Bradykinin sensitizes the cough reflex via a B2 receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase

Fajer Al-Shamlan, Ahmed Z El-Hashim, Fajer Al-Shamlan, Ahmed Z El-Hashim

Abstract

Background: Inhaled bradykinin (BK) has been reported to both sensitize and induce cough but whether BK can centrally sensitize the cough reflex is not fully established. In this study, using a conscious guinea-pig model of cough, we investigated the role of BK in the central sensitization of the cough reflex and in airway obstruction.

Methods: Drugs were administered, to guinea pigs, by the intracerebroventricular (i.c.v.) route. Aerosolized citric acid (0.2 M) was used to induce cough in a whole-body plethysmograph box, following i.c.v. infusion of drugs. An automated analyser recorded both cough and airway obstruction simultaneously.

Results: BK, administered by the i.c.v. route, dose-dependently enhanced the citric acid-induced cough and airway obstruction. This effect was inhibited following i.c.v. pretreatment with a B2 receptor antagonist, TRPV1 and TRPA1 channels antagonists and cyclooxygenase (COX) and 12-lipoxygenase (12-LOX) inhibitors. Furthermore, co-administration of submaximal doses of the TRPV1 and TRPA1 antagonists or the COX and 12-LOX inhibitors resulted in a greater inhibition of both cough reflex and airway obstruction.

Conclusions: Our findings show that central BK administration sensitizes cough and enhances airway obstruction via a B2 receptor/TRPV1 and/or TRPA1 channels which are coupled via metabolites of COX and/or 12-LOX enzymes. In addition, combined blockade of TRPV1 and TRPA1 or COX and 12-LOX resulted in a greater inhibitory effect of both cough and airway obstruction. These results indicate that central B2 receptors, TRPV1/TRPA1 channels and COX/12-LOX enzymes may represent potential therapeutic targets for the treatment of cough hypersensitivity.

Keywords: B2 receptors; Bradykinin; Central sensitization; Cough; TRPA1; TRPV1.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Effect of i.c.v. administered BK (0.03 and 0.06 nmole ml− 1; n = 5 and 9, respectively), versus vehicle (n = 8), on citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle treated animals
Fig. 2
Fig. 2
Effect of i.c.v. administered B2 receptor antagonist, HOE-140 10 nmole ml− 1 (n = 6) and 100 nmole ml− 1 (n = 8), versus vehicle (n = 7), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle/BK treated animals
Fig. 3
Fig. 3
Effect of i.c.v. administered TRPV1 channel antagonist, JNJ-17203212 (JNJ) 1 μmole ml− 1 (n = 9) and 3 μmole ml− 1 (n = 7), versus vehicle (n = 7), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle/BK treated animals
Fig. 4
Fig. 4
Effect of i.c.v. administered TRPA1 channel antagonist, HC-030031 (HC) 60 nmole ml− 1 (n = 8) and 150 nmole ml− 1 (n = 8)versus vehicle (n = 13), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle/BK treated animals
Fig. 5
Fig. 5
Effect of i.c.v. co-administration of TRPV1 channel antagonist, JNJ-17203212 (JNJ) 1 μmole ml− 1 and TRPA1 channel antagonist, HC-030031 (HC) 60 nmole ml− 1 (n = 5), versus vehicle (n = 5), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05; ** p < 0.01; *** p < 0.001, significant difference compared to vehicle/BK treated animals
Fig. 6
Fig. 6
Effect of i.c.v. administered non-selective COX inhibitor, indomethacin (INDO) 30 nmole ml− 1 (n = 5) and 80 nmole ml− 1 (n = 6), versus vehicle (n = 10), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle/BK treated animals
Fig. 7
Fig. 7
Effect of i.c.v. administered selective 15-LOX-1 inhibitor, ML-351 (ML) 5 μmole ml− 1 (n = 6) and 20 μmole ml− 1 (n = 6), versus vehicle (n = 5), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem
Fig. 8
Fig. 8
Effect of i.c.v. administered 12-LOX inhibitor, baicalein (BA) 30 μmole ml− 1 (n = 6) and 100 μmole ml− 1 (n = 5), versus vehicle (n = 6), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05, significant difference compared to vehicle/BK treated animals
Fig. 9
Fig. 9
Effect of i.c.v. co-administration of non-selective COX inhibitor, indomethacin (INDO) 30 nmole ml− 1 and 12-LOX inhibitor, baicalein (BA) 30 μmole ml− 1 (n = 6),versus vehicle (n = 5), on BK-enhanced citric acid-induced cough (a) changes in Penh (b) and Penh AUC (c). Values represent means + sem. * p < 0.05 significant difference compared to vehicle/BK treated animals
Fig. 10
Fig. 10
Summary of our findings and a proposed mechanism by which BK sensitize the cough reflex centrally. Bradykinin acts on B2 receptors (B2R) on second order neurons to stimulate the release of COX and 12-LOX metabolites which in turn activate TRPV1 and TRPA1 channels on the second order neurons resulting in an enhanced cough response

References

    1. Abdullah H, Heaney LG, Cosby SL, McGarvey LP. Rhinovirus upregulates transient receptor potential channels in a human neuronal cell line: implications for respiratory virus-induced cough reflex sensitivity. Thorax. 2014;69(1):46–54. doi: 10.1136/thoraxjnl-2013-203894.
    1. Akopian AN. Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. Curr Pharm Biotechnol. 2011;12(1):89–94. doi: 10.2174/138920111793937952.
    1. Andre E, Gatti R, Trevisani M, Preti D, Baraldi PG, Patacchini R, et al. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br J Pharmacol. 2009;158(6):1621–1628. doi: 10.1111/j.1476-5381.2009.00438.x.
    1. Atreya S, Kumar G, Datta SS. Gabapentin for chronic refractory Cancer cough. Indian J Palliat Care. 2016;22(1):94–96. doi: 10.4103/0973-1075.173940.
    1. Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron. 2004;41(6):849–857. doi: 10.1016/S0896-6273(04)00150-3.
    1. Belvisi Maria G., Birrell Mark A., Wortley Michael A., Maher Sarah A., Satia Imran, Badri Huda, Holt Kimberley, Round Patrick, McGarvey Lorcan, Ford John, Smith Jaclyn A. XEN-D0501, a Novel Transient Receptor Potential Vanilloid 1 Antagonist, Does Not Reduce Cough in Patients with Refractory Cough. American Journal of Respiratory and Critical Care Medicine. 2017;196(10):1255–1263. doi: 10.1164/rccm.201704-0769OC.
    1. Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest. 2008;118(5):1899–1910. doi: 10.1172/JCI34192.
    1. Bettini L, Moore K. Central sensitization in functional chronic pain syndromes: overview and clinical application. Pain Manag Nurs. 2016;17(5):333–338. doi: 10.1016/j.pmn.2016.05.008.
    1. Bezzi P, Carmignoto G, Pasti L, Vesce S, Rossi D, Rizzini BL, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature. 1998;391(6664):281–285. doi: 10.1038/34651.
    1. Bhattacharya A, Scott BP, Nasser N, Ao H, Maher MP, Dubin AE, et al. Pharmacology and antitussive efficacy of 4-(3-trifluoromethyl-pyridin-2-yl)-piperazine-1-carboxylic acid (5-trifluoromethyl-pyridin-2-yl)-amide (JNJ17203212), a transient receptor potential vanilloid 1 antagonist in Guinea pigs. J Pharmacol Exp Ther. 2007;323(2):665–674. doi: 10.1124/jpet.107.127258.
    1. Birrell MA, Belvisi MG, Grace M, Sadofsky L, Faruqi S, Hele DJ, et al. TRPA1 agonists evoke coughing in Guinea pig and human volunteers. Am J Respir Crit Care Med. 2009;180(11):1042–1047. doi: 10.1164/rccm.200905-0665OC.
    1. Bonham AC, Sekizawa SI, Joad JP. Plasticity of central mechanisms for cough. Pulm Pharmacol Ther. 2004;17(6):453–457. doi: 10.1016/j.pupt.2004.09.008.
    1. Brozmanova M, Mazurova L, Ru F, Tatar M, Kollarik M. Comparison of TRPA1-versus TRPV1-mediated cough in Guinea pigs. Eur J Pharmacol. 2012;689(1–3):211–218. doi: 10.1016/j.ejphar.2012.05.048.
    1. Bujalska-Zadrozny M, de Corde A, Cegielska-Perun K, Gasinska E, Makulska-Nowak H. Dose-depending effect of intracerebroventricularly administered bradykinin on nociception in rats. Pharmacol Rep. 2013;65(4):1006–1011. doi: 10.1016/S1734-1140(13)71082-X.
    1. Canning BJ. Afferent nerves regulating the cough reflex: mechanisms and mediators of cough in disease. Otolaryngol Clin N Am. 2010;43(1):15–25. doi: 10.1016/j.otc.2009.11.012.
    1. Canning BJ. Encoding of the cough reflex. Pulm Pharmacol Ther. 2007;20(4):396–401. doi: 10.1016/j.pupt.2006.12.003.
    1. Canning BJ, Mori N. Encoding of the cough reflex in anesthetized Guinea pigs. Am J Physiol Regul Integr Comp Physiol. 2011;300(2):R369–R377. doi: 10.1152/ajpregu.00044.2010.
    1. Carr MJ, Kollarik M, Meeker SN, Undem BJ. A role for TRPV1 in bradykinin-induced excitation of vagal airway afferent nerve terminals. J Pharmacol Exp Ther. 2003;304(3):1275–1279. doi: 10.1124/jpet.102.043422.
    1. Cavanaugh EJ, Simkin D, Kim D. Activation of transient receptor potential A1 channels by mustard oil, tetrahydrocannabinol and Ca2+ reveals different functional channel states. Neuroscience. 2008;154(4):1467–1476. doi: 10.1016/j.neuroscience.2008.04.048.
    1. Cayla C, Labuz D, Machelska H, Bader M, Schafer M, Stein C. Impaired nociception and peripheral opioid antinociception in mice lacking both kinin B1 and B2 receptors. Anesthesiology. 2012;116(2):448–457. doi: 10.1097/ALN.0b013e318242b2ea.
    1. Cherry DK, Hing E, Woodwell DA, Rechtsteiner EA. National Ambulatory Medical Care Survey: 2006 summary. Natl Health Stat Report. 2008;(3):1–39.
    1. Chung KF, McGarvey L, Mazzone SB. Chronic cough as a neuropathic disorder. Lancet Respir Med. 2013;1(5):414–422. doi: 10.1016/S2213-2600(13)70043-2.
    1. Cialdai C, Giuliani S, Valenti C, Tramontana M, Maggi CA. Differences between zofenopril and ramipril, two ACE inhibitors, on cough induced by citric acid in Guinea pigs: role of bradykinin and PGE2. Naunyn Schmiedeberg's Arch Pharmacol. 2010;382(5–6):455–461. doi: 10.1007/s00210-010-0563-0.
    1. Cinelli E, Bongianni F, Pantaleo T, Mutolo D. The cough reflex is upregulated by lisinopril microinjected into the caudal nucleus tractus solitarii of the rabbit. Respir Physiol Neurobiol. 2015;219:9–17. doi: 10.1016/j.resp.2015.07.013.
    1. Dicpinigaitis PV, Lee Chang A, Dicpinigaitis AJ, Negassa A. Effect of e-cigarette use on cough reflex sensitivity. Chest. 2016;149(1):161–165. doi: 10.1378/chest.15-0817.
    1. Doyle MW, Bailey TW, Jin YH, Andresen MC. Vanilloid receptors presynaptically modulate cranial visceral afferent synaptic transmission in nucleus tractus solitarius. J Neurosci. 2002;22(18):8222–8229. doi: 10.1523/JNEUROSCI.22-18-08222.2002.
    1. Eid SR, Crown ED, Moore EL, Liang HA, Choong KC, Dima S, et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol Pain. 2008;4:48. doi: 10.1186/1744-8069-4-48.
    1. El-Hashim AZ, Amine SA. The role of substance P and bradykinin in the cough reflex and bronchoconstriction in Guinea-pigs. Eur J Pharmacol. 2005;513(1–2):125–133. doi: 10.1016/j.ejphar.2005.02.007.
    1. El-Hashim AZ, Edafiogho IO, Jaffal SM, Yousif MH, Ezeamuzie CI, Kombian SB. Anti-tussive and bronchodilator mechanisms of action for the enaminone E121. Life Sci. 2011;89(11–12):378–387. doi: 10.1016/j.lfs.2011.07.007.
    1. El-Hashim AZ, Jaffal SM. Nerve growth factor enhances cough and airway obstruction via TrkA receptor- and TRPV1-dependent mechanisms. Thorax. 2009;64(9):791–797. doi: 10.1136/thx.2009.113183.
    1. El-Hashim AZ, Jaffal SM, Al-Rashidi FT, Luqmani YA, Akhtar S. Nerve growth factor enhances cough via a central mechanism of action. Pharmacol Res. 2013;74:68–77. doi: 10.1016/j.phrs.2013.05.003.
    1. El-Hashim AZ, Wyss D, Lewis C. Effect of a novel NK1 receptor selective antagonist (NKP608) on citric acid induced cough and airway obstruction. Pulm Pharmacol Ther. 2004;17(1):11–18. doi: 10.1016/j.pupt.2003.08.002.
    1. Eskander MA, Ruparel S, Green DP, Chen PB, Por ED, Jeske NA, et al. Persistent nociception triggered by nerve growth factor (NGF) is mediated by TRPV1 and oxidative mechanisms. J Neurosci. 2015;35(22):8593–8603. doi: 10.1523/JNEUROSCI.3993-14.2015.
    1. Fogari R, Zoppi A, Tettamanti F, Malamani GD, Tinelli C, Salvetti A. Effects of nifedipine and indomethacin on cough induced by angiotensin-converting enzyme inhibitors: a double-blind, randomized, cross-over study. J Cardiovasc Pharmacol. 1992;19(5):670–673.
    1. Foucquier J, Guedj M. Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect. 2015;3(3):e00149. doi: 10.1002/prp2.149.
    1. Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ. Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat Med. 1996;2(7):814–817. doi: 10.1038/nm0796-814.
    1. Gammon CM, Allen AC, Morell P. Bradykinin stimulates phosphoinositide hydrolysis and mobilization of arachidonic acid in dorsal root ganglion neurons. J Neurochem. 1989;53(1):95–101. doi: 10.1111/j.1471-4159.1989.tb07299.x.
    1. Gees M, Owsianik G, Nilius B, Voets T. TRP channels. Compr Physiol. 2012;2(1):563–608.
    1. Grace M, Birrell MA, Dubuis E, Maher SA, Belvisi MG. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax. 2012;67(10):891–900. doi: 10.1136/thoraxjnl-2011-201443.
    1. Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, et al. Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A. 2012;109(17):6721–6726. doi: 10.1073/pnas.1110460109.
    1. Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, et al. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 1997;156(3 Pt 1):766–775. doi: 10.1164/ajrccm.156.3.9606031.
    1. Haxhiu MA, Chavez JC, Pichiule P, Erokwu B, Dreshaj IA. The excitatory amino acid glutamate mediates reflexly increased tracheal blood flow and airway submucosal gland secretion. Brain Res. 2000;883(1):77–86. doi: 10.1016/S0006-8993(00)02890-0.
    1. Haxhiu MA, Erokwu B, Bhardwaj V, Dreshaj IA. The role of the medullary raphe nuclei in regulation of cholinergic outflow to the airways. J Auton Nerv Syst. 1998;69(1):64–71. doi: 10.1016/S0165-1838(98)00009-5.
    1. Haxhiu MA, Erokwu B, Dreshaj IA. The role of excitatory amino acids in airway reflex responses in anesthetized dogs. J Auton Nerv Syst. 1997;67(3):192–199. doi: 10.1016/S0165-1838(97)00110-0.
    1. Haxhiu MA, Kc P, Moore CT, Acquah SS, Wilson CG, Zaidi SI, et al. Brain stem excitatory and inhibitory signaling pathways regulating bronchoconstrictive responses. J Appl Physiol. 2005;98(6):1961–1982. doi: 10.1152/japplphysiol.01340.2004.
    1. Haxhiu MA, Kc P, Neziri B, Yamamoto BK, Ferguson DG, Massari VJ. Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons. J Appl Physiol (1985) 2003;94(5):1999–2009. doi: 10.1152/japplphysiol.01066.2002.
    1. Haxhiu MA, Van Lunteren E, Cherniack NS. Influence of ventrolateral surface of medulla on tracheal gland secretion. J Appl Physiol (1985) 1991;71(5):1663–1668. doi: 10.1152/jappl.1991.71.5.1663.
    1. Haxhiu MA, Yamamoto B, Dreshaj IA, Bedol D, Ferguson DG. Involvement of glutamate in transmission of afferent constrictive inputs from the airways to the nucleus tractus solitarius in ferrets. J Auton Nerv Syst. 2000;80(1–2):22–30. doi: 10.1016/S0165-1838(99)00088-0.
    1. Haxhiu MA, Yamamoto BK, Dreshaj IA, Ferguson DG. Activation of the midbrain periaqueductal gray induces airway smooth muscle relaxation. J Appl Physiol (1985) 2002;93(2):440–449. doi: 10.1152/japplphysiol.00752.2001.
    1. Hewitt MM, Adams G, Jr, Mazzone SB, Mori N, Yu L, Canning BJ. Pharmacology of bradykinin-evoked coughing in Guinea pigs. J Pharmacol Exp Ther. 2016;357(3):620–628. doi: 10.1124/jpet.115.230383.
    1. Hirata R, Nabe T, Kohno S. Augmentation of spontaneous cough by enalapril through up-regulation of bradykinin B1 receptors in Guinea pigs. Eur J Pharmacol. 2003;474(2–3):255–260. doi: 10.1016/S0014-2999(03)02077-6.
    1. Hirt RA, Leinker S, Mosing M, Wiederstein I. Comparison of barometric whole body plethysmography and its derived parameter enhanced pause (PENH) with conventional respiratory mechanics in healthy beagle dogs. Vet J. 2008;176(2):232–239. doi: 10.1016/j.tvjl.2007.05.025.
    1. Hoffmeyer F, Sucker K, Monse C, Berresheim H, Rosenkranz N, Jettkant B, et al. Relationship of pulmonary function response to ozone exposure and capsaicin cough sensitivity. Inhal Toxicol. 2013;25(10):569–576. doi: 10.3109/08958378.2013.812699.
    1. Hsu CC, Lee LY. Role of calcium ions in the positive interaction between TRPA1 and TRPV1 channels in bronchopulmonary sensory neurons. J Appl Physiol (1985) 2015;118(12):1533–1543. doi: 10.1152/japplphysiol.00043.2015.
    1. Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, et al. Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch. 2010;459(4):579–592. doi: 10.1007/s00424-009-0749-9.
    1. Jin YH, Bailey TW, Li BY, Schild JH, Andresen MC. Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci. 2004;24(20):4709–4717. doi: 10.1523/JNEUROSCI.0753-04.2004.
    1. Katanosaka K, Banik RK, Giron R, Higashi T, Tominaga M, Mizumura K. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci Res. 2008;62(3):168–175. doi: 10.1016/j.neures.2008.08.004.
    1. Khalid S, Murdoch R, Newlands A, Smart K, Kelsall A, Holt K, et al. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: a double-blind randomized controlled trial. J Allergy Clin Immunol. 2014;134(1):56–62. doi: 10.1016/j.jaci.2014.01.038.
    1. Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, et al. Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol. 2005;493(4):596–606. doi: 10.1002/cne.20794.
    1. Kosugi M, Nakatsuka T, Fujita T, Kuroda Y, Kumamoto E. Activation of TRPA1 channel facilitates excitatory synaptic transmission in substantia gelatinosa neurons of the adult rat spinal cord. J Neurosci. 2007;27(16):4443–4451. doi: 10.1523/JNEUROSCI.0557-07.2007.
    1. Lee LY, Hsu CC, Lin YJ, Lin RL, Khosravi M. Interaction between TRPA1 and TRPV1: synergy on pulmonary sensory nerves. Pulm Pharmacol Ther. 2015;35:87–93. doi: 10.1016/j.pupt.2015.08.003.
    1. Lewis CA, Ambrose C, Banner K, Battram C, Butler K, Giddings J, et al. Animal models of cough: literature review and presentation of a novel cigarette smoke-enhanced cough model in the Guinea-pig. Pulm Pharmacol Ther. 2007;20(4):325–333. doi: 10.1016/j.pupt.2006.12.001.
    1. Lieu TM, Myers AC, Meeker S, Undem BJ. TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. Am J Physiol Lung Cell Mol Physiol. 2012;302(9):L941–L948. doi: 10.1152/ajplung.00366.2011.
    1. Maher SA, Belvisi MG. Prostanoids and the cough reflex. Lung. 2010;188(Suppl 1):S9–12. doi: 10.1007/s00408-009-9190-2.
    1. Maher SA, Birrell MA, Adcock JJ, Wortley MA, Dubuis ED, Bonvini SJ, et al. Prostaglandin D2 and the role of the DP1, DP2 and TP receptors in the control of airway reflex events. Eur Respir J. 2015;45(4):1108–1118. doi: 10.1183/09031936.00061614.
    1. Maher SA, Birrell MA, Belvisi MG. Prostaglandin E2 mediates cough via the EP3 receptor: implications for future disease therapy. Am J Respir Crit Care Med. 2009;180(10):923–928. doi: 10.1164/rccm.200903-0388OC.
    1. Mahmoudpour SH, Leusink M, van der Putten L, Terreehorst I, Asselbergs FW, de Boer A, et al. Pharmacogenetics of ACE inhibitor-induced angioedema and cough: a systematic review and meta-analysis. Pharmacogenomics. 2013;14(3):249–260. doi: 10.2217/pgs.12.206.
    1. Masuoka T, Kudo M, Yamashita Y, Yoshida J, Imaizumi N, Muramatsu I, et al. TRPA1 channels modify TRPV1-mediated current responses in dorsal root ganglion neurons. Front Physiol. 2017;8:272. doi: 10.3389/fphys.2017.00272.
    1. Materazzi S, Nassini R, Gatti R, Trevisani M, Geppetti P. Cough sensors. II. Transient receptor potential membrane receptors on cough sensors. Handb Exp Pharmacol. 2009;187:49–61. doi: 10.1007/978-3-540-79842-2_3.
    1. Mazzone SB, Canning BJ. Synergistic interactions between airway afferent nerve subtypes mediating reflex bronchospasm in Guinea pigs. Am J Physiol Regul Integr Comp Physiol. 2002;283(1):R86–R98. doi: 10.1152/ajpregu.00007.2002.
    1. Melzack R, Coderre TJ, Katz J, Vaccarino AL. Central neuroplasticity and pathological pain. Ann N Y Acad Sci. 2001;933:157–174. doi: 10.1111/j.1749-6632.2001.tb05822.x.
    1. Morgan JI, Curran T. Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and Jun. Annu Rev Neurosci. 1991;14:421–451. doi: 10.1146/annurev.ne.14.030191.002225.
    1. Morice AH, Millqvist E, Belvisi MG, Bieksiene K, Birring SS, Chung KF, et al. Expert opinion on the cough hypersensitivity syndrome in respiratory medicine. Eur Respir J. 2014;44(5):1132–1148. doi: 10.1183/09031936.00218613.
    1. Mukhopadhyay I, Kulkarni A, Aranake S, Karnik P, Shetty M, Thorat S, et al. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic. PLoS One. 2014;9(5):e97005. doi: 10.1371/journal.pone.0097005.
    1. Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A, et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol. 2008;586(6):1595–1604. doi: 10.1113/jphysiol.2007.148379.
    1. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87(1):165–217. doi: 10.1152/physrev.00021.2006.
    1. Pang L, Knox AJ. PGE2 release by bradykinin in human airway smooth muscle cells: involvement of cyclooxygenase-2 induction. Am J Phys. 1997;273(6 Pt 1):L1132–L1140.
    1. Peters JH, McDougall SJ, Fawley JA, Smith SM, Andresen MC. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons. Neuron. 2010;65(5):657–669. doi: 10.1016/j.neuron.2010.02.017.
    1. Rai G, Joshi N, Perry S, Yasgar A, Schultz L, Jung JE, et al. Discovery of ML351, a potent and selective inhibitor of human 15-Lipoxygenase-1. In: Probe reports from the NIH molecular libraries program: Bethesda: National Center for Biotechnology Information (US); 2010.
    1. Rezq S, Abdel-Rahman AA. Rostral ventrolateral medulla EP3 receptor mediates the Sympathoexcitatory and pressor effects of prostaglandin E2 in conscious rats. J Pharmacol Exp Ther. 2016;359(2):290–299. doi: 10.1124/jpet.116.233502.
    1. Sekizawa S, Joad JP, Bonham AC. Substance P presynaptically depresses the transmission of sensory input to bronchopulmonary neurons in the Guinea pig nucleus tractus solitarii. J Physiol. 2003;552(Pt 2):547–559. doi: 10.1113/jphysiol.2003.051326.
    1. Shin J, Cho H, Hwang SW, Jung J, Shin CY, Lee SY, et al. Bradykinin-12-lipoxygenase-VR1 signaling pathway for inflammatory hyperalgesia. Proc Natl Acad Sci U S A. 2002;99(15):10150–10155. doi: 10.1073/pnas.152002699.
    1. Smith JA, Amagasu SM, Eglen RM, Hunter JC, Bley KR. Characterization of prostanoid receptor-evoked responses in rat sensory neurones. Br J Pharmacol. 1998;124(3):513–523. doi: 10.1038/sj.bjp.0701853.
    1. Sperber SJ, Hendley JO, Hayden FG, Riker DK, Sorrentino JV, Gwaltney JM., Jr Effects of naproxen on experimental rhinovirus colds. A randomized, double-blind, controlled trial. Ann Intern Med. 1992;117(1):37–41. doi: 10.7326/0003-4819-117-1-37.
    1. Takahama K, Shirasaki T. Central and peripheral mechanisms of narcotic antitussives: codeine-sensitive and -resistant coughs. Cough. 2007;3:8. doi: 10.1186/1745-9974-3-8.
    1. Tang HB, Inoue A, Oshita K, Hirate K, Nakata Y. Zaltoprofen inhibits bradykinin-induced responses by blocking the activation of second messenger signaling cascades in rat dorsal root ganglion cells. Neuropharmacology. 2005;48(7):1035–1042. doi: 10.1016/j.neuropharm.2005.01.011.
    1. Taylor-Clark TE, McAlexander MA, Nassenstein C, Sheardown SA, Wilson S, Thornton J, et al. Relative contributions of TRPA1 and TRPV1 channels in the activation of vagal bronchopulmonary C-fibres by the endogenous autacoid 4-oxononenal. J Physiol. 2008;586(14):3447–3459. doi: 10.1113/jphysiol.2008.153585.
    1. Taylor JA, Novack AH, Almquist JR, Rogers JE. Efficacy of cough suppressants in children. J Pediatr. 1993;122(5 Pt 1):799–802. doi: 10.1016/S0022-3476(06)80031-4.
    1. Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, et al. 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A. 2007;104(33):13519–13524. doi: 10.1073/pnas.0705923104.
    1. Vuilleumier PH, Schliessbach J, Curatolo M. Current evidence for central analgesic effects of NSAIDs: an overview of the literature. Minerva Anestesiol. 2018;84(7):865–870.
    1. Wang D, Wang P, Jiang J, Lv Q, Zeng X, Hong Y. Activation of mas oncogene-related G protein-coupled receptors inhibits neurochemical alterations in the spinal dorsal horn and dorsal root ganglia associated with inflammatory pain in rats. J Pharmacol Exp Ther. 2015;354(3):431–439. doi: 10.1124/jpet.115.225672.
    1. Yanaga F, Hirata M, Koga T. Evidence for coupling of bradykinin receptors to a guanine-nucleotide binding protein to stimulate arachidonate liberation in the osteoblast-like cell line, MC3T3-E1. Biochim Biophys Acta. 1991;1094(2):139–146. doi: 10.1016/0167-4889(91)90001-E.
    1. Yeo WW, Chadwick IG, Kraskiewicz M, Jackson PR, Ramsay LE. Resolution of ACE inhibitor cough: changes in subjective cough and responses to inhaled capsaicin, intradermal bradykinin and substance-P. Br J Clin Pharmacol. 1995;40(5):423–429.
    1. Zhang W, Liu Y, Zhao X, Gu X, Ma Z. The effect of intrathecal administration TRPA1 antagonists in a rat model of neuropathic pain. Anesth Analg. 2014;119(1):179–185. doi: 10.1213/ANE.0000000000000179.
    1. Zurborg S, Yurgionas B, Jira JA, Caspani O, Heppenstall PA. Direct activation of the ion channel TRPA1 by Ca2+ Nat Neurosci. 2007;10(3):277–279. doi: 10.1038/nn1843.

Source: PubMed

3
구독하다