Kinetics of humoral immune response over 17 months of COVID-19 pandemic in a large cohort of healthcare workers in Spain: the ProHEpiC-19 study

Concepción Violán, Pere Torán-Monserrat, Bibiana Quirant, Noemi Lamonja-Vicente, Lucía A Carrasco-Ribelles, Carla Chacón, Josep Maria Manresa-Dominguez, Francesc Ramos-Roure, Rosalia Dacosta-Aguayo, Cristina Palacios-Fernández, Albert Roso-Llorach, Aleix Pujol, Dan Ouchi, Mónica Monteagudo, Pilar Montero-Alia, Rosa Garcia-Sierra, Fernando Arméstar, Maria Doladé, Nuria Prat, Josep Maria Bonet, Bonaventura Clotet, Ignacio Blanco, Marc Boigues-Pons, Nemesio Moreno-Millán, Julia G Prado, Eva María Martínez Cáceres, ProHEpiC-19 study, Marta Soldevilla Garcia, Ester Moral Roldan, Magda Alemany Costa, Eva Olivares Ortega, Alba Pachón Camacho, Marta Bujalance Devesa, Mariella Soto Espinoza, Antonio Negrete Palma, Mariana Martinez de San José, Ester Lucas Varas, Ester Badia Perich, Mónica Piña Rodriguez, Elena Domenech Graells, Eduard Moreno Gabriel, Victòria Sabaté Cintas, Mª Jose Argerich González, Asumció Vazquez Duran, Alex Ortega Roca, Anna Devesa Pradells, Athina Kielpilanen, Oscar Blanch Lombarte, Miguel Angel Marin Lopez, Julieta Carabelli, Ruth Peña Poderós, Esther Jimenez Moyano, Eulalia Grau Segura, Laia Bernard Rosa, Raul Pérez Caballero, Felipe Rodriguez Lozano, Gema Fernández Rivas, Sonia Molinos Abos, Jaume Barallat Martinez de Osaba, Lorena Tello Trigo, Cristina Perez Cano, Juan Matllo Aguilar, Anabel López Martínez, Inmaculada Agüera Iglesias, Concepción Violán, Pere Torán-Monserrat, Bibiana Quirant, Noemi Lamonja-Vicente, Lucía A Carrasco-Ribelles, Carla Chacón, Josep Maria Manresa-Dominguez, Francesc Ramos-Roure, Rosalia Dacosta-Aguayo, Cristina Palacios-Fernández, Albert Roso-Llorach, Aleix Pujol, Dan Ouchi, Mónica Monteagudo, Pilar Montero-Alia, Rosa Garcia-Sierra, Fernando Arméstar, Maria Doladé, Nuria Prat, Josep Maria Bonet, Bonaventura Clotet, Ignacio Blanco, Marc Boigues-Pons, Nemesio Moreno-Millán, Julia G Prado, Eva María Martínez Cáceres, ProHEpiC-19 study, Marta Soldevilla Garcia, Ester Moral Roldan, Magda Alemany Costa, Eva Olivares Ortega, Alba Pachón Camacho, Marta Bujalance Devesa, Mariella Soto Espinoza, Antonio Negrete Palma, Mariana Martinez de San José, Ester Lucas Varas, Ester Badia Perich, Mónica Piña Rodriguez, Elena Domenech Graells, Eduard Moreno Gabriel, Victòria Sabaté Cintas, Mª Jose Argerich González, Asumció Vazquez Duran, Alex Ortega Roca, Anna Devesa Pradells, Athina Kielpilanen, Oscar Blanch Lombarte, Miguel Angel Marin Lopez, Julieta Carabelli, Ruth Peña Poderós, Esther Jimenez Moyano, Eulalia Grau Segura, Laia Bernard Rosa, Raul Pérez Caballero, Felipe Rodriguez Lozano, Gema Fernández Rivas, Sonia Molinos Abos, Jaume Barallat Martinez de Osaba, Lorena Tello Trigo, Cristina Perez Cano, Juan Matllo Aguilar, Anabel López Martínez, Inmaculada Agüera Iglesias

Abstract

Background: Understanding the immune response to the SARS-CoV-2 virus is critical for efficient monitoring and control strategies. The ProHEpic-19 cohort provides a fine-grained description of the kinetics of antibodies after SARS-CoV-2 infection with an exceptional resolution over 17 months.

Methods: We established a cohort of 769 healthcare workers including healthy and infected with SARS-CoV-2 in northern Barcelona to determine the kinetics of the IgM against the nucleocapsid (N) and the IgG against the N and spike (S) of SARS-CoV-2 in infected healthcare workers. The study period was from 5 May 2020 to 11 November 2021.We used non-linear mixed models to investigate the kinetics of IgG and IgM measured at nine time points over 17 months from the date of diagnosis. The model included factors of time, gender, and disease severity (asymptomatic, mild-moderate, severe-critical) to assess their effects and their interactions.

Findings: 474 of the 769 participants (61.6%) became infected with SARS-CoV-2. Significant effects of gender and disease severity were found for the levels of all three antibodies. Median IgM(N) levels were already below the positivity threshold in patients with asymptomatic and mild-moderate disease at day 270 after the diagnosis, while IgG(N and S) levels remained positive at least until days 450 and 270, respectively. Kinetic modelling showed a general rise in both IgM(N) and IgG(N) levels up to day 30, followed by a decay with a rate depending on disease severity. IgG(S) levels remained relatively constant from day 15 over time.

Interpretation: IgM(N) and IgG(N, S) SARS-CoV-2 antibodies showed a heterogeneous kinetics over the 17 months. Only the IgG(S) showed a stable increase, and the levels and the kinetics of antibodies varied according to disease severity. The kinetics of IgM and IgG observed over a year also varied by clinical spectrum can be very useful for public health policies around vaccination criteria in adult population.

Funding: Regional Ministry of Health of the Generalitat de Catalunya (Call COVID19-PoC SLT16_04; NCT04885478).

Keywords: Antibodies; COVID-19; Clinical spectrum; Cohort; Health care workers; Humoral immunity; IgG; IgM; Kinetics; Non-linear mixed models; SARS-CoV-2; Seroprevalence.

Conflict of interest statement

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare no support from any organization for the submitted work other than that detailed in the Funding section. All other authors declare no have no competing interests as defined by BMC, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
IgM (N), IgG (N) ang IgG(S) levels, by days since diagnosis. Antibody levels are represented with a boxplot together with a dot and text describing their mean value. The dashed and the solid horizontal lines represent the uncertainty and positivity thresholds, respectively. AC show the significant differences in the median antibody levels between days. DF show significant differences in the median antibody levels across disease severity at each timepoint. Finally, GI show the significant differences in antibody levels between genders at each timepoint. Significance levels were reported as: * for p-value ≤ 0.05; ** for p-value ≤ 0.01; *** for p-value ≤ 0.001; and **** for p-value ≤ 0.0001
Fig. 2
Fig. 2
Kinetics of IgM(N), IgG(N) and IgG(S) levels since diagnosis in the total sample and stratified by disease severity. A, C and E show the LOESS regression models, connecting datapoints belonging to the same participants. B, D and F show the estimated non-linear mixed-effect (NLME) model curves. Each point corresponds to the mean value at each time point. The bars correspond to the standard deviation. The dashed and the solid horizontal lines represent the uncertainty and positivity thresholds, respectively
Fig. 3
Fig. 3
Kinetics of IgM(N), IgG(N) and IgG(S) levels since diagnosis in the total sample and stratified by gender. A, C and E show the LOESS regression models, connecting datapoints belonging to the same participants. B, D and F show the estimated non-linear mixed-effect (NLME) model curves. Each point corresponds to the mean value at each time point. The bars correspond to the standard deviation. The dashed and the solid horizontal lines represent the uncertainty and positivity thresholds, respectively

References

    1. Galit and Seder RGA The power of antibody-based surveillance. N Engl J Med. 2020;383:1782–1784. doi: 10.1056/nejme2029532.
    1. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science (80-). 2021 doi: 10.1126/science.abf4063.
    1. Trinité B, Tarrés-Freixas F, Rodon J, Pradenas E, Urrea V, Marfil S, et al. SARS-CoV-2 infection elicits a rapid neutralizing antibody response that correlates with disease severity. Sci Rep. 2021 doi: 10.1038/s41598-021-81862-9.
    1. Carrillo J, Izquierdo-Useros N, Ávila-Nieto C, Pradenas E, Clotet B, Blanco J. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem Biophys Res Commun. 2021;538:187–191. doi: 10.1016/j.bbrc.2020.10.108.
    1. Wang P, Liu L, Nair MS, Yin MT, Luo Y, Wang Q, et al. SARS-CoV-2 neutralizing antibody responses are more robust in patients with severe disease. Emerg Microbes Infect. 2020;9:2091–2093. doi: 10.1080/22221751.2020.1823890.
    1. Long QX, Tang XJ, Shi QL, Li Q, Deng HJ, Yuan J, et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med. 2020;26:1200–1204. doi: 10.1038/s41591-020-0965-6.
    1. Gudbjartsson DF, Norddahl GL, Melsted P, Gunnarsdottir K, Holm H, Eythorsson E, et al. Humoral immune response to SARS-CoV-2 in Iceland. N Engl J Med. 2020;383:1724–1734. doi: 10.1056/nejmoa2026116.
    1. Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, et al. Antibody status and incidence of SARS-CoV-2 infection in health care workers. N Engl J Med. 2021;384:533–540. doi: 10.1056/nejmoa2034545.
    1. Huang AT, Garcia-Carreras B, Hitchings MDT, Yang B, Katzelnick LC, Rattigan SM, et al. A systematic review of antibody mediated immunity to coronaviruses: kinetics, correlates of protection, and association with severity. Nat Commun. 2020 doi: 10.1038/s41467-020-18450-4.
    1. Dobaño C, Ramírez-Morros A, Alonso S, Vidal-Alaball J, Ruiz-Olalla G, Vidal M, et al. Persistence and baseline determinants of seropositivity and reinfection rates in health care workers up to 12.5 months after COVID-19. BMC Med. 2021;19:155. doi: 10.1186/s12916-021-02032-2.
    1. Ortega N, Ribes M, Vidal M, Rubio R, Aguilar R, Williams S, et al. Seven-month kinetics of SARS-CoV-2 antibodies and role of pre-existing antibodies to human coronaviruses. Nat Commun. 2021;12:1–10. doi: 10.1038/s41467-021-24979-9.
    1. World Health Organization (WHO). Seroepidemiological investigation protocol for coronavirus 2019 (COVID-19) infection 2020;2020. .
    1. Mattiuzzo G, Bentley EM, Hassall M, Routley S. Establishment of the WHO International Standard and reference panel for anti-SARS-CoV-2 antibody. 2020.
    1. Chen X, Chen Z, Azman AS, Deng X, Sun R, Zhao Z, et al. Serological evidence of human infection with SARS-CoV-2: a systematic review and meta-analysis. Lancet Glob Health. 2021;9:e598–609. doi: 10.1016/S2214-109X(21)00026-7.
    1. Harrington WE, Trakhimets O, Andrade DV, Dambrauskas N, Raappana A, Jiang Y, et al. Rapid decline of neutralizing antibodies is associated with decay of IgM in adults recovered from mild COVID-19. Cell Rep Med. 2021 doi: 10.1016/j.xcrm.2021.100253.
    1. Zhao J, Zhao S, Ou J, Zhang J, Lan W, Guan W, et al. COVID-19: coronavirus vaccine development updates. Front Immunol. 2020;11:1–19. doi: 10.3389/fimmu.2020.602256.
    1. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021 doi: 10.1038/s41586-021-03647-4.
    1. Graham NR, Whitaker AN, Strother CA, Miles AK, Grier D, McElvany BD, et al. Kinetics and isotype assessment of antibodies targeting the spike protein receptor-binding domain of severe acute respiratory syndrome-coronavirus-2 in COVID-19 patients as a function of age, biological sex and disease severity. Clin Transl Immunol. 2020 doi: 10.1002/cti2.1189.
    1. Alfego D, Sullivan A, Poirier B, Williams J, Adcock D, Letovsky S. A population-based analysis of the longevity of SARS-CoV-2 antibody seropositivity in the United States. EClinicalMedicine. 2021;36:100902. doi: 10.1016/j.eclinm.2021.100902.
    1. Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural characterization of SARS-CoV-2: where we are, and where we need to be. Front Mol Biosci. 2020 doi: 10.3389/fmolb.2020.605236.
    1. Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L, Mantus G, et al. Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells. Cell Reports Med. 2021;2:100354. doi: 10.1016/j.xcrm.2021.100354.
    1. Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach KF, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med. 2021;384:1372–1374. doi: 10.1056/nejmc2101667.
    1. Maria Prendecki CC, Jonathan Brown AC, Sarah Gleeson MG, Paul Randell ADP, Liz Lightstone X-NX, Wendy Barclay SPM, et al. Effect of previous SARS-CoV-2 infection on humoral and T-cell responses to single-dose BNT162b2 vaccine. Lancet 2021;397.
    1. Manisty C, Otter AD, Treibel TA, McKnight Á, Altmann DM, Brooks T, et al. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet. 2021;397:1057–1058. doi: 10.1016/S0140-6736(21)00501-8.
    1. Loyal L, Braun J, Henze L, Kruse B, Dingeldey M, Reimer U, et al. Cross-reactive CD4+ T cells enhance SARS-CoV-2 immune responses upon infection and vaccination. Science (80-). 2021 doi: 10.1126/science.abh1823.
    1. Kilpeläinen A, Jimenez-Moyano E, Blanch-Lombarte O, Ouchi D, Quirant-Sanchez B, Chamorro A, et al. Highly functional cellular immunity in SARS-CoV-2 non-seroconvertors is associated with immune protection 5. BioRxiv 2021:2021.05.04.438781.
    1. Abela IA, Pasin C, Schwarzmüller M, Epp S, Sickmann ME, Schanz MM, et al. Multifactorial seroprofiling dissects the contribution of pre-existing human coronaviruses responses to SARS-CoV-2 immunity. Nat Commun. 2021 doi: 10.1038/s41467-021-27040-x.
    1. Petersen E, Koopmans M, Go U, Hamer DH, Petrosillo N, Castelli F, et al. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect Dis. 2020;20:e238–e244. doi: 10.1016/S1473-3099(20)30484-9.
    1. Fischer W, Giorgi EE, Chakraborty S, Nguyen K, Bhattacharya T, Theiler J, Goloboff PA, Yoon H, Abfalterer W, Foley BT, et al. HIV-1 and SARS-CoV-2: patterns in the evolution of two pandemic pathogens. Cell Host Microbe. 2021;29:1093–1100. doi: 10.1016/j.chom.2021.05.012.

Source: PubMed

3
구독하다