Axitinib in combination with radiotherapy for advanced hepatocellular carcinoma: a phase I clinical trial

Kai-Lin Yang, Mau-Shin Chi, Hui-Ling Ko, Yi-Ying Huang, Su-Chen Huang, Yu-Min Lin, Kwan-Hwa Chi, Kai-Lin Yang, Mau-Shin Chi, Hui-Ling Ko, Yi-Ying Huang, Su-Chen Huang, Yu-Min Lin, Kwan-Hwa Chi

Abstract

Background: To investigate maximum tolerated dose (MTD) of axitinib, a selective vascular endothelial growth factor receptor 1-3 inhibitor, in combination with radiotherapy (RT) for advanced hepatocellular carcinoma (HCC).

Methods: This phase I study followed the rule of traditional 3 + 3 design. Major eligibility included: (1) patients with advanced HCC unsuitable for surgery, radiofrequency ablation or transarterial chemoembolization, or who failed after prior local-regional treatment; (2) failure on sorafenib or no grant for sorafenib from health insurance system. Eligible patients with advanced HCC received axitinib for total 8 weeks during and after RT. Three cohorts with axitinib dose escalation were planned: 1 mg twice daily (level I), 2 mg twice daily (level II) and 3 mg twice daily (level III). The prescribed doses of RT ranged from 37.5 to 67.5 Gy in 15 fractions to liver tumor(s) and were determined based on an upper limit of mean liver dose of 18 Gy (intended isotoxic RT for normal liver). The primary endpoint was MTD of axitinib in combination with RT. The secondary endpoints included overall response rate (ORR), RT in-field response rate, acute and late toxicities, overall survival (OS) and progression free survival (PFS).

Results: Total nine eligible patients received axitinib dose levels of 1 mg twice daily (n = 3), 2 mg twice daily (n = 3) and 3 mg twice daily (n = 3). Dose-limiting toxicity (DLT) did not occur in the 3 cohorts; the MTD was defined as 3 mg twice daily in this study. ORR was 66.7%, including 3 complete responses and 3 partial responses, at 3 months after treatment initiation. With a median follow-up of 16.6 months, median OS was not reached, 1-year OS was 66.7%, and median PFS was 7.4 months.

Conclusions: Axitinib in combination with RT for advanced HCC was well tolerated with an axitinib MTD of 3 mg twice daily in this study. The outcome analysis should be interpreted with caution due to the small total cohort. Trial registration ClinicalTrials.gov (Identifier: NCT02814461), Registered June 27, 2016-Retrospectively registered, https://ichgcp.net/clinical-trials-registry/NCT02814461.

Keywords: Advanced hepatocellular carcinoma; Axitinib; Maximum tolerated dose; Radiotherapy.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Waterfall plot for percentage change in tumor size at 3 months after treatment initiation. The dashed line at 20% means the cut-off value for progressive disease, and the dashed line at -30% for determination of means the cut-off value for partial response. a Overall tumor response of individual patients. b RT in-field tumor response of individual patients
Fig. 2
Fig. 2
A case presentation (complete response, long-term alive, no recurrence). A 72-year-old man, with liver cirrhosis Child–Pugh class A (non-HBV, non-HCV related), was diagnosed as having a 12-cm HCC in left lobe of liver with classical enhancement pattern and involvement of left portal vein by CT scan in August 2016, clinically staged as cT3bN0M0, BCLC stage C. High alpha-fetoprotein (AFP) up to 160.1 ng/ml was noted. TACE failed with only partial obliteration of tumor vessels. He was then eligible for this phase I trial. He received RT with 45 Gy in 15 fractions plus axitinib 1 mg twice daily for 2 months. The patient tolerated the treatment well. At 3 months after RT initiation, follow-up CT scan revealed complete response of the tumor, and AFP decreased to 1.9 ng/ml. In 2020, the patient is still regularly followed up without recurrence
Fig. 3
Fig. 3
Overall survival
Fig. 4
Fig. 4
Progression-free survival

References

    1. Curley SA, Izzo F, Ellis LM, Vauthey JN, Vallone P. Radiofrequency ablation of hepatocellular cancer in 110 patients with cirrhosis. Ann Surg. 2000;232(3):381. doi: 10.1097/00000658-200009000-00010.
    1. Machi J, Bueno RS, Wong LL. Long-term follow-up outcome of patients undergoing radiofrequency ablation for unresectable hepatocellular carcinoma. World J Surg. 2005;29(11):1364–1373. doi: 10.1007/s00268-005-7829-6.
    1. Llovet JM, Real MI, Montaña X, Planas R, Coll S, Aponte J, et al. Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet. 2002;359(9319):1734–1739. doi: 10.1016/S0140-6736(02)08649-X.
    1. Lo CM, Ngan H, Tso WK, Liu CL, Lam CM, Poon RTP, et al. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology. 2002;35(5):1164–1171. doi: 10.1053/jhep.2002.33156.
    1. Lu DS, Yu NC, Raman SS, Lassman C, Tong MJ, Britten C, et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. Hepatology. 2005;41(5):1130–1137. doi: 10.1002/hep.20688.
    1. Koda M, Ueki M, Maeda Y, Mimura K-I, Okamoto K, Matsunaga Y, et al. The influence on liver parenchymal function and complications of radiofrequency ablation or the combination with transcatheter arterial embolization for hepatocellular carcinoma. Hepatol Res. 2004;29(1):18–23. doi: 10.1016/j.hepres.2004.02.001.
    1. Raoul J-L, Sangro B, Forner A, Mazzaferro V, Piscaglia F, Bolondi L, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev. 2011;37(3):212–220. doi: 10.1016/j.ctrv.2010.07.006.
    1. Lencioni R, Petruzzi P, Crocetti L, editors. Chemoembolization of hepatocellular carcinoma. Seminars in interventional radiology; 2013: Thieme Medical Publishers.
    1. N'Kontchou G, Mahamoudi A, Aout M, Ganne-Carrié N, Grando V, Coderc E, et al. Radiofrequency ablation of hepatocellular carcinoma: long-term results and prognostic factors in 235 Western patients with cirrhosis. Hepatology. 2009;50(5):1475–1483. doi: 10.1002/hep.23181.
    1. Ben-Josef E, Normolle D, Ensminger WD, Walker S, Tatro D, Ten Haken RK, et al. Phase II trial of high-dose conformal radiation therapy with concurrent hepatic artery floxuridine for unresectable intrahepatic malignancies. J Clin Oncol. 2005;23(34):8739–8747. doi: 10.1200/JCO.2005.01.5354.
    1. Regina VT, Hawkins M, Lockwood G, Kim JJ, Cummings B, Knox J, et al. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2008;26(4):657–664. doi: 10.1200/JCO.2007.14.3529.
    1. Mornex F, Girard N, Beziat C, Kubas A, Khodri M, Trepo C, et al. Feasibility and efficacy of high-dose three-dimensional-conformal radiotherapy in cirrhotic patients with small-size hepatocellular carcinoma non-eligible for curative therapies—mature results of the French Phase II RTF-1 trial. Int J Radiat Oncol Biol Phys. 2006;66(4):1152–1158. doi: 10.1016/j.ijrobp.2006.06.015.
    1. Seong J, Lee IJ, Shim SJ, Lim DH, Kim TH, Kim JH, et al. A multicenter retrospective cohort study of practice patterns and clinical outcome on radiotherapy for hepatocellular carcinoma in Korea. Liver Int. 2009;29(2):147–152. doi: 10.1111/j.1478-3231.2008.01873.x.
    1. Liang SX, Zhu XD, Lu HJ, Pan CY, Li FX, Huang QF, et al. Hypofractionated three-dimensional conformal radiation therapy for primary liver carcinoma. Cancer. 2005;103(10):2181–2188. doi: 10.1002/cncr.21012.
    1. Liu M-T, Li S-H, Chu T-C, Hsieh C-Y, Wang A-Y, Chang T-H, et al. Three-dimensional conformal radiation therapy for unresectable hepatocellular carcinoma patients who had failed with or were unsuited for transcatheter arterial chemoembolization. Jpn J Clin Oncol. 2004;34(9):532–539. doi: 10.1093/jjco/hyh089.
    1. Seong J, Park HC, Han KH, Chon CY. Clinical results and prognostic factors in radiotherapy for unresectable hepatocellular carcinoma: a retrospective study of 158 patients. Int J Radiat Oncol Biol Phys. 2003;55(2):329–336. doi: 10.1016/S0360-3016(02)03929-9.
    1. Zeng Z-C, Tang Z-Y, Fan J, Zhou J, Qin L-X, Ye S-L, et al. A comparison of chemoembolization combination with and without radiotherapy for unresectable hepatocellular carcinoma. Cancer J. 2004;10(5):307–316. doi: 10.1097/00130404-200409000-00008.
    1. Li B, Yu J, Wang L, Li C, Zhou T, Zhai L, et al. Study of local three-dimensional conformal radiotherapy combined with transcatheter arterial chemoembolization for patients with stage III hepatocellular carcinoma. Am J Clin Oncol. 2003;26(4):e92–e99.
    1. Guo W-J, Yu E-X, Liu L-M, Li J, Chen Z, Lin J-H, et al. Comparison between chemoembolization combined with radiotherapy and chemoembolization alone for large hepatocellular carcinoma. World J Gastroenterol. 2003;9(8):1697–1701. doi: 10.3748/wjg.v9.i8.1697.
    1. Cheng JC-H, Chuang VP, Cheng SH, Huang AT, Lin Y-M, Cheng T-I, et al. Local radiotherapy with or without transcatheter arterial chemoembolization for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2000;47(2):435–442. doi: 10.1016/S0360-3016(00)00462-4.
    1. Shim SJ, Seong J, Han KH, Chon CY, Suh CO, Lee JT. Local radiotherapy as a complement to incomplete transcatheter arterial chemoembolization in locally advanced hepatocellular carcinoma. Liver Int. 2005;25(6):1189–1196. doi: 10.1111/j.1478-3231.2005.01170.x.
    1. McIntosh A, Hagspiel KD, Al-Osaimi AM, Northup P, Caldwell S, Berg C, et al. Accelerated treatment using intensity-modulated radiation therapy plus concurrent capecitabine for unresectable hepatocellular carcinoma. Cancer. 2009;115(21):5117–5125. doi: 10.1002/cncr.24552.
    1. Kim TH, Kim DY, Park J-W, Kim YI, Kim SH, Park HS, et al. Three-dimensional conformal radiotherapy of unresectable hepatocellular carcinoma patients for whom transcatheter arterial chemoembolization was ineffective or unsuitable. Am J Clin Oncol. 2006;29(6):568–575. doi: 10.1097/01.coc.0000239147.60196.11.
    1. Chen CP. Role of radiotherapy in the treatment of hepatocellular carcinoma. J Clin Transl Hepatol. 2019;7(2):183.
    1. Baumann M, Krause M, Overgaard J, Debus J, Bentzen SM, Daartz J, et al. Radiation oncology in the era of precision medicine. Nat Rev Cancer. 2016;16(4):234. doi: 10.1038/nrc.2016.18.
    1. Citrin DE. Recent developments in radiotherapy. N Engl J Med. 2017;377(11):1065–1075. doi: 10.1056/NEJMra1608986.
    1. Shanker MD, Liu HY, Lee YY, Stuart KA, Powell EE, Wigg A, et al. Stereotactic radiotherapy for hepatocellular carcinoma: expanding the multidisciplinary armamentarium. J Gastroenterol Hepatol. 2020.
    1. Schwarz RE, Abou-Alfa GK, Geschwind JF, Krishnan S, Salem R, Venook AP. Nonoperative therapies for combined modality treatment of hepatocellular cancer: expert consensus statement. HPB. 2010;12(5):313–320. doi: 10.1111/j.1477-2574.2010.00183.x.
    1. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359(4):378–390. doi: 10.1056/NEJMoa0708857.
    1. Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS, et al. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2009;10(1):25–34. doi: 10.1016/S1470-2045(08)70285-7.
    1. Bruix J, Qin S, Merle P, Granito A, Huang Y-H, Bodoky G, et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;389(10064):56–66. doi: 10.1016/S0140-6736(16)32453-9.
    1. Kudo M, Finn RS, Qin S, Han K-H, Ikeda K, Piscaglia F, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial. Lancet. 2018;391(10126):1163–1173. doi: 10.1016/S0140-6736(18)30207-1.
    1. Wada Y, Takami Y, Matsushima H, Tateishi M, Ryu T, Yoshitomi M, et al. The safety and efficacy of combination therapy of sorafenib and radiotherapy for advanced hepatocellular carcinoma: a retrospective study. Internal Med. 2018:9826–17.
    1. Cha J, Seong J, Lee IJ, Kim JW, Han K-H. Feasibility of sorafenib combined with local radiotherapy in advanced hepatocellular carcinoma. Yonsei Med J. 2013;54(5):1178–1185. doi: 10.3349/ymj.2013.54.5.1178.
    1. Chen S-W, Lin L-C, Kuo Y-C, Liang J-A, Kuo C-C, Chiou J-F. Phase 2 study of combined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2014;88(5):1041–1047. doi: 10.1016/j.ijrobp.2014.01.017.
    1. Rini BI, Escudier B, Tomczak P, Kaprin A, Szczylik C, Hutson TE, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–1939. doi: 10.1016/S0140-6736(11)61613-9.
    1. Kang Y-K, Yau T, Park J-W, Lim H, Lee T-Y, Obi S, et al. Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann Oncol. 2015;26(12):2457–2463. doi: 10.1093/annonc/mdv388.
    1. McNamara MG, Le LW, Horgan AM, Aspinall A, Burak KW, Dhani N, et al. A phase II trial of second-line axitinib following prior antiangiogenic therapy in advanced hepatocellular carcinoma. Cancer. 2015;121(10):1620–1627. doi: 10.1002/cncr.29227.
    1. Rao SS, Thompson C, Cheng J, Haimovitz-Friedman A, Powell SN, Fuks Z, et al. Axitinib sensitization of high single dose radiotherapy. Radiother Oncol. 2014;111(1):88–93. doi: 10.1016/j.radonc.2014.02.010.
    1. Hillman GG, Lonardo F, Hoogstra DJ, Rakowski J, Yunker CK, Joiner MC, et al. Axitinib improves radiotherapy in murine xenograft lung tumors. Transl Oncol. 2014;7(3):400–409. doi: 10.1016/j.tranon.2014.04.002.
    1. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1) Eur J Cancer. 2009;45(2):228–247. doi: 10.1016/j.ejca.2008.10.026.
    1. Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, et al. Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res. 2007;13(11):3395–3402. doi: 10.1158/1078-0432.CCR-06-2441.
    1. Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H, et al. Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Can Res. 2001;61(6):2413–2419.
    1. Lima ABC, Macedo LT, Sasse AD. Addition of bevacizumab to chemotherapy in advanced non-small cell lung cancer: a systematic review and meta-analysis. PloS ONE. 2011;6(8).
    1. Nieder C, Wiedenmann N, Andratschke N, Molls M. Current status of angiogenesis inhibitors combined with radiation therapy. Cancer Treat Rev. 2006;32(5):348–364. doi: 10.1016/j.ctrv.2006.03.006.
    1. Teicher BA, Holden SA, Ara G, Dupuis NP, Liu F, Yuan J, et al. Influence of an anti-angiogenic treatment on 9L gliosarcoma: oxygenation and response to cytotoxic therapy. Int J Cancer. 1995;61(5):732–737. doi: 10.1002/ijc.2910610523.
    1. Lee C-G, Heijn M, di Tomaso E, Griffon-Etienne G, Ancukiewicz M, Koike C, et al. Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Can Res. 2000;60(19):5565–5570.
    1. Rugo HS, Herbst RS, Liu G, Park JW, Kies MS, Steinfeldt HM, et al. Phase I trial of the oral antiangiogenesis agent AG-013736 in patients with advanced solid tumors: pharmacokinetic and clinical results. J Clin Oncol. 2005;23(24):5474–5483. doi: 10.1200/JCO.2005.04.192.
    1. Rixe O, Bukowski RM, Michaelson MD, Wilding G, Hudes GR, Bolte O, et al. Axitinib treatment in patients with cytokine-refractory metastatic renal-cell cancer: a phase II study. Lancet Oncol. 2007;8(11):975–984. doi: 10.1016/S1470-2045(07)70285-1.
    1. Chi K-H, Liao C-S, Chang C-C, Ko H-L, Tsang Y-W, Yang K-C, et al. Angiogenic blockade and radiotherapy in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2010;78(1):188–193. doi: 10.1016/j.ijrobp.2009.07.1725.
    1. Dawson L, Brade A, Cho C, Kim J, Brierley J, Dinniwell R, et al. Phase I study of sorafenib and SBRT for advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2012;84(3):S10–S11. doi: 10.1016/j.ijrobp.2012.07.033.
    1. Keane FK, Hong TS, Zhu AX, editors. Evolving systemic therapy in hepatocellular carcinoma: current management and opportunities for integration with radiotherapy. Seminars in radiation oncology; 2018: Elsevier.

Source: PubMed

3
구독하다