Role of nutritional factors at the early life stages in the pathogenesis and clinical course of type 1 diabetes

Yukiko Kagohashi, Hiroki Otani, Yukiko Kagohashi, Hiroki Otani

Abstract

Nutrition has been suggested as an important environmental factor other than viruses and chemicals in the pathogenesis of type 1 diabetes (T1D). Whereas various maternal dietary nutritional elements have been suggested and examined in T1D of both humans and experimental animals, the results largely remain controversial. In a series of studies using T1D model nonobese diabetic (NOD) mice, maternal dietary n-6/n-3 essential fatty acid ratio during pregnancy and lactation period, that is, early life stages of the offspring, has been shown to affect pathogenesis of insulitis and strongly prevent overt T1D of the offspring, which is consistent with its preventive effects on other allergic diseases.

Figures

Figure 1
Figure 1
Mechanism on the development of type 1 diabetes (modified from [38, 63]).
Figure 2
Figure 2
Life stages of NOD mice Type 1 diabetes results from insulin deficiency, mostly due to the autoimmune-mediated destruction of the insulin-producing pancreatic islet β cells (insulitis) (modified from [64]).
Figure 3
Figure 3
Levels of insulitis (a) and serum insulin autoantibody (IAA) levels (b) in the offspring at different ages (modified from [38]).
Figure 4
Figure 4
Effects of combination of n-3(n) and low n-3(L) chows on the onset and incidence of overt diabetes in NOD mice [38, 63].

References

    1. Atkinson M. A., MacLaren N. K. The pathogenesis of insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1994;331:1428–1436.
    1. Eisenbarth G. S. Type I diabetes mellitus. A chronic autoimmune disease. The New England Journal of Medicine. 1986;314(21):1360–1368. doi: 10.1056/NEJM198605223142106.
    1. Tisch R., McDevitt H. Insulin-dependent diabetes mellitus. Cell. 1996;85(3):291–297. doi: 10.1016/S0092-8674(00)81106-X.
    1. Nokoff N., Rewers M. Pathogenesis of type 1 diabetes: lessons from natural history studies of high-risk individuals. Annals of the New York Academy of Sciences. 2013;1281(1):1–15. doi: 10.1111/nyas.12021.
    1. Mehers K. L., Gillespie K. M. The genetic basis for type 1 diabetes. British Medical Bulletin. 2008;88(1):115–129. doi: 10.1093/bmb/ldn045.
    1. Egro F. M. Why is type 1 diabetes increasing? Journal of Molecular Endocrinology. 2013;51(1):R1–R13. doi: 10.1530/JME-13-0067.
    1. Hanafusa T., Imagawa A. Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nature Clinical Practice Endocrinology and Metabolism. 2007;3(1):36–45. doi: 10.1038/ncpendmet0351.
    1. Spagnuolo I., Patti A., Sebastiani G., Nigi L., Dotta F. The case for virus-induced type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity. 2013;20(4):292–298. doi: 10.1097/MED.0b013e328362a7d7.
    1. Skarsvik S., Puranen J., Honkanen J., et al. Decreased in vitro type 1 immune response against coxsackie virus B4 in children with type 1 diabetes. Diabetes. 2006;55(4):996–1003. doi: 10.2337/diabetes.55.04.06.db05-0630.
    1. Lönnrot M., Salminen K., Knip M., et al. Enterovirus RNA in serum is a risk factor for beta-cell autoimmunity and clinical type 1 diabetes: a prospective study. Childhood Diabetes in Finland (DiMe) Study Group. Journal of Medical Virology. 2000;61(2):214–220. doi: 10.1002/(SICI)1096-9071(200006)61:2<214::AID-JMV7>;2-9.
    1. Iwakiri R., Nagafuchi S., Kounoue E., et al. Cyclosporin A enhances Streptozocin-induced diabetes in CD-1 mice. Experientia. 1987;43(3):324–327. doi: 10.1007/BF01945570.
    1. Carter A. A., Gomes T., Camacho X., Juurlink D. N., Shah B. R., Mamdani M. M. Risk of incident diabetes among patients treated with statins: population based study. British Medical Journal. 2013;346(7911) doi: 10.1136/bmj.f2610.f2610
    1. Bolzán A. D., Bianchi M. S. Genotoxicity of Streptozotocin. Mutation Research. 2002;512(2-3):121–134. doi: 10.1016/S1383-5742(02)00044-3.
    1. Nakamura M., Nagafuchi S., Yamaguchi K., Takaki R. The role of thymic immunity and insulitis in the development of streptozocin-induced diabetes in mice. Diabetes. 1984;33(9):894–900. doi: 10.2337/diab.33.9.894.
    1. Iwakiri R., Nagafuchi S. Inhibition of streptozocin-induced insulitis and diabetes with lobenzarit in CD-1 mice. Diabetes. 1989;38(5):558–561. doi: 10.2337/diab.38.5.558.
    1. Johnsen K. B., Poulsen T. M., Christiansen B. Z., et al. Relation between breast-feeding and incidence rates of insulin-dependent diabetes mellitus. The Lancet. 1984;2(8411):1083–1086. doi: 10.1016/S0140-6736(84)91517-4.
    1. Atkinson M. A., Bowman M. A., Kao K.-J., et al. Lack of immune responsiveness to bovine serum albumin in insulin-dependent diabetes. The New England Journal of Medicine. 1993;329(25):1853–1858. doi: 10.1056/NEJM199312163292505.
    1. Karjalainen J., Martin J. M., Knip M., et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. The New England Journal of Medicine. 1992;327(5):302–307. doi: 10.1056/NEJM199207303270502.
    1. Martin J. M., Trink B., Daneman D., Dosch H.-M., Robinson B. Milk proteins in the etiology of insulin-dependent diabetes mellitus (IDDM) Annals of Medicine. 1991;23(4):447–452. doi: 10.3109/07853899109148088.
    1. Ceriello A., Novials A., Ortega E., et al. Vitamin C further improves the protective effect of glucagon-like peptide-1 on acute hypoglycemia-induced oxidative stress, inflammation, and endothelial dysfunction in type 1 diabetes. Diabetes Care. 2013;36(12):4104–4108. doi: 10.2337/dc13-0750.
    1. Greeley S. A. W., Katsumata M., Yu L., et al. Elimination of maternally transmitted autoantibodies prevents diabetes in nonobese diabetic mice. Nature Medicine. 2002;8(4):399–402. doi: 10.1038/nm0402-399.
    1. Kagohashi Y., Udagawa J., Abiru N., Kobayashi M., Moriyama K., Otani H. Maternal factors in a model of type 1 diabetes differentially affect the development of insulitis and overt diabetes in offspring. Diabetes. 2005;54(7):2026–2031. doi: 10.2337/diabetes.54.7.2026.
    1. Kagohashi Y., Udagawa J., Moriyama K., Otani H. Maternal environment affects endogenous virus induction in the offspring of type 1 diabetes model non-obese diabetic mice. Congenital Anomalies. 2005;45(3):80–84. doi: 10.1111/j.1741-4520.2005.00071.x.
    1. Jayasimhan A., Mansour K. P., Slattery R. M. Advances in our understanding of the pathophysiology of type 1 diabetes: Lessons from the NOD mouse. Clinical Science. 2014;126(1):1–18. doi: 10.1042/CS20120627.
    1. Verge C. F., Gianani R., Kawasaki E., et al. Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes. 1996;45(3):926–933. doi: 10.2337/diab.45.7.926.
    1. Fujita H., Fujino H., Nonaka K. Retrovirus-like particles in pancreatic B-cells of NOD (non-obese diabetic) mice. Biomedical Research. 1984;5(1):67–70.
    1. Tsumura H., Miyazawa M., Ogawa S., Wang J. Z., Ito Y., Shimura K. Detection of endogenous retrovirus antigens in NOD mouse pancreatic β-cells. Laboratory Animals. 1998;32(1):86–94. doi: 10.1258/002367798780559464.
    1. Norris J. M., Beaty B., Klingensmith G., et al. Lack of association between early exposure to cow's milk protein and β- cell autoimmunity: diabetes autoimmunity study in the young (DAISY) Journal of the American Medical Association. 1996;276(8):609–614. doi: 10.1001/jama.276.8.609.
    1. Marjamäki L., Niinistö S., Kenward M. G., et al. Maternal intake of vitamin D during pregnancy and risk of advanced beta cell autoimmunity and type 1 diabetes in offspring. Diabetologia. 2010;53(8):1599–1607. doi: 10.1007/s00125-010-1734-8.
    1. Stene L. C., Joner G. Use of cod liver oil during the first year of life is associated with lower risk of childhood-onset type 1 diabetes: a large, population-based, case-control study. American Journal of Clinical Nutrition. 2003;78(6):1128–1134.
    1. Stene L. C., Ulriksen J., Magnus P., Joner G. Use of cod liver oil during pregnancy associated with lower risk of Type I diabetes in the offspring. Diabetologia. 2000;43(9):1093–1098. doi: 10.1007/s001250051499.
    1. Fronczak C. M., Barón A. E., Chase H. P., et al. In utero dietary exposures and risk of islet autoimmunity in children. Diabetes Care. 2003;26(12):3237–3242. doi: 10.2337/diacare.26.12.3237.
    1. Norris J. M., Yin X., Lamb M. M., et al. Omega-3 polyunsaturated fatty acid intake and islet autoimmunity in children at increased risk for type 1 diabetes. The Journal of the American Medical Association. 2007;298(12):1420–1428. doi: 10.1001/jama.298.12.1420.
    1. Norris J. M. Infant and childhood diet and type 1 diabetes risk: recent advances and prospects. Current Diabetes Reports. 2010;10(5):345–349. doi: 10.1007/s11892-010-0131-5.
    1. Miller M. R., Yin X., Seifert J., et al. Erythrocyte membrane omega-3 fatty acid levels and omega-3 fatty acid intake are not associated with conversion to type 1 diabetes in children with islet autoimmunity: the Diabetes Autoimmunity Study in the Young (DAISY) Pediatric Diabetes. 2011;12(8):669–675. doi: 10.1111/j.1399-5448.2011.00760.x.
    1. Peppa M., He C., Hattori M., McEvoy R., Zheng F., Vlassara H. Fetal or neonatal low-glycotoxin environment prevents autoimmune diabetes in NOD mice. Diabetes. 2003;52(6):1441–1448. doi: 10.2337/diabetes.52.6.1441.
    1. Fu Z., Yuskavage J., Liu D. Dietary flavonol epicatechin prevents the onset of type 1 diabetes in nonobese diabetic mice. Journal of Agricultural and Food Chemistry. 2013;61(18):4303–4309. doi: 10.1021/jf304915h.
    1. Kagohashi Y., Abiru N., Kobayashi M., Hashimoto M., Shido O., Otani H. Maternal dietary n-6/n-3 fatty acid ratio affects type 1 diabetes development in the offspring of non-obese diabetic mice. Congenital Anomalies. 2010;50(4):212–220. doi: 10.1111/j.1741-4520.2010.00296.x.
    1. Skyler J. S. Primary and secondary prevention of type 1 diabetes. Diabetic Medicine. 2013;30(2):161–169. doi: 10.1111/dme.12100.
    1. Jump D. B. Fatty acid regulation of gene transcription. Critical Reviews in Clinical Laboratory Sciences. 2004;41(1):41–78. doi: 10.1080/10408360490278341.
    1. Din J. N., Newby D. E., Flapan A. D. Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. British Medical Journal. 2004;328(7430):30–35. doi: 10.1136/bmj.328.7430.30.
    1. Calder P. C. n-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids. 2003;38(4):343–352. doi: 10.1007/s11745-003-1068-y.
    1. Yaqoob P. Fatty acids and the immune system: from basic science to clinical applications. Proceedings of the Nutrition Society. 2004;63(1):89–104. doi: 10.1079/PNS2003328.
    1. Gil Á. Polyunsaturated fatty acids and inflammatory diseases. Biomedicine & Pharmacotherapy. 2002;56(8):388–396. doi: 10.1016/S0753-3322(02)00256-1.
    1. Simopoulos A. P. Omega-3 fatty acids in inflammation and autoimmune diseases. Journal of the American College of Nutrition. 2002;21(6):495–505. doi: 10.1080/07315724.2002.10719248.
    1. Pestka J. J. N-3 Polyunsaturated fatty acids and autoimmune-mediated glomerulonephritis. Prostaglandins Leukotrienes and Essential Fatty Acids. 2010;82(4-6):251–258. doi: 10.1016/j.plefa.2010.02.013.
    1. Lumia M., Luukkainen P., Tapanainen H., et al. Dietary fatty acid composition during pregnancy and the risk of asthma in the offspring. Pediatric Allergy and Immunology. 2011;22(8):827–835. doi: 10.1111/j.1399-3038.2011.01202.x.
    1. Chase H. P., Lescheck E., Rafkin-Mervis L., et al. The Type 1 Diabetes TrialNet NIP Study Group. Nutritional intervention to prevent (NIP) type 1 diabetes: a pilot trial. Infant, Child, & Adolescent Nutrition. 2009;1:98–107.
    1. Nwaru B. I., Erkkola M., Lumia M., et al. Maternal intake of fatty acids during pregnancy and allergies in the offspring. British Journal of Nutrition. 2012;108(4):720–732. doi: 10.1017/S0007114511005940.
    1. Simopoulos A. P. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomedicine and Pharmacotherapy. 2002;56(8):365–379. doi: 10.1016/S0753-3322(02)00253-6.
    1. Kankaanpää P., Nurmela K., Erkkilä A., et al. Polyunsaturated fatty acids in maternal diet, breast milk, and serum lipid fatty acids of infants in relation to atopy. Allergy: European Journal of Allergy and Clinical Immunology. 2001;56(7):633–638. doi: 10.1034/j.1398-9995.2001.00965.x.
    1. Uauy-Dagach R., Mena P. Nutritional role of omega-3 fatty acids during the perinatal period. Clinics in Perinatology. 1995;22(1):157–175.
    1. Fagen A., Scheidler J. Meals to go. Journal of Renal Nutrition. 2000;10(4):215–230.
    1. Schmid S., Koczwara K., Schwinghammer S., Lampasona V., Ziegler A.-G., Bonifacio E. Delayed exposure to wheat and barley proteins reduces diabetes incidence in non-obese diabetic mice. Clinical Immunology. 2004;111(1):108–118. doi: 10.1016/j.clim.2003.09.012.
    1. Kagohashi Y., Otani H. Dietary EFA ratio of the gestation period affects type 1 diabetes development in the offspring. Experimental Animals. 2011;60:p. S122.
    1. Kagohashi Y., Kameyama H., Fujihara Y., et al. The effect of dietary EFA ratio and composition on the development of type 1 diabetes in the offspring of NOD mice. Congenital Anomalies. 2011;51(4):p. A18.
    1. Kuriya G., Uchida T., Akazawa S., et al. Double deficiency in IL-17 and IFN-γ signalling significantly suppresses the development of diabetes in the NOD mouse. Diabetologia. 2013;56(8):1773–1780. doi: 10.1007/s00125-013-2935-8.
    1. Allen M. J., Fan Y. Y., Monk J. M., et al. N-3 PUFAs reduce T-helper 17 cell differentiation by decreasing responsiveness to interleukin-6 in isolated mouse splenic CD4+ T cells. The Journal of Nutrition. 2014;144(8):1306–1313. doi: 10.3945/jn.114.194407.
    1. Norris J. M., Kroehl M., Fingerlin T. E., et al. Erythrocyte membrane docosapentaenoic acid levels are associated with islet autoimmunity: the Diabetes Autoimmunity Study in the Young. Diabetologia. 2014;57(2):295–304. doi: 10.1007/s00125-013-3106-7.
    1. Kagohashi Y., Otani H. Dietary EFA ratio of the gestation period affects type 1 diabetes development in the offspring. Experimental Animals. 2011;60(3):p. S122.
    1. Barker D. J. P., Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. The Lancet. 1986;1(8489):1077–1081.
    1. Silveira P. P., Portella A. K., Goldani M. Z., Barbieri M. A. Developmental origins of health and disease (DOHaD) Jornal de Pediatria. 2007;83(6):494–504. doi: 10.2223/JPED.1728.
    1. Kagohashi Y., Otani H. Maternal intake of essential fatty acid affects development of type 1 diabetes in the offspring. Journal of Lipid Nutrition. 2013;22(1):35–43. doi: 10.4010/jln.22.35.
    1. Kagohashi Y., Otani H. Maternal environmental factors and the development of type 1 diabetes. Diabetes and Pregnancy. 2007;7:23–29.

Source: PubMed

3
구독하다