Determinants of Plasma Docosahexaenoic Acid Levels and Their Relationship to Neurological and Cognitive Functions in PKU Patients: A Double Blind Randomized Supplementation Study

Hans Demmelmair, Anita MacDonald, Urania Kotzaeridou, Peter Burgard, Domingo Gonzalez-Lamuno, Elvira Verduci, Melike Ersoy, Gulden Gokcay, Behiye Alyanak, Eva Reischl, Wolfgang Müller-Felber, Fabienne Lara Faber, Uschi Handel, Sabrina Paci, Berthold Koletzko, Hans Demmelmair, Anita MacDonald, Urania Kotzaeridou, Peter Burgard, Domingo Gonzalez-Lamuno, Elvira Verduci, Melike Ersoy, Gulden Gokcay, Behiye Alyanak, Eva Reischl, Wolfgang Müller-Felber, Fabienne Lara Faber, Uschi Handel, Sabrina Paci, Berthold Koletzko

Abstract

Children with phenylketonuria (PKU) follow a protein restricted diet with negligible amounts of docosahexaenoic acid (DHA). Low DHA intakes might explain subtle neurological deficits in PKU. We studied whether a DHA supply modified plasma DHA and neurological and intellectual functioning in PKU. In a double-blind multicentric trial, 109 PKU patients were randomized to DHA doses from 0 to 7 mg/kg&day for six months. Before and after supplementation, we determined plasma fatty acid concentrations, latencies of visually evoked potentials, fine and gross motor behavior, and IQ. Fatty acid desaturase genotypes were also determined. DHA supplementation increased plasma glycerophospholipid DHA proportional to dose by 0.4% DHA per 1 mg intake/kg bodyweight. Functional outcomes were not associated with DHA status before and after intervention and remained unchanged by supplementation. Genotypes were associated with plasma arachidonic acid levels and, if considered together with the levels of the precursor alpha-linolenic acid, also with DHA. Functional outcomes and supplementation effects were not significantly associated with genotype. DHA intakes up to 7 mg/kg did not improve neurological functions in PKU children. Nervous tissues may be less prone to low DHA levels after infancy, or higher doses might be required to impact neurological functions. In situations of minimal dietary DHA, endogenous synthesis of DHA from alpha-linolenic acid could relevantly contribute to DHA status.

Keywords: cognitive function; docosahexaenoic acid; motor skills; neurological function; phenylketonuria.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Participant flow chart according to CONSORT.
Figure 2
Figure 2
Association of the latency of visually evoked potentials with pattern size 15′ (VEP15 latency), the Ravens score (RPM), and the Lincoln-Oseretzky score (LOS) with the percentage of DHA in plasma glycerophospholipids before (pre) and after (post) intervention.
Figure 3
Figure 3
Association of the latency of visually evoked potentials with pattern size 15′ (VEP15 latency), the Ravens score (RPM), and the Lincoln-Oseretzky score (LOS) with the plasma phenylalanine (Phe) concentrations (µmol/L) before (pre) and after (post) intervention.
Figure 4
Figure 4
Linear relationship between DHA intake (mg/kg&day) and post intervention phosphoglycerid bound DHA concentration (□) and percentage contribution of DHA to total analysed glycerophospholipid fatty acids (■).
Figure 5
Figure 5
(a) Pre study arachidonic acid (%-ARA) percentages versus linoleic acid (%-LA) percentages in glycerophospholipids according to the individual alleles of rs174548; (b) Pre study docosahexaenoic acid (%-DHA) percentages versus α-linolenic acid (%-ALA) percentages in glycerophospholipids according to the individual alleles of rs174548.

References

    1. Brumm V.L., Azen C., Moats R.A., Stern A.M., Broomand C., Nelson M.D., Koch R. Neuropsychological outcome of subjects participating in the PKU adult collaborative study: A preliminary review. J. Inherit. Metab. Dis. 2004;27:549–566. doi: 10.1023/B:BOLI.0000042985.02049.ff.
    1. Koletzko B., Beblo S., Demmelmair H., Hanebutt F.L. Omega-3 LC-PUFA supply and neurological outcomes in children with phenylketonuria (PKU) J. Pediatr. Gastroenterol. Nutr. 2009;48:S2–S7. doi: 10.1097/MPG.0b013e3181977399.
    1. Gonzalez-Rodriguez L.G., Aparicio A., Lopez-Sobaler A.M., Ortega R.M. Omega 3 and omega 6 fatty acids intake and dietary sources in a representative sample of Spanish adults. Int. J. Vitam. Nutr. Res. 2013;83:36–47. doi: 10.1024/0300-9831/a000143.
    1. Sanjurjo P., Perteagudo L., Soriano J.R., Vilaseca A., Campistol J. Polyunsaturated fatty acid status in patients with phenylketonuria. J. Inherit. Metab. Dis. 1994;17:704–709. doi: 10.1007/BF00712012.
    1. Galli C., Agostoni C., Mosconi C., Riva E., Salari P.C., Giovannini M. Reduced plasma C-20 and C-22 polyunsaturated fatty acids in children with phenylketonuria during dietary intervention. J. Pediatr. 1991;119:562–567. doi: 10.1016/S0022-3476(05)82405-9.
    1. Giovannini M., Biasucci G., Agostoni C., Luotti D., Riva E. Lipid status and fatty acid metabolism in phenylketonuria. J. Inherit. Metab. Dis. 1995;18:265–272. doi: 10.1007/BF00710414.
    1. Lohner S., Fekete K., Decsi T. Lower n-3 long-chain polyunsaturated fatty acid values in patients with phenylketonuria: A systematic review and meta-analysis. Nutr. Res. 2013;33:513–520. doi: 10.1016/j.nutres.2013.05.003.
    1. Demmelmair H., Koletzko B. Importance of fatty acids in the perinatal period. World Rev. Nutr. Diet. 2015;112:31–47.
    1. Stonehouse W. Does consumption of LC omega-3 PUFA enhance cognitive performance in healthy school-aged children and throughout adulthood? Evidence from clinical trials. Nutrients. 2014;6:2730–2758. doi: 10.3390/nu6072730.
    1. Kuratko C.N., Barrett E.C., Nelson E.B., Salem N., Jr. The relationship of docosahexaenoic acid (DHA) with learning and behavior in healthy children: A review. Nutrients. 2013;5:2777–2810. doi: 10.3390/nu5072777.
    1. Calder P.C. Docosahexaenoic Acid. Ann. Nutr. Metab. 2016;69:7–21. doi: 10.1159/000448262.
    1. Schmitz G., Ecker J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008;47:147–155. doi: 10.1016/j.plipres.2007.12.004.
    1. Beblo S., Reinhardt H., Demmelmair H., Muntau A.C., Koletzko B. Effect of fish oil supplementation on fatty acid status, coordination, and fine motor skills in children with phenylketonuria. J. Pediatr. 2007;150:479–484. doi: 10.1016/j.jpeds.2006.12.011.
    1. Beblo S., Reinhardt H., Muntau A.C., Muller-Felber W., Roscher A.A., Koletzko B. Fish oil supplementation improves visual evoked potentials in children with phenyketonuria. Neurology. 2001;57:1488–1491. doi: 10.1212/WNL.57.8.1488.
    1. Agostoni C., Massetto N., Biasucci G., Rottoli A., Bonvissuto M., Bruzzese M.G., Giovannini M., Riva E. Effects of long-chain polyunsaturated fatty acid supplementation on fatty acid status and visual function in treated children with hyperphenylalaninemia. J. Pediatr. 2000;137:504–509. doi: 10.1067/mpd.2000.108398.
    1. Lattka E., Illig T., Heinrich J., Koletzko B. Do FADS genotypes enhance our knowledge about fatty acid related phenotypes? Clin. Nutr. 2010;29:277–287. doi: 10.1016/j.clnu.2009.11.005.
    1. Tanaka T., Shen J., Abecasis G.R., Kisialiou A., Ordovas J.M., Guralnik J.M., Singleton A., Bandinelli S., Cherubini A., Arnett D., et al. Genome-wide association study of plasma polyunsaturated fatty acids in the InCHIANTI Study. PLoS Genet. 2009;5:e1000338. doi: 10.1371/journal.pgen.1000338.
    1. Lattka E., Koletzko B., Zeilinger S., Hibbeln J.R., Klopp N., Ring S.M., Steer C.D. Umbilical cord PUFA are determined by maternal and child fatty acid desaturase (FADS) genetic variants in the Avon Longitudinal Study of Parents and Children (ALSPAC) Br. J. Nutr. 2013;109:1196–1210. doi: 10.1017/S0007114512003108.
    1. Schaeffer L., Gohlke H., Muller M., Heid I.M., Palmer L.J., Kompauer I., Demmelmair H., Illig T., Koletzko B., Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006;15:1745–1756. doi: 10.1093/hmg/ddl117.
    1. Gillingham L.G., Harding S.V., Rideout T.C., Yurkova N., Cunnane S.C., Eck P.K., Jones P.J. Dietary oils and FADS1-FADS2 genetic variants modulate [13C]alpha-linolenic acid metabolism and plasma fatty acid composition. Am. J. Clin. Nutr. 2013;97:195–207. doi: 10.3945/ajcn.112.043117.
    1. Smith C.E., Follis J.L., Nettleton J.A., Foy M., Wu J.H., Ma Y., Tanaka T., Manichakul A.W., Wu H., Chu A.Y., et al. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: Meta-analysis of nine studies in the CHARGE consortium. Mol. Nutr. Food Res. 2015;59:1373–1383. doi: 10.1002/mnfr.201400734.
    1. Raven J. Raven Progressive Matrices. In: McCallum R.S., editor. Handbook of Nonverbal Assessment. Springer; Berlin, Germany: 2003. pp. 223–237.
    1. Achenbach T.M. Manual for Child Behavior Checklist/ 4-18 and 1991 Profile. University of Vermont, Dept. of Psychiatry; Burlington, VT, USA: 1991.
    1. Glaser C., Demmelmair H., Koletzko B. High-throughput analysis of fatty acid composition of plasma glycerophospholipids. J. Lipid Res. 2010;51:216–221. doi: 10.1194/jlr.D000547.
    1. Rodriguez S., Gaunt T.R., Day I.N.M. Hardy-Weinberg Equilibrium Testing of Biological Ascertainment for Mendelian Randomization Studies. Am. J. Epidemiol. 2009;169:505–514. doi: 10.1093/aje/kwn359.
    1. Rangel-Huerta O.D., Gil A. Effect of omega-3 fatty acids on cognition: An updated systematic review of randomized clinical trials. Nutr. Rev. 2018;76:1–20. doi: 10.1093/nutrit/nux064.
    1. Osendarp S.J., Baghurst K.I., Bryan J., Calvaresi E., Hughes D., Hussaini M., Karyadi S.J., van Klinken B.J., van der Knaap H.C., Lukito W., et al. Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am. J. Clin. Nutr. 2007;86:1082–1093.
    1. Kennedy D.O., Jackson P.A., Elliott J.M., Scholey A.B., Robertson B.C., Greer J., Tiplady B., Buchanan T., Haskell C.F. Cognitive and mood effects of 8 weeks’ supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10–12 years. Nutr. Neurosci. 2009;12:48–56. doi: 10.1179/147683009X388887.
    1. Kirby A., Woodward A., Jackson S., Wang Y., Crawford M.A. A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population. Res. Dev. Disabil. 2010;31:718–730. doi: 10.1016/j.ridd.2010.01.014.
    1. McNamara R.K., Able J., Jandacek R., Rider T., Tso P., Eliassen J.C., Alfieri D., Weber W., Jarvis K., DelBello M.P., et al. Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: A placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am. J. Clin. Nutr. 2010;91:1060–1067. doi: 10.3945/ajcn.2009.28549.
    1. Richardson A.J., Burton J.R., Sewell R.P., Spreckelsen T.F., Montgomery P. Docosahexaenoic acid for reading, cognition and behavior in children aged 7–9 years: A randomized, controlled trial (the DOLAB Study) PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0043909.
    1. Johnson M., Fransson G., Ostlund S., Areskoug B., Gillberg C. Omega 3/6 fatty acids for reading in children: A randomized, double-blind, placebo-controlled trial in 9-year-old mainstream schoolchildren in Sweden. J. Child Psychol. Psychiatry. 2017;58:83–93. doi: 10.1111/jcpp.12614.
    1. Widenhorn-Muller K., Schwanda S., Scholz E., Spitzer M., Bode H. Effect of supplementation with long-chain omega-3 polyunsaturated fatty acids on behavior and cognition in children with attention deficit/hyperactivity disorder (ADHD): A randomized placebo-controlled intervention trial. Prostaglandins Leukot Essent. Fatty Acids. 2014;91:49–60. doi: 10.1016/j.plefa.2014.04.004.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA) Scientific Opinion on the substantiation of a health claim related to DHA and contribution to normal brain development pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J. 2014;12:3840. doi: 10.2903/j.efsa.2014.3840.
    1. Glaser C., Demmelmair H., Sausenthaler S., Herbarth O., Heinrich J., Koletzko B. Fatty acid composition of serum glycerophospholipids in children. J. Pediatr. 2010;157:826–831. doi: 10.1016/j.jpeds.2010.05.001.
    1. Poge A.P., Baumann K., Muller E., Leichsenring M., Schmidt H., Bremer H.J. Long-chain polyunsaturated fatty acids in plasma and erythrocyte membrane lipids of children with phenylketonuria after controlled linoleic acid intake. J. Inherit. Metab. Dis. 1998;21:373–381. doi: 10.1023/A:1005350523826.
    1. Gramer G., Haege G., Langhans C.D., Schuhmann V., Burgard P., Hoffmann G.F. Long-chain polyunsaturated fatty acid status in children, adolescents and adults with phenylketonuria. Prostaglandins Leukot Essent. Fatty Acids. 2016;109:52–57. doi: 10.1016/j.plefa.2016.04.005.
    1. Brenna J.T., Carlson S.E. Docosahexaenoic acid and human brain development: Evidence that a dietary supply is needed for optimal development. J. Hum. Evol. 2014;77:99–106. doi: 10.1016/j.jhevol.2014.02.017.
    1. Koletzko B., Sauerwald T., Demmelmair H., Herzog M., von Schenck U., Bohles H., Wendel U., Seidel J. Dietary long-chain polyunsaturated fatty acid supplementation in infants with phenylketonuria: A randomized controlled trial. J. Inherit. Metab. Dis. 2007;30:326–332. doi: 10.1007/s10545-007-0491-4.
    1. Eggert D. LOS KF18 Kurzform zur Messung des motorischen Entwicklungsstandes von normalen und behinderten Kindern im Alter von 5 bis 13 Jahren. Beltz Test Gesellschaft; Weinheim, Germany: 1974.
    1. Steer C.D., Lattka E., Koletzko B., Golding J., Hibbeln J.R. Maternal fatty acids in pregnancy, FADS polymorphisms, and child intelligence quotient at 8 y of age. Am. J. Clin. Nutr. 2013;98:1575–1582. doi: 10.3945/ajcn.112.051524.
    1. Connor W.E., Neuringer M., Lin D.S. Dietary effects on brain fatty acid composition: The reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J. Lipid Res. 1990;31:237–247.
    1. Arterburn L.M., Hall E.B., Oken H. Distribution, interconversion, and dose response of n-3 fatty acids in humans. Am. J. Clin. Nutr. 2006;83:1467S–1476S. doi: 10.1093/ajcn/83.6.1467S.
    1. Patterson A.C., Chalil A., Aristizabal Henao J.J., Streit I.T., Stark K.D. Omega-3 polyunsaturated fatty acid blood biomarkers increase linearly in men and women after tightly controlled intakes of 0.25, 0.5, and 1 g/d of EPA + DHA. Nutr. Res. 2015;35:1040–1051. doi: 10.1016/j.nutres.2015.09.016.
    1. Stoutjesdijk E., Schaafsma A., Dijck-Brouwer D.A.J., Muskiet F.A.J. Fish oil supplemental dose needed to reach 1g% DHA+EPA in mature milk. Prostaglandins Leukot Essent. Fatty Acids. 2018;128:53–61. doi: 10.1016/j.plefa.2017.11.003.
    1. Sands S.A., Reid K.J., Windsor S.L., Harris W.S. The impact of age, body mass index, and fish intake on the EPA and DHA content of human erythrocytes. Lipids. 2005;40:343–347. doi: 10.1007/s11745-006-1392-2.
    1. Flock M.R., Skulas-Ray A.C., Harris W.S., Etherton T.D., Fleming J.A., Kris-Etherton P.M. Determinants of erythrocyte omega-3 fatty acid content in response to fish oil supplementation: A dose-response randomized controlled trial. J. Am. Heart Assoc. 2013;2:e000513. doi: 10.1161/JAHA.113.000513.
    1. Jump D.B. Fatty acid regulation of hepatic lipid metabolism. Curr. Opion. Clin. Nutr. Metab. Care. 2011;14:115–120. doi: 10.1097/MCO.0b013e328342991c.
    1. Plourde M., Cunnane S.C. Extremely limited synthesis of long chain polyunsaturates in adults: Implications for their dietary essentiality and use as supplements. Appl. Physiol. Nutr. Metab. 2007;32:619–634. doi: 10.1139/H07-034.
    1. Burdge G.C., Calder P.C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005;45:581–597. doi: 10.1051/rnd:2005047.
    1. Harris W.S., Masson S., Barlera S., Milani V., Pileggi S., Franzosi M.G., Marchioli R., Tognoni G., Tavazzi L., Latini R., et al. Red blood cell oleic acid levels reflect olive oil intake while omega-3 levels reflect fish intake and the use of omega-3 acid ethyl esters: The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Heart Failure trial. Nutr. Res. 2016;36:989–994. doi: 10.1016/j.nutres.2016.06.012.
    1. Flock M.R., Harris W.S., Kris-Etherton P.M. Long-chain omega-3 fatty acids: Time to establish a dietary reference intake. Nutr. Rev. 2013;71:692–707. doi: 10.1111/nure.12071.
    1. Lacombe R.J.S., Giuliano V., Colombo S.M., Arts M.T., Bazinet R.P. Compound-specific isotope analysis resolves the dietary origin of docosahexaenoic acid in the mouse brain. J. Lipid Res. 2017;58:2071–2081. doi: 10.1194/jlr.D077990.
    1. Brenna J.T., Salem N., Jr., Sinclair A.J., Cunnane S.C. Alpha-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans. Prostaglandins Leukot Essent. Fatty Acids. 2009;80:85–91. doi: 10.1016/j.plefa.2009.01.004.
    1. Domenichiello A.F., Kitson A.P., Metherel A.H., Chen C.T., Hopperton K.E., Stavro P.M., Bazinet R.P. Whole-Body Docosahexaenoic Acid Synthesis-Secretion Rates in Rats Are Constant across a Large Range of Dietary alpha-Linolenic Acid Intakes. J. Nutr. 2017;147:37–44. doi: 10.3945/jn.116.232074.
    1. Domenichiello A.F., Chen C.T., Trepanier M.O., Stavro P.M., Bazinet R.P. Whole body synthesis rates of DHA from alpha-linolenic acid are greater than brain DHA accretion and uptake rates in adult rats. J. Lipid Res. 2014;55:62–74. doi: 10.1194/jlr.M042275.
    1. Cleary M.A., Feillet F., White F.J., Vidailhet M., MacDonald A., Grimsley A., Maurin N., de Baulny H.O., Rutherford P.J. Randomised controlled trial of essential fatty acid supplementation in phenylketonuria. Eur. J. Clin. Nutr. 2006;60:915–920. doi: 10.1038/sj.ejcn.1602401.
    1. Lattka E., Klopp N., Demmelmair H., Klingler M., Heinrich J., Koletzko B. Genetic variations in polyunsaturated fatty acid metabolism--implications for child health? Ann. Nutr. Metab. 2012;60:8–17. doi: 10.1159/000337308.
    1. Jelena Vidakovic A., Santos S., Williams M.A., Duijts L., Hofman A., Demmelmair H., Koletzko B., Jaddoe V.W., Gaillard R. Maternal plasma n-3 and n-6 polyunsaturated fatty acid concentrations during pregnancy and subcutaneous fat mass in infancy. Obesity (Silver Spring) 2016;24:1759–1766. doi: 10.1002/oby.21547.
    1. Otto S.J., van Houwelingen A.C., Hornstra G. The effect of different supplements containing docosahexaenoic acid on plasma and erythrocyte fatty acids of healthy non-pregnant women. Nutr. Res. 2000;20:917–927. doi: 10.1016/S0271-5317(00)00183-4.
    1. Brossard N., Croset M., Pachiaudi C., Riou J.P., Tayot J.L., Lagarde M. Retroconversion and metabolism of [ 13 C]22:6n-3 in humans and rats after intake of a single dose of [ 13 C]22:6n-3-triacylglycerols. Am. J. Clin. Nutr. 1996;64:577–586. doi: 10.1093/ajcn/64.4.577.
    1. Plourde M., Chouinard-Watkins R., Rioux-Perreault C., Fortier M., Dang M.T.M., Allard M.J., Tremblay-Mercier J., Zhang Y., Lawrence P., Vohl M.C., et al. Kinetics of C-13-DHA before and during fish-oil supplementation in healthy older individuals. Am. J. Clin. Nutr. 2014;100:105–112. doi: 10.3945/ajcn.113.074708.
    1. Vyncke K.E., Libuda L., De Vriendt T., Moreno L.A., Van Winckel M., Manios Y., Gottrand F., Molnar D., Vanaelst B., Sjostrom M., et al. Dietary fatty acid intake, its food sources and determinants in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Br. J. Nutr. 2012;108:2261–2273. doi: 10.1017/S000711451200030X.
    1. O’Sullivan T.A., Ambrosini G., Beilin L.J., Mori T.A., Oddy W.H. Dietary intake and food sources of fatty acids in Australian adolescents. Nutrition. 2011;27:153–159. doi: 10.1016/j.nut.2009.11.019.
    1. Burdge G.C., Wootton S.A. Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr. 2002;88:411–420. doi: 10.1079/BJN2002689.
    1. Domenichiello A.F., Kitson A.P., Bazinet R.P. Is docosahexaenoic acid synthesis from a-linolenic acid sufficient to supply the adult brain? Prog. Lipid Res. 2015;59:54–66. doi: 10.1016/j.plipres.2015.04.002.
    1. Gramer G., Forl B., Springer C., Weimer P., Haege G., Mackensen F., Muller E., Volcker H.E., Hoffmann G.F., Lindner M., et al. Visual functions in phenylketonuria-evaluating the dopamine and long-chain polyunsaturated fatty acids depletion hypotheses. Mol. Genet. Metab. 2013;108:1–7. doi: 10.1016/j.ymgme.2012.10.021.

Source: PubMed

3
구독하다