biologicals and Merck and received travel support from Pfizer and Baxter to present study data at international meetings. D Lehmann has been a member of the GSK Australia Pneumococcal-Haemophilus influenzae-Protein D conjugate vaccine (“Phid-CV”) Advisory Panel, has received support from Pfizer Australia and GSK Australia to attend conferences, has received an honorarium from Merck Vaccines to give a seminar at their offices in Pennsylvania and to attend a conference, and is an investigator on an investigator-initiated research grant funded by Pfizer Australia. WS Pomat has received funding from Pfizer Australia to attend a conference. A.H.J. van den Biggelaar has received support from Pfizer Australia and GSK Australia to attend conferences; she was awarded and received a Pfizer-supported Robert Austrian Award in Pneumococcal Vaccinology (2008); she is currently an employee of Crucell/Johnson and Johnson, The Netherlands. All work related to this publication was conducted prior to employment at Crucell/Johnson and Johnson. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. S Phuanukoonnon, J Francis, P Jacoby, PM Siba, JC Reeder, MP Alpers and Patrick G Holt have declared that no competing interests exist. Vaccines used in this trial were purchased from manufacturers.

Figures

Figure 1. Flow diagram of the study…
Figure 1. Flow diagram of the study .
Flow diagram indicating number of women who assented and children enrolled into the study, randomized to neonatal or infant PCV7 or control groups and number excluded or lost to follow-up in the course of the study. PCV = 7-valent pneumococcal conjugate vaccine; N = Neonatal group; I = Infant group; C = control group; LTFU = lost to follow-up (includes not located, withdrew consent, migration). Numbers (n) are total excluding LTFU and protocol violations.
Figure 2. Risk for hospitalization.
Figure 2. Risk for hospitalization.
Gender-adjusted incidence rates of hospitalization (±95% confidence intervals) during the 1st month, 1–<4 months (PCV immunization ongoing), 4–<10 months (PCV immunization completed), and 10–18 months (post-PPV) of life for the neonatal PCV (green bars), infant PCV (red bars) and control group (blue bars).
Figure 3. Age-specific geometric mean serotype-specific antibody…
Figure 3. Age-specific geometric mean serotype-specific antibody concentrations pre-and post-PCV7 at 0-1-2 or 1-2-3-months or no PCV7.
Geometric mean (GM) concentrations and 95% confidence intervals of serotype-specific IgG antibodies for PCV7 serotypes and non-PCV7 serotypes 2, 5 and 7F in the neonatal (•) (PCV7 at birth, 1 and 2 months), infant (□) (PCV7 at 1, 2, and 3 months) and control group (▵) (no PCV7). All children received PPV at 9 months of age.
Figure 4. Geometric mean fold rise in…
Figure 4. Geometric mean fold rise in antibody for PCV7-serotypes following PPV at age 9 months.
To demonstrate immunological memory, PPV was administered at 9 months of age and the mean (and 95% CI) fold changes in PCV7-serotype-specific GMCs were calculated and compared for the neonatal (•), infant (□) and control group (▴), with significant differences between groups (p

References

    1. O’Brien KL, Wolfson LJ, Watt JP, Henkle E, Deloria-Knoll M, et al. (2009) Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374: 893–902.
    1. Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM, et al. (2003) Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N Engl J Med 348: 1737–1746.
    1. Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, et al. (2003) A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N Engl J Med 349: 1341–1348.
    1. Cutts FT, Zaman SM, Enwere G, Jaffar S, Levine OS, et al. (2005) Efficacy of nine-valent pneumococcal conjugate vaccine against pneumonia and invasive pneumococcal disease in The Gambia: randomised, double-blind, placebo-controlled trial. Lancet 365: 1139–1146.
    1. O’Brien KL, Moulton LH, Reid R, Weatherholtz R, Oski J, et al. (2003) Efficacy and safety of seven-valent conjugate pneumococcal vaccine in American Indian children: group randomised trial. Lancet 362: 355–361.
    1. O’Brien KL, Dagan R (2003) The potential indirect effect of conjugate pneumococcal vaccines. Vaccine 21: 1815–1825.
    1. Roche PW, Krause V, Cook H, Barralet J, Coleman D, et al. (2008) Invasive pneumococcal disease in Australia, 2006. Commun Dis Intell 32: 18–30.
    1. Black S, Shinefield H, Fireman B, Lewis E, Ray P, et al. (2000) Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J 19: 187–195.
    1. Global Alliance for Vaccines and Immunisation. GAVI Alliance website. Available: . Accessed 2012 Aug 1.
    1. Moisi JC, Kabuka J, Mitingi D, Levine OS, Scott JA (2010) Spatial and socio-demographic predictors of time-to-immunization in a rural area in Kenya: is equity attainable? Vaccine 28: 5725–5730.
    1. Toikilik S, Tuges G, Lagani J, Wafiware E, Posanai E, et al. (2010) Are hard-to-reach populations being reached with immunization services? Findings from the 2005 Papua New Guinea national immunization coverage survey. Vaccine 28: 4673–4679.
    1. O’Grady KA, Krause V, Andrews R (2009) Immunisation coverage in Australian Indigenous children: time to move the goal posts. Vaccine 27: 307–312.
    1. The WHO Young Infants Study Group (1999) Bacterial etiology of serious infections in young infants in developing countries: results of a multicenter study. Pediatr Infect Dis J 18: S17–S22.
    1. Lehmann D, Yeka W, Rongap T, Javati A, Saleu G, et al. (1999) Aetiology and clinical signs of bacterial meningitis in children admitted to Goroka Base Hospital, Papua New Guinea, 1989–1992. Ann Trop Paediatr 19: 21–32.
    1. Dagan R, Givon-Lavi N, Greenberg D, Fritzell B, Siegrist CA (2010) Nasopharyngeal carriage of Streptococcus pneumoniae shortly before vaccination with a pneumococcal conjugate vaccine causes serotype-specific hyporesponsiveness in early infancy. J Infect Dis 201: 1570–1579.
    1. Vakevainen M, Soininen A, Lucero M, Nohynek H, Auranen K, et al. (2010) Serotype-specific hyporesponsiveness to pneumococcal conjugate vaccine in infants carrying pneumococcus at the time of vaccination. J Pediatr 157: 778–783.
    1. van den Biggelaar AH, Pomat WS, Phuanukoonnon S, Michael A, Aho C, et al. (2012) Effect of early carriage of Streptococcus pneumoniae on the development of pneumococcal protein-specific cellular immune responses in infancy. Pediatr Infect Dis J 31: 243–248.
    1. Francis JP, Richmond PC, Pomat WS, Michael A, Keno H, et al. (2009) Maternal antibodies to pneumolysin but not to pneumococcal surface protein A delay early pneumococcal carriage in high-risk Papua New Guinean infants. Clin Vaccine Immunol 16: 1633–1638.
    1. Gratten M, Gratten H, Poli A, Carrad E, Raymer M, et al. (1986) Colonisation of Haemophilus influenzae and Streptococcus pneumoniae in the upper respiratory tract of neonates in Papua New Guinea: primary acquisition, duration of carriage, and relationship to carriage in mothers. Biol Neonate 50: 114–120.
    1. Hill PC, Townend J, Antonio M, Akisanya B, Ebruke C, et al. (2010) Transmission of Streptococcus pneumoniae in rural Gambian villages: a longitudinal study. Clin Infect Dis 50: 1468–1476.
    1. Lehmann D, Vail J, Firth MJ, de Klerk NH, Alpers MP (2005) Benefits of routine immunizations on childhood survival in Tari, Southern Highlands Province, Papua New Guinea. Int J Epidemiol 34: 138–148.
    1. Scott JA, Ojal J, Ashton L, Muhoro A, Burbidge P, et al. (2011) Pneumococcal conjugate vaccine given shortly after birth stimulates effective antibody concentrations and primes immunological memory for sustained infant protection. Clin Infect Dis 53: 663–670.
    1. Lehmann D, Marshall TF, Riley ID, Alpers MP (1991) Effect of pneumococcal vaccine on morbidity from acute lower respiratory tract infections in Papua New Guinean children. Ann Trop Paediatr 11: 247–257.
    1. Pomat WS, Lehmann D, Sanders RC, Lewis DJ, Wilson J, et al. (1994) Immunoglobulin G antibody responses to polyvalent pneumococcal vaccine in children in the highlands of Papua New Guinea. Infect Immun 62: 1848–1853.
    1. Riley ID, Lehmann D, Alpers MP, Marshall TF, Gratten H, et al. (1986) Pneumococcal vaccine prevents death from acute lower-respiratory-tract infections in Papua New Guinean children. Lancet 2: 877–881.
    1. Barker J, Gratten M, Riley I, Lehmann D, Montgomery J, et al. (1989) Pneumonia in children in the Eastern Highlands of Papua New Guinea: a bacteriologic study of patients selected by standard clinical criteria. J Infect Dis 159: 348–352.
    1. Lehmann D, Willis J, Moore HC, Giele C, Murphy D, et al. (2010) The changing epidemiology of invasive pneumococcal disease in Aboriginal and non-Aboriginal Western Australians from 1997 through 2007 and emergence of nonvaccine serotypes. Clin Infect Dis 50: 1477–1486.
    1. Saha SK, Al Emran HM, Hossain B, Darmstadt GL, Saha S, et al. (2012) Streptococcus pneumoniae serotype-2 childhood meningitis in Bangladesh: a newly recognized pneumococcal infection threat. PLoS One 7: e32134.
    1. Hill PC, Onyeama CO, Ikumapayi UN, Secka O, Ameyaw S, et al. (2007) Bacteraemia in patients admitted to an urban hospital in West Africa. BMC Infect Dis 7: 2.
    1. Lehmann D, Gratten M, Montgomery J (1996) Report on data collected by the Papua New Guinea Institute of Medical Research to assist in determining whether antimicrobial susceptibility of bacterial isolates in the upper respiratory tract is a useful measure of antimicrobial susceptibility of isolates causing invasive disease. Report to the World Health Organization. Goroka: Papua New Guinea Institute of Medical Research.
    1. Phuanukoonnon S, Reeder JC, Pomat WS, Van den Biggelaar AH, Holt PG, et al.. (2010) A neonatal pneumococcal conjugate vaccine trial in Papua New Guinea: study population, methods and operational challenges. P N G Med J 53: 191–206. Papua New Guinea Institute of Medical Research website. Available: . Accessed 2012 Nov 4.
    1. Kakazo M, Lehmann D, Coakley K, Gratten H, Saleu G, et al. (1999) Mortality rates and the utilization of health services during terminal illness in the Asaro Valley, Eastern Highlands Province, Papua New Guinea. P N G Med J 42: 13–26.
    1. Papua New Guinea Department of Health (2005) Standard treatment for common illnesses of children in Papua New Guinea. A manual for nurses, community health workers, health extension officers and doctors. Port Moresby: Department of Health.
    1. World Health Organization Pneumococcal Serology Reference Laboratories. Training manual for enzyme linked immunosorbent assay for the quantitation of Streptococcus pneumoniae serotype specific IgG (Pn PS ELISA). University of Alabama website. Available: . Accessed 2012 May 10.
    1. Gratten M, Montgomery J (1991) The bacteriology of acute pneumonia and meningitis in children in Papua New Guinea: assumptions, facts and technical strategies. P N G Med J 34: 185–198.
    1. Siber GR, Chang I, Baker S, Fernsten P, O’Brien KL, et al. (2007) Estimating the protective concentration of anti-pneumococcal capsular polysaccharide antibodies. Vaccine 25: 3816–3826.
    1. World Health Organization (2005) Recommendations for the production and control of pneumococcal conjugate vaccines. WHO Technical Report Series 1–29.
    1. van den Biggelaar AH, Pomat W, Bosco A, Phuanukoonnon S, Devitt CJ, et al. (2011) Pneumococcal conjugate vaccination at birth in a high-risk setting: no evidence for neonatal T-cell tolerance. Vaccine 29: 5414–5420.
    1. van den Biggelaar AH, Richmond PC, Pomat WS, Phuanukoonnon S, Nadal-Sims MA, et al. (2009) Neonatal pneumococcal conjugate vaccine immunization primes T cells for preferential Th2 cytokine expression: a randomized controlled trial in Papua New Guinea. Vaccine 27: 1340–1347.
    1. Kieninger DM, Kueper K, Steul K, Juergens C, Ahlers N, et al. (2010) Safety, tolerability, and immunologic noninferiority of a 13-valent pneumococcal conjugate vaccine compared to a 7-valent pneumococcal conjugate vaccine given with routine pediatric vaccinations in Germany. Vaccine 28: 4192–4203.
    1. Kellner JD, Vanderkooi OG, MacDonald J, Church DL, Tyrrell GJ, et al. (2009) Changing epidemiology of invasive pneumococcal disease in Canada, 1998–2007: update from the Calgary-area Streptococcus pneumoniae research (CASPER) study. Clin Infect Dis 49: 205–212.
    1. Singleton RJ, Hennessy TW, Bulkow LR, Hammitt LL, Zulz T, et al. (2007) Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA 297: 1784–1792.
    1. Hanage WP, Finkelstein JA, Huang SS, Pelton SI, Stevenson AE, et al. (2010) Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete. Epidemics 2: 80–84.
    1. Balloch A, Licciardi PV, Russell FM, Mulholland EK, Tang ML (2010) Infants aged 12 months can mount adequate serotype-specific IgG responses to pneumococcal polysaccharide vaccine. J Allergy Clin Immunol 126: 395–397.
    1. Ota MO, Akinsola A, Townend J, Antonio M, Enwere G, et al. (2011) The immunogenicity and impact on nasopharyngeal carriage of fewer doses of conjugate pneumococcal vaccine immunization schedule. Vaccine 29: 2999–3007.
    1. Russell FM, Licciardi PV, Balloch A, Biaukula V, Tikoduadua L, et al. (2010) Safety and immunogenicity of the 23-valent pneumococcal polysaccharide vaccine at 12 months of age, following one, two, or three doses of the 7-valent pneumococcal conjugate vaccine in infancy. Vaccine 28: 3086–3094.
    1. Clutterbuck EA, Lazarus R, Yu LM, Bowman J, Bateman EA, et al. (2012) Pneumococcal conjugate and plain polysaccharide vaccines have divergent effects on antigen-specific B cells. J Infect Dis 205: 1408–1416.
    1. Russell FM, Carapetis JR, Balloch A, Licciardi PV, Jenney AW, et al. (2010) Hyporesponsiveness to re-challenge dose following pneumococcal polysaccharide vaccine at 12 months of age, a randomized controlled trial. Vaccine 28: 3341–3349.
    1. Pomat W, Francis J, Orami T, Siba P, Greenhill A, et al.. (2012) No evidence of hypo-responsiveness following re-challenge at 3–5 years in PNG children vaccinated with Pneumovax at 9 months. Eighth International Symposium on Pneumococci and Pneumococcal Diseases (ISPPD8). Iguacu, Brazil.
    1. Yoannes M, Michael A, Saleu G, Opa C, Greenhill A, et al.. (2012) High pneumococcal carriage in 3–5 year old Papua New Guinean children following 9-month Pneumovax23 dose with or without prior 7-valent conjugate vaccine. Eighth International Symposium on Pneumococci and Pneumococcal Diseases (ISPPD8). Iguacu, Brazil.
    1. World Health Organization (1998) WHO meeting on maternal and neonatal pneumococcal immunization. Wkly Epidemiol Rec 73: 187–188.
    1. Black RE, Cousens S, Johnson HL, Lawn JE, Rudan I, et al. (2010) Global, regional, and national causes of child mortality in 2008: a systematic analysis. Lancet 375: 1969–1987.
    1. Kumar D, Aggarwal A, Gomber S (2010) Immunization status of children admitted to a tertiary-care hospital of north India: reasons for partial immunization or non-immunization. J Health Popul Nutr 28: 300–304.
    1. Olusanya BO (2010) Pattern and determinants of BCG immunisation delays in a sub-Saharan African community. Health Res Policy Syst 8: 1.

Source: PubMed

3
구독하다