Sweet Snacks Are Positively and Fruits and Vegetables Are Negatively Associated with Visceral or Liver Fat Content in Middle-Aged Men and Women

Esther van Eekelen, Anouk Geelen, Marjan Alssema, Hildo J Lamb, Albert de Roos, Frits R Rosendaal, Renée de Mutsert, Esther van Eekelen, Anouk Geelen, Marjan Alssema, Hildo J Lamb, Albert de Roos, Frits R Rosendaal, Renée de Mutsert

Abstract

Background: Visceral adipose tissue (VAT) and hepatic triglyceride content (HTGC) are major risk factors for cardiometabolic diseases.

Objective: We aimed to investigate the association of dietary intake of the main food groups with VAT and HTGC in middle-aged men and women.

Methods: We used data from the Netherlands Epidemiology of Obesity study, a population-based study including 6671 participants aged 45-65 y at baseline. In this cross-sectional analysis, VAT and HTGC were assessed by magnetic resonance imaging and spectroscopy, respectively, as the primary outcomes. Habitual intake of main food groups (dairy, meat, fish, fruits and vegetables, sweet snacks, and fats and oils) was estimated through the use of a food-frequency questionnaire. We examined associations of intake of different food groups with VAT and HTGC by linear regression analysis stratified by sex and adjusted for age, smoking, education, ethnicity, physical activity, basal metabolic rate, energy-restricted diet, menopausal state, and total energy intake.

Results: In women, a 100-g/d higher intake of dairy was associated with 2.0 cm2 less VAT (95% CI: -3.4, -0.7 cm2) and a 0.95-fold lower HTGC (95% CI: 0.90-, 0.99-fold). Moreover, a 100-g/d higher intake of fruit and vegetables was associated with 1.6 cm2 less VAT (95% CI: -2.9, -0.2 cm2) in women. Fruit and vegetables were negatively associated (0.95; 95% CI: 0.91, 1.00) with HTGC, and sweet snacks were positively associated (1.29; 95% CI: 1.03, 1.63). Patterns were weaker but similar in men. Fish intake was not associated with VAT or HTGC and plant-based fat and oil intake were only associated with VAT after adjustment for total body fat.

Conclusions: Despite some variation in the strength of the associations between men and women, dietary intake of sweet snacks was positively associated with HTGC, and fruit and vegetable intake were negatively associated with visceral and liver fat content. Prospective studies are needed to confirm these results. The Netherlands Epidemiology of Obesity study is registered at clinicaltrials.gov with identifier NCT03410316.

Keywords: food groups; liver fat; middle-aged men and women; obesity; visceral fat.

© 2019 American Society for Nutrition.

References

    1. Stevens GA, Singh GM, Lu Y, Danaei G, Lin JK, Finucane MM, Bahalim AN, McIntire RK, Gutierrez HR, Cowan M. National, regional, and global trends in adult overweight and obesity prevalences. Popul Health Metr. 2012;10(1):22.
    1. Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature. 2006;444(7121):881–7.
    1. Lim S, Meigs JB. Links between ectopic fat and vascular disease in humans. Arterioscler Thromb Vasc Biol. 2014;34(9):1820–6.
    1. Gast KB, den Heijer M, Smit JWA, Widya RL, Lamb HJ, de Roos A, Jukema JW, Rosendaal FR, de Mutsert R. Individual contributions of visceral fat and total body fat to subclinical atherosclerosis: the NEO study. Atherosclerosis. 2015;241(2):547–54.
    1. Kaess BM, Pedley A, Massaro JM, Murabito J, Hoffmann U, Fox CS. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55(10):2622–30.
    1. Nazare J-A, Smith JD, Borel A-L, Haffner SM, Balkau B, Ross R, Massien C, Alméras N, Després J-P. Ethnic influences on the relations between abdominal subcutaneous and visceral adiposity, liver fat, and cardiometabolic risk profile: the International Study of Prediction of Intra-Abdominal Adiposity and Its Relationship With Cardiometabolic Risk/Intra-Abdominal Adiposity. Am J Clin Nutr. 2012;96(4):714–26.
    1. Than NN, Newsome PN. A concise review of non-alcoholic fatty liver disease. Atherosclerosis. 2015;239(1):192–202.
    1. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59(3):1174–97.
    1. Targher G, Day CP, Bonora E. Risk of cardiovascular disease in patients with nonalcoholic fatty liver disease. N Engl J Med. 2010;363(14):1341–50.
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364(25):2392–404.
    1. Rosqvist F, Iggman D, Kullberg J, Cedernaes J, Johansson H-E, Larsson A, Johansson L, Ahlström H, Arner P, Dahlman I. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes. 2014;63(7):2356–68.
    1. World Health Organization Technical Report Series. Diet, nutrition and the prevention of chronic diseases. World Health Organ Tech Rep Ser. 2003;916:i–viii., 1-149.
    1. Fischer K, Pick JA, Moewes D, Nothlings U. Qualitative aspects of diet affecting visceral and subcutaneous abdominal adipose tissue: a systematic review of observational and controlled intervention studies. Nutr Rev. 2015;73(4):191–215.
    1. Tan S-Y, Batterham M, Tapsell L. Increased intake of dietary polyunsaturated fat does not promote whole body or preferential abdominal fat mass loss in overweight adults. Obesity Facts. 2011;4(5):352–7.
    1. Hairston KG, Vitolins MZ, Norris JM, Anderson AM, Hanley AJ, Wagenknecht LE. Lifestyle factors and 5‐year abdominal fat accumulation in a minority cohort: the IRAS family study. Obesity. 2012;20(2):421–7.
    1. Larson DE, Hunter GR, Williams MJ, Kekes-Szabo T, Nyikos I, Goran MI. Dietary fat in relation to body fat and intraabdominal adipose tissue: a cross-sectional analysis. Am J Clin Nutr. 1996;64(5):677–84.
    1. Davis JN, Alexander KE, Ventura EE, Toledo-Corral CM, Goran MI. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr. 2009;90(5):1160–6.
    1. Pollock NK, Bundy V, Kanto W, Davis CL, Bernard PJ, Zhu H, Gutin B, Dong Y. Greater fructose consumption is associated with cardiometabolic risk markers and visceral adiposity in adolescents. J Nutr. 2012;142(2):251–7.
    1. Anderson EL, Howe LD, Fraser A, Macdonald-Wallis C, Callaway MP, Sattar N, Day C, Tilling K, Lawlor DA. Childhood energy intake is associated with nonalcoholic fatty liver disease in adolescents–3. J Nutr. 2015;145(5):983–9.
    1. Fardet A, Rock E. Toward a new philosophy of preventive nutrition: from a reductionist to a holistic paradigm to improve nutritional recommendations. Adv Nutr. 2014;5(4):430–46.
    1. van Lee L, Geelen A, van Huysduynen EJ, de Vries JH, van't Veer P, Feskens EJ. The Dutch Healthy Diet index (DHD-index): an instrument to measure adherence to the Dutch Guidelines for a Healthy Diet. Nutr J. 2012;11:49.
    1. Mozaffarian D, Ludwig DS. Dietary guidelines in the 21st century—a time for food. JAMA. 2010;304(6):681–2.
    1. Thorning TK, Bertram HC, Bonjour JP, de Groot L, Dupont D, Feeney E, Ipsen R, Lecerf JM, Mackie A, McKinley MC et al. .. Whole dairy matrix or single nutrients in assessment of health effects: current evidence and knowledge gaps. Am J Clin Nutr. 2017;105(5):1033–45.
    1. Brassard D, Tessier-Grenier M, Allaire J, Rajendiran E, She Y, Ramprasath V, Gigleux I, Talbot D, Levy E, Tremblay A. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):800–9.
    1. World Health Organization. Food-based Dietary Guidelines in the WHO European Region; 2003.
    1. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. New Engl J Med. 2011;364(25):2392–404.
    1. Anand SS, Hawkes C, De Souza RJ, Mente A, Dehghan M, Nugent R, Zulyniak MA, Weis T, Bernstein AM, Krauss RM. Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system: a report from the workshop convened by the World Heart Federation. J Am Coll Cardiol. 2015;66(14):1590–614.
    1. Schwingshackl L, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Schwedhelm C, Bechthold A, Schlesinger S, Boeing H. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(5):363–375.
    1. de Mutsert R, den Heijer M, Rabelink TJ, Smit JW, Romijn JA, Jukema JW, de Roos A, Cobbaert CM, Kloppenburg M, le Cessie S et al. .. The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection. Eur J Epidemiol. 2013;28(6):513–23.
    1. Wendel-Vos GW, Schuit AJ, Saris WH, Kromhout D. Reproducibility and relative validity of the short questionnaire to assess health-enhancing physical activity. J Clin Epidemiol. 2003;56(12):1163–9.
    1. Siebelink E, Geelen A, de Vries JH. Self-reported energy intake by FFQ compared with actual energy intake to maintain body weight in 516 adults. Br J Nutr. 2011;106(2):274–81.
    1. Verkleij-Hagoort AC, de Vries JH, Stegers MP, Lindemans J, Ursem NT, Steegers-Theunissen RP. Validation of the assessment of folate and vitamin B12 intake in women of reproductive age: the method of triads. Eur J Clin Nutr. 2007;61(5):610–5.
    1. Wanders AJ, Alssema M, de Koning EJ, le Cessie S, de Vries JH, Zock PL, Rosendaal FR, Heijer MD, de Mutsert R. Fatty acid intake and its dietary sources in relation with markers of type 2 diabetes risk: the NEO study. Eur J Clin Nutr. 2017;71(2):245–51.
    1. Netherlands Nutrition Centre. The Wheel of Five: Fact Sheet. [Available from: .]
    1. Van Der Meer RW, Hammer S, Lamb HJ, Frolich M, Diamant M, Rijzewijk LJ, de Roos A, Romijn JA, Smit JW. Effects of short-term high-fat, high-energy diet on hepatic and myocardial triglyceride content in healthy men. J Clin Endocrinol Metab. 2008;93(7):2702–8.
    1. Naressi A, Couturier C, Devos J, Janssen M, Mangeat C, de Beer R, Graveron-Demilly D. Java-based graphical user interface for the MRUI quantitation package. MAGMA. 2001;12(2–3):141–52.
    1. Korn EL, Graubard BI. Epidemiologic studies utilizing surveys: accounting for the sampling design. Am J Public Health. 1991;81(9):1166–73.
    1. Lumley T. Analysis of complex survey samples. J Stat Software. 2004;9(1):1–19.
    1. Ministerie van VWS. Hoeveel Mensen Hebben Overgewicht? 2013; [Available from: .]
    1. Tande DL, Magel R, Strand BN. Healthy Eating Index and abdominal obesity. Public Health Nutr. 2009;13(2):208–14.
    1. Lovejoy JC, Champagne CM, de Jonge L, Xie H, Smith SR. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int J Obes. 2008;32:949.
    1. Benedict M, Zhang X. Non-alcoholic fatty liver disease: an expanded review. World J Hepatol. 2017;9(16):715–32.
    1. Schwingshackl L, Bogensberger B, Hoffmann G. Diet quality as assessed by the Healthy Eating Index, Alternate Healthy Eating Index, Dietary Approaches to Stop Hypertension score, and health outcomes: an updated systematic review and meta-analysis of cohort studies. J Acad Nutr Diet. 2018;118(1):74–100. e11.
    1. Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JE, Willett WC, Hu FB. Red meat consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. Am J Clin Nutr. 2011;94(4):1088–96.
    1. O'Connor LM, Lentjes MA, Luben RN, Khaw K-T, Wareham NJ, Forouhi NG. Dietary dairy product intake and incident type 2 diabetes: a prospective study using dietary data from a 7-day food diary. Diabetologia. 2014;57(5):909–17.
    1. Schwingshackl L, Schwedhelm C, Hoffmann G, Lampousi AM, Knuppel S, Iqbal K, Bechthold A, Schlesinger S, Boeing H. Food groups and risk of all-cause mortality: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2017;105(6):1462–73.
    1. Margolis KL, Wei F, de Boer IH, Howard BV, Liu S, Manson JE, Mossavar-Rahmani Y, Phillips LS, Shikany JM, Tinker LF. A diet high in low-fat dairy products lowers diabetes risk in postmenopausal women. J Nutr. 2011;141(11):1969–74.
    1. Zheng J-S, Huang T, Yang J, Fu Y-Q, Li D. Marine N-3 polyunsaturated fatty acids are inversely associated with risk of type 2 diabetes in Asians: a systematic review and meta-analysis. PLoS One. 2012;7(9):e44525.
    1. Davis JN, Alexander KE, Ventura EE, Toledo-Corral CM, Goran MI. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr. 2009;90(5):1160–6.
    1. Romaguera D, Ängquist L, Du H, Jakobsen MU, Forouhi NG, Halkjær J, Feskens EJM, van der A DL, Masala G, Steffen A et al. .. Dietary determinants of changes in waist circumference adjusted for body mass index – a proxy measure of visceral adiposity. PLoS ONE. 2010;5(7):e11588.
    1. Markova M, Pivovarova O, Hornemann S, Sucher S, Frahnow T, Wegner K, Machann J, Petzke KJ, Hierholzer J, Lichtinghagen R et al. .. Isocaloric diets high in animal or plant protein reduce liver fat and inflammation in individuals with type 2 diabetes. Gastroenterology. 2017;152(3):571–85. e8.
    1. Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, Berglund J, Pulkki K, Basu S, Uusitupa M et al. .. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr. 2012;95(5):1003–12.
    1. Xie B, Gilliland FD, Li Y-F, Rockett HR. Effects of ethnicity, family income, and education on dietary intake among adolescents. Prev Med. 2003;36(1):30–40.
    1. Lear SA, Humphries KH, Kohli S, Chockalingam A, Frohlich JJ, Birmingham CL. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am J Clin Nutr. 2007;86(2):353–9.
    1. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox?. Hepatology. 2009;49(3):791–801.

Source: PubMed

3
구독하다