Exercise Training Enhances Angiogenesis-Related Gene Responses in Skeletal Muscle of Patients with Chronic Heart Failure

Andrea Tryfonos, Giorgos Tzanis, Theodore Pitsolis, Eleftherios Karatzanos, Michael Koutsilieris, Serafim Nanas, Anastassios Philippou, Andrea Tryfonos, Giorgos Tzanis, Theodore Pitsolis, Eleftherios Karatzanos, Michael Koutsilieris, Serafim Nanas, Anastassios Philippou

Abstract

Peripheral myopathy consists of a hallmark of heart failure (HF). Exercise enhanced skeletal muscle angiogenesis, and thus, it can be further beneficial towards the HF-induced myopathy. However, there is limited evidence regarding the exercise type that elicits optimum angiogenic responses of skeletal muscle in HF patients. This study aimed to (a) compare the effects of a high-intensity-interval-training (HIIT) or combined HIIT with strength training (COM) exercise protocol on the expression of angiogenesis-related factors in skeletal muscle of HF patients, and (b) examine the potential associations between the expression of those genes and capillarization in the trained muscles. Thirteen male patients with chronic HF (age: 51 ± 13 y; BMI: 27 ± 4 kg/m2) were randomly assigned to a 3-month exercise program that consisted of either HIIT (N = 6) or COM training (N = 7). Vastus lateralis muscle biopsies were performed pre- and post-training. RT-PCR was used to quantify the fold changes in mRNA expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor 2 (VEGFR-2), hypoxia-inducible factor 1 alpha (HIF-1α), angiopoietin 1 (Ang-1), angiopoietin 2 (Ang-2), angiopoietin receptor (Tie2), and matrix metallopeptidase 9 (MMP-9), and immunohistochemistry to assess capillarization in skeletal muscle post-training. There was an overall increase in the expression levels of VEGF, VEGFR-2, HIF-1α, Ang2, and MMP9 post-training, while these changes were not different among groups. Changes in capillary-to-fibre ratio were found to be strongly associated with Tie2 and HIF-1α expression. This was the first study demonstrating that both HIIT and combined HIIT with strength training enhanced similarly the expression profile of angiogenic factors in skeletal muscle of HF patients, possibly driving the angiogenic program in the trained muscles, although those gene expression increases were found to be only partially related with muscle capillarization.

Trial registration: ClinicalTrials.gov NCT02387411.

Keywords: angiogenesis; capillarization; cardiac rehabilitation; heart failure; skeletal muscle.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Box-plot diagrams showing the changes in the mRNA expression of vascular endothelial growth factor (VEGF; A), vascular endothelial growth factor receptor 2 (VEGFR-2; B), hypoxia-inducible factor 1 alpha (HIF-1α; C), angiopoietin 1 (Ang1; D), angiopoietin 2 (Ang2; E), angiopoietin receptor (Tie2; F), and matrix metallopeptidase 9 (MMP9; G) in the skeletal muscle of heart failure patients following either high-intensity-interval training (HIIT; N = 6) or combined HIIT with strength exercise training (COM; N = 7) and in the total number of patients (N = 13). * Significantly different compared to pre-exercise levels p < 0.05.
Figure 2
Figure 2
Associations between the fold change of Tie2 receptor expression (A) and the capillary-to-fibre ratio percentage change (%) and the absolute number of capillary-to-fibre ratio post-exercise training (B), as well as between the fold changes of HIF-1α expression and the absolute number of capillary-to-fibre ratio post-training (C) in skeletal muscles of the total number of HF patients [total N = 13; HIIT N = 6 (open cycles); and COM N = 7 (filled cycles)].

References

    1. Halapas A., Papalois A., Stauropoulou A., Philippou A., Pissimissis N., Chatzigeorgiou A., Kamper E., Koutsilieris M. In vivo models for heart failure research. In Vivo. 2008;22:767–780.
    1. Tzanis G., Dimopoulos S., Agapitou V., Nanas S. Exercise intolerance in chronic heart failure: The role of cortisol and the catabolic state. Curr. Heart Fail. Rep. 2014;11:70–79. doi: 10.1007/s11897-013-0177-1.
    1. Coats A.J. Heart failure: What causes the symptoms of heart failure? Heart. 2001;86:574–578. doi: 10.1136/heart.86.5.574.
    1. Stewart Coats A.J. The muscle hypothesis revisited. Eur. J. Heart Fail. 2017;19:1710–1711. doi: 10.1002/ejhf.918.
    1. Tzanis G., Philippou A., Dimopoulos S., Koutsilieris M., Nanas S. Insulin-like growth factor-1 bioregulation system abnormalities: Another explanatory mechanism of exercise intolerance in heart failure. JACC Heart Fail. 2017;5:155–156. doi: 10.1016/j.jchf.2016.11.001.
    1. Tzanis G., Philippou A., Karatzanos E., Dimopoulos S., Kaldara E., Nana E., Pitsolis T., Rontogianni D., Koutsilieris M., Nanas S. Effects of high-intensity interval exercise training on skeletal myopathy of chronic heart failure. J. Card. Fail. 2017;23:36–46. doi: 10.1016/j.cardfail.2016.06.007.
    1. Morris J.H., Chen L. Exercise training and heart failure: A review of the literature. Card. Fail. Rev. 2019;5:57–61. doi: 10.15420/cfr.2018.31.1.
    1. Lloyd-Williams F., Mair F.S., Leitner M. Exercise training and heart failure: A systematic review of current evidence. Br. J. Gen. Pract. 2002;52:47–55.
    1. Egginton S. Invited review: Activity-induced angiogenesis. Pflügers Arch. Eur. J. Physiol. 2008;457:963. doi: 10.1007/s00424-008-0563-9.
    1. Esposito F., Mathieu-Costello O., Entin P.L., Wagner P.D., Richardson R.S. The skeletal muscle VEGF mRNA response to acute exercise in patients with chronic heart failure. Growth Factors. 2010;28:139–147. doi: 10.3109/08977190903512602.
    1. Olfert I.M., Baum O., Hellsten Y., Egginton S. Advances and challenges in skeletal muscle angiogenesis. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H326–H336. doi: 10.1152/ajpheart.00635.2015.
    1. Hoier B., Olsen K., Hanskov D.J., Jorgensen M., Norup L.R., Hellsten Y. Early time course of change in angiogenic proteins in human skeletal muscle and vascular cells with endurance training. Scand. J. Med. Sci. Sports. 2020;30:1117–1131. doi: 10.1111/sms.13665.
    1. Gustafsson T., Kraus W.E. Exercise-induced angiogenesis-related growth and transcription factors in skeletal muscle, and their modification in muscle pathology. Front. Biosci. 2001;6:D75–D89. doi: 10.2741/gustafss.
    1. Holloway T.M., Snijders T., VAN Kranenburg J., VAN Loon L.J.C., Verdijk L.B. Temporal response of angiogenesis and hypertrophy to resistance training in young men. Med. Sci. Sports Exerc. 2018;50:36–45. doi: 10.1249/MSS.0000000000001409.
    1. Esposito F., Mathieu-Costello O., Wagner P.D., Richardson R.S. Acute and chronic exercise in patients with heart failure with reduced ejection fraction: Evidence of structural and functional plasticity and intact angiogenic signalling in skeletal muscle. J. Physiol. 2018;596:5149–5161. doi: 10.1113/JP276678.
    1. Gustafsson T., Bodin K., Sylvén C., Gordon A., Tyni-Lenné R., Jansson E. Increased expression of VEGF following exercise training in patients with heart failure. Eur. J. Clin. Investig. 2001;31:362–366. doi: 10.1046/j.1365-2362.2001.00816.x.
    1. Pelliccia A., Sharma S., Gati S., Bäck M., Börjesson M., Caselli S., Collet J.-P., Corrado D., Drezner J.A., Halle M., et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease: The Task Force on sports cardiology and exercise in patients with cardiovascular disease of the European Society of Cardiology (ESC) Eur. Heart J. 2020;42:17–96. doi: 10.1093/eurheartj/ehaa605.
    1. Yancy C.W., Jessup M., Bozkurt B., Butler J., Casey D.E., Jr., Colvin M.M., Drazner M.H., Filippatos G.S., Fonarow G.C., Givertz M.M., et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for theManagement of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J. Am. Coll. Cardiol. 2017;70:776–803. doi: 10.1016/j.jacc.2017.04.025.
    1. Bergstrom J. Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens. Scand. J. Clin. Lab. Investig. 1962;14(Suppl. 68)
    1. Hoier B., Nordsborg N., Andersen S., Jensen L., Nybo L., Bangsbo J., Hellsten Y. Pro- and anti-angiogenic factors in human skeletal muscle in response to acute exercise and training. J. Physiol. 2012;590:595–606. doi: 10.1113/jphysiol.2011.216135.
    1. Gustafsson T., Rundqvist H., Norrbom J., Rullman E., Jansson E., Sundberg C.J. The influence of physical training on the angiopoietin and VEGF-A systems in human skeletal muscle. J. Appl. Physiol. 2007;103:1012–1020. doi: 10.1152/japplphysiol.01103.2006.
    1. Hornikx M., Buys R., Cornelissen V., Deroma M., Goetschalckx K. Effectiveness of high intensity interval training supplemented with peripheral and inspiratory resistance training in chronic heart failure: A pilot study. Acta Cardiol. 2019;75:1–9. doi: 10.1080/00015385.2019.1591676.
    1. Anagnostakou V., Chatzimichail K., Dimopoulos S., Karatzanos E., Papazachou O., Tasoulis A., Anastasiou-Nana M., Roussos C., Nanas S. Effects of interval cycle training with or without strength training on vascular reactivity in heart failure patients. J. Card. Fail. 2011;17:585–591. doi: 10.1016/j.cardfail.2011.02.009. Retrieved 19 January 2021.
    1. Bouchla A., Karatzanos E., Dimopoulos S., Tasoulis A., Agapitou V., Diakos N., Tseliou E., Terrovitis J., Nanas S. The addition of strength training to aerobic interval training: Effects on muscle strength and body composition in CHF patients. J. Cardiopulm. Rehabil. Prev. 2011;31:47–51. doi: 10.1097/HCR.0b013e3181e174d7.
    1. Panagopoulou N., Karatzanos E., Dimopoulos S., Tasoulis A., Tachliabouris I., Vakrou S., Sideris A., Gratziou C., Nanas S. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure. Eur. J. Prev. Cardiol. 2017;24:825–832. doi: 10.1177/2047487317695627.
    1. Hellsten Y., Hoier B. Capillary growth in human skeletal muscle: Physiological factors and the balance between pro-angiogenic and angiostatic factors. Biochem. Soc. Trans. 2014;42:1616–1622. doi: 10.1042/BST20140197.
    1. Milkiewicz M., Hudlicka O., Verhaeg J., Egginton S., Brown M.D. Differential expression of Flk-1 and Flt-1 in rat skeletal muscle in response to chronic ischaemia: Favourable effect of muscle activity. Clin. Sci. 2003;105:473–482. doi: 10.1042/CS20030035.
    1. Ohno H., Shirato K., Sakurai T., Ogasawara J., Sumitani Y., Sato S., Imaizumi K., Ishida H., Kizaki T. Effect of exercise on HIF-1 and VEGF signaling. J. Phys. Fit. Sports Med. 2012;1:5–16. doi: 10.7600/jpfsm.1.5.
    1. Lundby C., Gassmann M., Pilegaard H. Regular endurance training reduces the exercise induced HIF-1alpha and HIF-2alpha mRNA expression in human skeletal muscle in normoxic conditions. Eur. J. Appl. Physiol. 2006;96:363–369. doi: 10.1007/s00421-005-0085-5.
    1. Gustafsson T., Puntschart A., Sundberg C.J., Jansson E. Related expression of vascular endothelial growth factor and hypoxia-inducible factor-1 mRNAs in human skeletal muscle. Acta Physiol. Scand. 1999;165:335–336. doi: 10.1046/j.1365-201x.1999.00515.x.
    1. Gustafsson T., Puntschart A., Kaijser L., Jansson E., Sundberg C.J. Exercise-induced expression of angiogenesis-related transcription and growth factors in human skeletal muscle. Am. J. Physiol. 1999;276:H679–H685. doi: 10.1152/ajpheart.1999.276.2.H679.
    1. Ookawara T., Suzuk K., Haga S., Ha S., Chung K.-S., Toshinai K., Hamaoka T., Katsumura T., Takemasa T., Mizuno M., et al. Transcription regulation of gene expression in human skeletal muscle in response to endurance training. Res. Commun. Mol. Pathol. Pharm. 2002;111:41–54.
    1. Rahman F.A., Angus S.A., Stokes K., Karpowicz P., Krause M.P. Impaired ECM remodeling and macrophage activity define necrosis and regeneration following damage in aged skeletal muscle. Int. J. Mol. Sci. 2020;21:4575. doi: 10.3390/ijms21134575.

Source: PubMed

3
구독하다