Angiotensin II type 1/adenosine A 2A receptor oligomers: a novel target for tardive dyskinesia

Paulo A de Oliveira, James A R Dalton, Marc López-Cano, Adrià Ricarte, Xavier Morató, Filipe C Matheus, Andréia S Cunha, Christa E Müller, Reinaldo N Takahashi, Víctor Fernández-Dueñas, Jesús Giraldo, Rui D Prediger, Francisco Ciruela, Paulo A de Oliveira, James A R Dalton, Marc López-Cano, Adrià Ricarte, Xavier Morató, Filipe C Matheus, Andréia S Cunha, Christa E Müller, Reinaldo N Takahashi, Víctor Fernández-Dueñas, Jesús Giraldo, Rui D Prediger, Francisco Ciruela

Abstract

Tardive dyskinesia (TD) is a serious motor side effect that may appear after long-term treatment with neuroleptics and mostly mediated by dopamine D2 receptors (D2Rs). Striatal D2R functioning may be finely regulated by either adenosine A2A receptor (A2AR) or angiotensin receptor type 1 (AT1R) through putative receptor heteromers. Here, we examined whether A2AR and AT1R may oligomerize in the striatum to synergistically modulate dopaminergic transmission. First, by using bioluminescence resonance energy transfer, we demonstrated a physical AT1R-A2AR interaction in cultured cells. Interestingly, by protein-protein docking and molecular dynamics simulations, we described that a stable heterotetrameric interaction may exist between AT1R and A2AR bound to antagonists (i.e. losartan and istradefylline, respectively). Accordingly, we subsequently ascertained the existence of AT1R/A2AR heteromers in the striatum by proximity ligation in situ assay. Finally, we took advantage of a TD animal model, namely the reserpine-induced vacuous chewing movement (VCM), to evaluate a novel multimodal pharmacological TD treatment approach based on targeting the AT1R/A2AR complex. Thus, reserpinized mice were co-treated with sub-effective losartan and istradefylline doses, which prompted a synergistic reduction in VCM. Overall, our results demonstrated the existence of striatal AT1R/A2AR oligomers with potential usefulness for the therapeutic management of TD.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Figure 1
Figure 1
AT1R and A2AR physically interact in HEK-293T cells. (a) Co-distribution of AT1R and A2AR in HEK-293T cells. Transiently transfected HEK-293T cells with AT1RYFP (red) and A2ARCFP (green) were fixed and observed by confocal microscopy. Co-distribution (yellow) is shown in the merge image. Scale bar: 10 µm. (b). Direct interaction between AT1 and A2A receptors. BRET saturation curves in HEK-293T cells expressing A2ARRluc and AT1RYFP (blue) or GABAB2RRluc and AT1RYFP (red). Plotted on the x-axis is the fluorescence value obtained from the YFP, normalized with the luminescence value of Rluc-tagged vectors 10 min after benzyl-coelenterazine incubation. Results are expressed as mean ± SEM (n = 3, in triplicate).
Figure 2
Figure 2
Conformational arrangement of AT1R/A2AR heterotetramer. Model generated by protein-protein docking and 2 μs MD simulation. (a) Top view of tetramer (AT1R in blue, A2AR in green, losartan in purple and istradefylline in brown). (b) Side view of interaction between A2AR and AT1R.
Figure 3
Figure 3
A2AR expression potentiates AT1R functioning. (a) Representative Angiotensin II-mediated intracellular Ca2+ accumulation determined by Fluo4 assay. HEK-293T cells were transiently transfected with A2AR (black trace), AT1R (red trace) and A2AR + AT1R (blue trace). Cells were loaded with Fluo4-NW dye and challenged with Angiotensin II (50nM). The [Ca2+]i dynamics is shown as change in fluorescence of the Fluo4 signal (F) expressed as percentage of the maximal Ca2+ influx elicited by ionomycin (Fi) in each experimental conditions. (b) Quantification of the AT1R-mediated [Ca2+]i accumulation measured by Fluo4. The integrated area under the curve (AUC) of the normalized AT1R-mediated Fluo4 signal (F) is expressed as percentage of the corresponding ionomycin signal (Fi) for each transfection. The data are expressed as the mean ± SEM of three independent experiments performed in triplicate. The asterisk indicates statistically significant differences (**P < 0.01, ***P < 0.001; 1-way ANOVA with a Newman-Keuls post-hoc test).
Figure 4
Figure 4
Detection of AT1R and A2AR proximity in mice striatal sections. (a) Immunohistochemistry detection of AT1R and A2AR in mice striatum. Representative confocal microscopy images of AT1R (red) and A2AR (green) immunoreactivities in the striatum are shown. Lower panels show a magnification of the square area shown in the upper panel. Arrows indicate potential location of medium spiny neurons (MSN) cell bodies. Superimposition of images revealed a high receptor co-distribution in yellow (merge). Scale bars: 350 μm (upper panels) and 10 μm (lower panels). (b) Photomicrographs of dual recognition of AT1R and A2AR with P-LISA. Representative images from wild-type (left) and A2AR-KO (right) mice striatum. (c) Quantification of P-LISA signals for AT1R and A2AR proximity confirmed the significant difference of P-LISA signal density between wild type and A2AR-KO mice (***P < 0.001). Values in the graph correspond to the mean ± SEM (dots/nuclei) of at list three animals and 5 images per animal. Scale bar: 10 μm.
Figure 5
Figure 5
Effect of AT1R and A2AR blocking in the TD animal model. The effect of different doses of losartan (a) or istradefylline (b) on total vacuous chewing movements (VCM) in the reserpine-based animal model of TD in mice was monitored during 10 min. (c) Effects of sub-effective dose co-administration (i.p.) of losartan (0.05 mg/ml) and istradefylline (0.03 mg/ml) in the VCM of TD animal model. (d) Effect of losartan in the VCM of TD animal model performed in A2AR-KO mice. Results are represented as the mean ± SEM (n = 10 animals). *P < 0.05 compared to the vehicle group (one-way ANOVA, followed by Newman-Keuls test).

References

    1. Brunner HR, Chang P, Wallach R, Sealey JE, Laragh JH. Angiotensin II vascular receptors: their avidity in relationship to sodium balance, the autonomic nervous system, and hypertension. J. Clin. Invest. 1972;51:58–67. doi: 10.1172/JCI106797.
    1. Goa KL, Wagstaff AJ. Losartan potassium: a review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs. 1996;51:820–45. doi: 10.2165/00003495-199651050-00008.
    1. Hermann K, McDonald W, Unger T, Lang RE, Ganten D. Angiotensin biosynthesis and concentrations in brain of normotensive and hypertensive rats. J. Physiol. (Paris). 1984;79:471–80.
    1. Garrido-Gil P, Valenzuela R, Villar-Cheda B, Lanciego JL, Labandeira-Garcia JL. Expression of angiotensinogen and receptors for angiotensin and prorenin in the monkey and human substantia nigra: an intracellular renin-angiotensin system in the nigra. Brain Struct. Funct. 2013;218:373–88. doi: 10.1007/s00429-012-0402-9.
    1. Saavedra JM. Brain Angiotensin II: New Developments, Unanswered Questions and Therapeutic Opportunities. Cell. Mol. Neurobiol. 2005;25:485–512. doi: 10.1007/s10571-005-4011-5.
    1. Saavedra JM. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: a beneficial effect for the treatment of brain disorders. Cell. Mol. Neurobiol. 2012;32:667–81. doi: 10.1007/s10571-011-9754-6.
    1. Labandeira-GarcÃa JL, et al. Brain renin-angiotensin system and dopaminergic cell vulnerability. Front. Neuroanat. 2014;8:67. doi: 10.3389/fnana.2014.00067.
    1. Grammatopoulos TN, et al. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol. Neurodegener. 2007;2:1. doi: 10.1186/1750-1326-2-1.
    1. Zawada WM, et al. Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J. Neuroinflammation. 2011;8:129. doi: 10.1186/1742-2094-8-129.
    1. Sonsalla PK, et al. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp. Neurol. 2013;250:376–83. doi: 10.1016/j.expneurol.2013.10.014.
    1. Agnati LF, Fuxe K, Zini I, Lenzi P, Hokfelt T. Aspects on receptor regulation and isoreceptor identification. Med. Biol. 1980;58:182–187.
    1. Fuxe K, et al. Evidence for the existence of receptor–receptor interactions in the central nervous system. Studies on the regulation of monoamine receptors by neuropeptides. J. neural Transm. 1983;18:165–179.
    1. Gomes I, et al. G Protein–Coupled Receptor Heteromers. Annu. Rev. Pharmacol. Toxicol. 2016;56:403–425. doi: 10.1146/annurev-pharmtox-011613-135952.
    1. Ciruela F, et al. Combining Mass Spectrometry and Pull-Down Techniques for the Study of Receptor Heteromerization. Direct Epitope–Epitope Electrostatic Interactions between Adenosine A 2A and Dopamine D 2 Receptors. Anal. Chem. 2004;76:5354–5363. doi: 10.1021/ac049295f.
    1. Ferre S, et al. An Update on Adenosine A2A-Dopamine D2 receptor interactions. Implications for the Function of G Protein-Coupled Receptors. Curr. Pharm. Des. 2008;14:1468–1474. doi: 10.2174/138161208784480108.
    1. Müller T. The safety of istradefylline for the treatment of Parkinson’s disease. Expert Opin. Drug Saf. 2015;14:769–75. doi: 10.1517/14740338.2015.1014798.
    1. Martínez-Pinilla E, et al. Dopamine D2 and angiotensin II type 1 receptors form functional heteromers in rat striatum. Biochem. Pharmacol. 2015;96:131–142. doi: 10.1016/j.bcp.2015.05.006.
    1. Pechlivanova DM, Georgiev VP. Interaction of angiotensin II and adenosine A1 and A2A receptor ligands on the writhing test in mice. Pharmacol. Biochem. Behav. 2002;72:23–8. doi: 10.1016/S0091-3057(01)00707-9.
    1. Tchekalarova J, Kambourova T, Georgiev V. Long-term theophylline treatment changes the effects of angiotensin II and adenosinergic agents on the seizure threshold. Brain Res. Bull. 2000;52:13–16. doi: 10.1016/S0361-9230(99)00254-3.
    1. Thakur S, Du J, Hourani S, Ledent C, Li JM. Inactivation of adenosine A2A receptor attenuates basal and angiotensin II-induced ROS production by Nox2 in endothelial cells. J. Biol. Chem. 2010;285:40104–40113. doi: 10.1074/jbc.M110.184606.
    1. Gomes CP, et al. Crosstalk between the signaling pathways triggered by angiotensin II and adenosine in the renal proximal tubules: Implications for modulation of Na+ -ATPase activity. Peptides. 2008;29:2033–2038. doi: 10.1016/j.peptides.2008.07.004.
    1. Lai EY, Patzak A. Persson, a. E. G. & Carlström, M. Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calcium. Acta Physiol. 2009;196:435–445. doi: 10.1111/j.1748-1716.2009.01956.x.
    1. Rongen Ga, Brooks SC, Ando SI, Abramson BL, Floras JS. Angiotensin AT1 receptor blockade abolishes the reflex sympatho- excitatory response to adenosine. J. Clin. Invest. 1998;101:769–776. doi: 10.1172/JCI480.
    1. Fernández-Dueñas V, et al. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats. Dis. Model. Mech. 2015;8:57–63. doi: 10.1242/dmm.018143.
    1. Morris GM, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009;30:2785–91. doi: 10.1002/jcc.21256.
    1. Zhang H, et al. Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J. Biol. Chem. 2015;290:29127–29139. doi: 10.1074/jbc.M115.689000.
    1. Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models of structure–function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428. doi: 10.1016/S1043-9471(05)80049-7.
    1. Doré ASS, et al. Structure of the Adenosine A2A Receptor in Complex with ZM241385 and the Xanthines XAC and Caffeine. Structure. 2011;19:1283–1293. doi: 10.1016/j.str.2011.06.014.
    1. Thévenin D, Lazarova T, Roberts MF, Robinson CR. Oligomerization of the fifth transmembrane domain from the adenosine A 2A receptor. Protein Sci. 2005;14:2177–2186. doi: 10.1110/ps.051409205.
    1. Canals M, et al. Homodimerization of adenosine A2A receptors: qualitative and quantitative assessment by fluorescence and bioluminescence energy transfer. J. Neurochem. 2004;88:726–734. doi: 10.1046/j.1471-4159.2003.02200.x.
    1. Karip E, Turu G, Supeki K, Szidonya L, Hunyady L. Cross-inhibition of angiotensin AT1 receptors supports the concept of receptor oligomerization. Neurochem. Int. 2007;51:261–267. doi: 10.1016/j.neuint.2007.05.018.
    1. AbdAlla S, Lother H, Langer A, el Faramawy Y, Quitterer U. Factor XIIIA Transglutaminase Crosslinks AT1 Receptor Dimers of Monocytes at the Onset of Atherosclerosis. Cell. 2004;119:343–354. doi: 10.1016/j.cell.2004.10.006.
    1. Hansen JL, Theilade J, Haunso S, Sheikh SP. Oligomerization of Wild Type and Nonfunctional Mutant Angiotensin II Type I Receptors Inhibits G q Protein Signaling but Not ERK Activation. J. Biol. Chem. 2004;279:24108–24115. doi: 10.1074/jbc.M400092200.
    1. Fanelli F, Felline A. Dimerization and ligand binding affect the structure network of A2A adenosine receptor. Biochim. Biophys. Acta - Biomembr. 2011;1808:1256–1266. doi: 10.1016/j.bbamem.2010.08.006.
    1. Gracia E, et al. A2A adenosine receptor ligand binding and signalling is allosterically modulated by adenosine deaminase. Biochem. J. 2011;435:701–709. doi: 10.1042/BJ20101749.
    1. Liu W, et al. Structural Basis for Allosteric Regulation of GPCRs by Sodium Ions. Science (80-.). 2012;337:232–236. doi: 10.1126/science.1219218.
    1. Lyskov S, et al. Serverification of Molecular Modeling Applications: The Rosetta Online Server That Includes Everyone (ROSIE) PLoS One. 2013;8:e63906. doi: 10.1371/journal.pone.0063906.
    1. Bonaventura J, et al. Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer. Proc. Natl. Acad. Sci. USA. 2015;112:E3609–18. doi: 10.1073/pnas.1507704112.
    1. Navarro G, et al. Quaternary structure of a G-protein-coupled receptor heterotetramer in complex with Gi and Gs. BMC Biol. 2016;14:26. doi: 10.1186/s12915-016-0247-4.
    1. Taura, J., Fernández-Dueñas, V. & Ciruela, F. Visualizing G Protein-Coupled Receptor-Receptor Interactions in Brain Using Proximity Ligation In Situ Assay. Curr. Protoc. Cell Biol. 67, 17.17.1–17.17.16 (2015).
    1. Ciruela F, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim. Biophys. Acta. 2011;1808:1245–1255. doi: 10.1016/j.bbamem.2011.02.007.
    1. Ferre S, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat. Disord. 2004;10:265–271. doi: 10.1016/j.parkreldis.2004.02.014.
    1. Ferre, S. et al. Adenosine A2A receptors and A2A receptor heteromers as key players in striatal function. Front. Neuroanat. 5 (2011).
    1. Parsons B, Togasaki DM, Kassir S, Przedborski S. Neuroleptics up-regulate adenosine A2a receptors in rat striatum: implications for the mechanism and the treatment of tardive dyskinesia. J. Neurochem. 1995;65:2057–64. doi: 10.1046/j.1471-4159.1995.65052057.x.
    1. Bishnoi M, Chopra K, Kulkarni SK. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes. Eur. J. Pharmacol. 2006;552:55–66. doi: 10.1016/j.ejphar.2006.09.010.
    1. Ivanova SA, et al. No involvement of the adenosine A2A receptor in tardive dyskinesia in Russian psychiatric inpatients from Siberia. Hum. Psychopharmacol. Clin. Exp. 2012;27:334–337. doi: 10.1002/hup.2226.
    1. Andreassen OA, Jørgensen HA. Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog. Neurobiol. 2000;61:525–41. doi: 10.1016/S0301-0082(99)00064-7.
    1. Turrone P, Remington G, Nobrega JN. The vacuous chewing movement (VCM) model of tardive dyskinesia revisited: is there a relationship to dopamine D(2) receptor occupancy? Neurosci. Biobehav. Rev. 2002;26:361–80. doi: 10.1016/S0149-7634(02)00008-8.
    1. Fuxe K, et al. Moonlighting proteins and protein-protein interactions as neurotherapeutic targets in the G protein-coupled receptor field. Neuropsychopharmacology. 2014;39:131–55. doi: 10.1038/npp.2013.242.
    1. Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A(2A) receptors, dopamine D(2) receptors and their interactions in Parkinson’s disease. Mov. Disord. 2007;22:1990–2017. doi: 10.1002/mds.21440.
    1. Mendelsohn FA, Jenkins TA, Berkovic SF. Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Res. 1993;613:221–9. doi: 10.1016/0006-8993(93)90902-Y.
    1. Brown DC, Steward LJ, Ge J, Barnes NM. Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo. Br. J. Pharmacol. 1996;118:414–20. doi: 10.1111/j.1476-5381.1996.tb15418.x.
    1. Villar-Cheda B, et al. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: Implications for progression of Parkinson’s disease. Eur. J. Neurosci. 2010;32:1695–1706. doi: 10.1111/j.1460-9568.2010.07448.x.
    1. Villar-Cheda B, et al. Aging-related dysregulation of dopamine and angiotensin receptor interaction. Neurobiol. Aging. 2014;35:1726–1738. doi: 10.1016/j.neurobiolaging.2014.01.017.
    1. Borroto-Escuela DO, et al. Characterization of the A2AR-D2R interface: focus on the role of the C-terminal tail and the transmembrane helices. Biochem. Biophys. Res. Commun. 2010;402:801–807. doi: 10.1016/j.bbrc.2010.10.122.
    1. Moriyama K, Sitkovsky MV. Adenosine A2A Receptor Is Involved in Cell Surface Expression of A2B Receptor. J. Biol. Chem. 2010;285:39271–39288. doi: 10.1074/jbc.M109.098293.
    1. Ciruela F, et al. G protein-coupled receptor oligomerization for what? J. Recept. Signal Transduct. Res. 2010;30:322–330. doi: 10.3109/10799893.2010.508166.
    1. Ferré S, et al. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Br. J. Pharmacol. 2010;160:443–53. doi: 10.1111/j.1476-5381.2010.00723.x.
    1. Yager LM, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: Role in drug addiction. Neuroscience. 2015;301:529–541. doi: 10.1016/j.neuroscience.2015.06.033.
    1. Jenner P. Istradefylline, a novel adenosine A2A receptor antagonist, for the treatment of Parkinson’s disease. Expert Opin. Investig. Drugs. 2005;14:729–738. doi: 10.1517/13543784.14.6.729.
    1. Jenner P, et al. Adenosine, adenosine A 2A antagonists, and Parkinson’s disease. Parkinsonism Relat. Disord. 2009;15:406–413. doi: 10.1016/j.parkreldis.2008.12.006.
    1. Muñoz A, Garrido-gil P, Dominguez-meijide A, Labandeira-garcia JL. Angiotensin type 1 receptor blockage reduces L -dopa-induced dyskinesia in the 6-OHDA model of Parkinson’ s disease. Involvement of vascular endothelial growth factor and interleukin-1 β. Exp. Neurol. 2014;261:720–732. doi: 10.1016/j.expneurol.2014.08.019.
    1. García-Negredo G, et al. Coassembly and coupling of SK2 channels and mGlu5 receptors. J. Neurosci. 2014;34:14793–802. doi: 10.1523/JNEUROSCI.2038-14.2014.
    1. Ledent C, et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature. 1997;388:674–8. doi: 10.1038/41771.
    1. Clark JD, Gebhart GF, Gonder JC, Keeling ME, Kohn DF. Special Report: The 1996 Guide for the Care and Use of Laboratory Animals. ILAR J. 1997;38:41–48. doi: 10.1093/ilar.38.1.41.
    1. Ciruela F, Fernández-Dueñas V. GPCR oligomerization analysis by means of BRET and dFRAP. Methods Mol. Biol. 2015;1272:133–144. doi: 10.1007/978-1-4939-2336-6_10.
    1. Garcia-Negredo G, et al. Coassembly and Coupling of SK2 Channels and mGlu5 Receptors. J. Neurosci. 2014;34:14793–14802. doi: 10.1523/JNEUROSCI.2038-14.2014.
    1. Matamales M, et al. Striatal medium-sized spiny neurons: identification by nuclear staining and study of neuronal subpopulations in BAC transgenic mice. PLoS One. 2009;4:e4770. doi: 10.1371/journal.pone.0004770.
    1. Sali A. Comparative protein modeling by satisfaction of spatial restraints. Mol. Med. Today. 1995;1:270–7. doi: 10.1016/S1357-4310(95)91170-7.
    1. Case DA, et al. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. doi: 10.1002/jcc.20290.
    1. Pettersen EF, et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 2004;25:1605–12. doi: 10.1002/jcc.20084.
    1. Kim S, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44:D1202–D1213. doi: 10.1093/nar/gkv951.
    1. Jo S, Kim T, Iyer VG, Im W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 2008;29:1859–65. doi: 10.1002/jcc.20945.
    1. Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI. OPM: Orientations of Proteins in Membranes database. Bioinformatics. 2006;22:623–625. doi: 10.1093/bioinformatics/btk023.
    1. Huang J, MacKerell AD. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013;34:2135–2145. doi: 10.1002/jcc.23354.
    1. Vanommeslaeghe K, et al. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 2010;31:671–90.
    1. Vanommeslaeghe K, Raman EP, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. Model. 2012;52:3155–3168. doi: 10.1021/ci3003649.
    1. Vanommeslaeghe K, MacKerell AD. Automation of the CHARMM General Force Field (CGenFF) I: Bond Perception and Atom Typing. J. Chem. Inf. Model. 2012;52:3144–3154. doi: 10.1021/ci300363c.
    1. Harvey MJ, Giupponi G, Fabritiis G. De. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009;5:1632–9. doi: 10.1021/ct9000685.
    1. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–8, 27–8 (1996).
    1. Cunha AS, et al. Agmatine attenuates reserpine-induced oral dyskinesia in mice: Role of oxidative stress, nitric oxide and glutamate NMDA receptors. Behav. Brain Res. 2016;312:64–76. doi: 10.1016/j.bbr.2016.06.014.

Source: PubMed

3
구독하다