Equipment review: an appraisal of the LiDCO plus method of measuring cardiac output

Rupert M Pearse, Kashif Ikram, John Barry, Rupert M Pearse, Kashif Ikram, John Barry

Abstract

The LiDCO plus system is a minimally/non-invasive technique of continuous cardiac output measurement. In common with all cardiac output monitors this technology has both strengths and weaknesses. This review discusses the technological basis of the device and its clinical application.

References

    1. Chapman M, Gattas D, Suntharalingham. Health technology and credibility. Critical Care. 2004;8:73. doi: 10.1186/cc2842.
    1. Technology Assessment Task Force of the Society of Critical Care Medicine. A model for technology assessment applied to pulse oximetry. Crit Care Med. 1993;21:615–624.
    1. Hamilton TT, Huber LM, Jessen ME. PulseCO: a less-invasive technique to monitor cardiac output from arterial pressure after cardiac surgery. Ann Thorac Surg. 2002;74:S1408–S1412. doi: 10.1016/S0003-4975(02)04059-6.
    1. Heller LB, Fisher M, Pfanzelter N, Jayakar D, Jeevanandam V, Aronson S. Continuous intraoperative cardiac output determination with arterial pulse wave analysis (PulseCO™) is valid and precise. Anesth Analg. 2002;93:SCA1–SCA112.
    1. Mason DJ, O'Grady M, Woods JP, McDonell W. Assessment of lithium dilution cardiac output as a technique for measurement of cardiac output in dogs. Am J Vet Res. 2001;62:1255–1261.
    1. Linton RA, Jonas MM, Tibby SM, Murdoch IA, O'Brien TK, Linton NW, Band DM. Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med. 2000;26:1507–1511. doi: 10.1007/s001340051347.
    1. Linton RA, Young LE, Marlin DJ, Blissett KJ, Brearley JC, Jonas MM, O'Brien TK, Linton NW, Band DM, Jones RS. Cardiac output measured by lithium dilution, thermodilution and transesophageal Doppler echocardiography in anesthetized horses. Am J Vet Res. 2000;61:731–737.
    1. Linton R, Band D, O'Brien T, Jonas MM, Leach R. Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med. 1997;25:1796–1800. doi: 10.1097/00003246-199711000-00015.
    1. Kurita T, Morita K, Kato S, Kikura M, Horie M, Ikeda K. Comparison of the accuracy of the lithium dilution technique with the thermodilution technique for measurement of cardiac output. Br J Anaesth. 1997;79:770–775.
    1. Hatfield C, McDonell W, Lemke D, Black W. Pharmacokinetics and toxic effects of lithium chloride after intravenous administration in conscious horses. Am J Vet Res. 2001;62:1387–1392.
    1. Jonas MM, Kelly FE, Linton RAF, Band DM, O'Brien TK, Linton NWF. A comparison of lithium dilution cardiac output measurements made using central and atecubital venous injection of lithium chloride. J Clin Monit Comput. 1999;15:525–528. doi: 10.1023/A:1009914714769.
    1. Leibowitz AB. Do pulmonary artery catheters improve patient outcome? No. Crit Care Clin. 1996;12:559–568.
    1. Connors AF Jr. Right heart catheterisation: is it effective? New Horiz. 1997;5:195–200.
    1. Polanczyk CA, Rohde LE, Goldman L, Cook EF, Thomas EJ, Marcantonio ER, Mangione CM, Lee TH. Right heart catheterisation and cardiac complications in patients undergoing noncardiac surgery: an observational study. JAMA. 2001;286:309–314. doi: 10.1001/jama.286.3.309.
    1. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D, Desbiens N, Goldman L, Wu AW, Califf RM, Fulkerson WJ Jr, Vidaillet H, Broste S, Bellamy P, Lynn J, Knaus WA. The effectiveness of right heart catheterisation in the initial care of the critically ill patients. JAMA. 1996;276:889–977. doi: 10.1001/jama.276.11.889.
    1. Manecke GR Jr, Brown JC, Landau AA, Kapelanski DP, St Laurent CM, Auger WR. An unusual case of pulmonary artery catheter malfunction. Anesth Analg. 2002;95:302–304.
    1. Keus. et al.The use of invasive (pulmonary artery) monitoring in combination with multiple co-morbidity: indispensable or hazardous? Int J Intensive Care. 2002;9:86–92.
    1. Farber DL, Rose DM, Bassell GM, Eugene J. Hemopytysts and pneumothorax after removal of a persistently wedged pulmonary artery catheter. Crit Care Med. 1981;9:494–495.
    1. Ehrie M, Morgan A, Moore F, Connor N. Endocarditis with the indwelling balloon tipped pulmonary artery catheter in burn patients. J Trauma. 1978;18:664–666.
    1. Sasaki TM, Panke TW, Dorethy JF, Lindberg RB, Pruitt BA. The relationship of central venous and pulmonary artery catheter position to acute right-sided endocarditis in severe thermal injury. J Trauma. 1979;19:740–743.
    1. McDaniel DD, Stone JG, Faltas AN, Khambatta HJ, Thys DM, Antunes AM, Bregman D. Catheter induced pulmonary artery hemorrhage. Diagnosis and management in cardiac operations. J Thoracic Cardiovasc Surg. 1981;82:1–4.
    1. Barash PG, Nardi D, Hammond G, Walker-Smith G, Capuano D, Laks H, Kopriva CJ, Baue AE, Geha AS. Catheter induced pulmonary artery perforation. Mechanisms, management, and modifications. J Thoracic Cardiovasc Surg. 1981;82:5–12.
    1. Paulson DM, Scott SM, Sethi GK. Pulmonary hemorrhage associated with balloon flotation catheters: a case report of a case and review of the literature. J Thoracic Cardiovasc Surg. 1980;80:453–458.
    1. Melter R, Klint PP, Simoons M. Hemoptysis after flushing Swan-Ganz catheters in the wedge position [letter] N Engl J Med. 1981;304:1170–1171.
    1. McLoud TC, Putman CE. Radiology of the Swan-Ganz catheter and associated pulmonary complications. Radiology. 1975;116:19–22.
    1. Page DW, Teres D, Hartshorn JW. Fatal hemorrhage from Swan-Ganz catheter [letter] N Engl J Med. 1974;291:260.
    1. Lopez-Sedon J, Lopez E, Maqueda IG, Coma-Canella I, Ramos F, Dominguez F, Jadraque LM. Right ventricular infarction as a risk factor for ventricular fibrillation during pulmonary artery catheterisation using Swan-Ganz catheters. Am Heart J. 1990;119:207–209.
    1. Rubin SA, Puckett RP. Pulmonary artery: bronchial fistula. A new complication of Swan-Ganz catherterization. Chest. 1979;75:515–516.
    1. Shimm DS, Rigsby L. Ventricular tachycardia associated with removal of a Swan-Ganz catheter. Postgrad Med. 1980;67:291–294.
    1. Mark JB. Systolic pressure variation: A clinical application of respiratory-circulatory interaction. In Atlas of Cardiovascular monitoring.
    1. Reuter DA, Felbinger TW, Kilger E, Schmidt C, Lamm P, Goetz AE. Optimizing fluid therapy in mechanically ventilated patients after cardiac surgery by on-line monitoring of left ventricular stroke variations. Comparison with aortic systolic pressure variations. Br J Anesth. 2002;88:124–126. doi: 10.1093/bja/88.1.124.
    1. Avila. et al.Predicting hypovolemia during mechanical ventilation: a prospective, clinical trial of doppler variations of aorta and axillary arterial velocities to identify systolic pressure variation. Anaesthesiology. 2002;97:B17.
    1. Gunn RS, Pinsky MR. Implications of arterial pressure variation in patients in the intensive care unit. Crit Care. 2001;7:212–217.
    1. Michard F, Chemla D, Richard C, Wysocki M, Pinsky MR, Lecarpentier Y, Teboul JL. Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Crit Care Med. 1999;159:935–939.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Crit Care Med. 2000;162:134–138.
    1. Michard F, Teboul JL. Using heart-lung interactions to assess fluid responsiveness during mechanical ventilation. Crit Care. 2000;4:282–289. doi: 10.1186/cc710.
    1. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y, Perel A. Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg. 2001;92:984–989.
    1. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.
    1. Harrigan PWJ, Pinsky MR. Heart–lung interactions. Part 1: effects of lung volume and ventilation as exercise. Int J Intensive Care. 2001;Spring:6–13.
    1. Harrigan PWJ, Pinsky MR. Heart–lung interactions. Part 2: effects of intrathoracic pressure. Int J Intensive Care. 2001;Summer:99–108.
    1. Rooke GA, Schwid HA, Shapira Y. The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg. 1995;80:925–932.
    1. Marik PE. The systolic blood pressure variation as an indicator of pulmonary capillary wedge pressure in ventilated patients. Anaesth Intensive Care. 1993;21:405–408.
    1. Tavernier B, Makhotine O, Lebuffe G, Dupont J, Scherpereel P. Systolic pressure variation as a guide to fluid therapy in patients with sepsis-induced hypotension [abstract] Anesthesiology. 1998;89:1309–1310.
    1. Pizov. et al.Positive end-expiratory pressure-induced hemodynamic changes are reflected in the arterial pressure waveform [abstract] Crit Care Med. 1996;24:1381–1387. doi: 10.1097/00003246-199608000-00018.
    1. Szold A, Pizov R, Segal E, Perel A. The effect of tidal volume and intravascular volume state on systolic pressure variation in ventilated dogs [abstract] Intensive Care Med. 1989;15:368–371.
    1. Beaussier M, Coriat P, Perel A, Lebret F, Kalton P, Chemla D, Lienhart A, Viars P. Determinants of systolic pressure variation in patients ventilated after vascular surgery. J Cardiothorac Vasc Anesth. 1995;9:547–551.
    1. Pizov R, Segal E, Kaplan L, Floman Y, Perel A. The use of systolic pressure variation in hemodynamic monitoring during deliberate hypotension in spine surgery [abstract] J Clin Anesth. 1990;2:96–100. doi: 10.1016/0952-8180(90)90061-7.
    1. Perel A, Pizov R, Cotev S. Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage. Anesthesiology. 1987;67:498–502.
    1. Weiss YG, Oppenheim-Eden A, Gilon D, Sprung CL, Muggia-Sullam M, Pizov R. Systolic pressure variation in hemodynamic monitoring after severe blast injury [abstract] J Clin Anesth. 1999;11:132–135. doi: 10.1016/S0952-8180(99)00006-9.
    1. Ornstein E, Eidelman LA, Drenger B, Elami A, Pizov R. Systolic pressure variation predicts the response to acute blood loss [abstract] J Clin Anesth. 1998;10:137–140. doi: 10.1016/S0952-8180(97)00257-2.
    1. Klinzing S, Seeber P, Schiergens V, Sakka S, Reinhart K, Meier-Hellmann A. Stroke volume variation as a predictor of fluid responsiveness for cardiac output in patients undergoing cardiac surgery [abstract] Crit Care Med. 2002;29(suppl):173/M55.
    1. Reuter DA, Kirchner A, Kilger E, Lamm P, Goetz AE. Left ventricular stroke volume variations for functional preload monitoring after cardiac surgery in high risk patients [abstract] SCCM 93/M1.
    1. Roberts PR, Allen S, Robinson S, Tanser SJ, Jonas MM, Morgan JM. Use of lithium dilution assessment of cardiac output to optimise right/left ventricular activation in resynchronisation therapy [abstract] Heart. 2002;87(suppl II):146.
    1. Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimisation in high-risk patients. Crit Care Med. 2002;30:1686–1692. doi: 10.1097/00003246-200208000-00002.
    1. Bennett ED. Goal-directed therapy is successful in the right patients [editorial] Crit Care Med. 2002;30:1909–1910. doi: 10.1097/00003246-200208000-00042.
    1. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M. Early Goal-Directed Therapy Collaborative Group. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377. doi: 10.1056/NEJMoa010307.
    1. Singh S, Manji M. A survey of pre-operative optimisation of high-risk surgical patients undergoing major elective surgery. Anaesthesia. 2001;56:988–1002. doi: 10.1046/j.1365-2044.2001.01974.x.
    1. Sandham JD, Hull RD, Brant RF, Knox L, Pineo GF, Doig CJ, Laporta DP, Viner S, Passerini L, Devitt H, Kirby A, Jacka M. Canadian Critical Care Clinical Trials Group. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. N Engl J Med. 2003;348:5–14. doi: 10.1056/NEJMoa021108.
    1. Jonas M, Bruce R, Knight J, Kelly F. Clinical assessment of cardiac output versus LiDCO indicator dilution measurement: are clinical estimates of cardiac output and oxygen delivery reliable enough to manage critically ill patients? Crit Care Med. 2002.
    1. Boyd O, Grounds RM, Bennett ED. A randomized clinical trial of the effect of deliberate perioperative increase of oxygen delivery on mortality in high-risk surgical patients. JAMA. 1993;270:2699–2707. doi: 10.1001/jama.270.22.2699.
    1. Wilson J, Woods I, Fawcett J, Whall R, Dibb W, Morris C, McManus E. Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ. 1999;318:1099–1103.
    1. Sinclair S, James S, Singer M. Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ. 1997;315:909–912.
    1. Mythen MG, Webb AR. Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg. 1995;130:423–429.
    1. Gan TJ, Soppitt A, Maroof M, el-Moalem H, Robertson KM, Moretti E, Dwane P, Glass PS. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97:820–826. doi: 10.1097/00000542-200210000-00012.
    1. Follath F, Cleland JG, Just H, Papp JG, Scholz H, Peuhkurinen K, Harjola VP, Mitrovic V, Abdalla M, Sandell EP, Lehtonen L. Steering Committee and Investigators of the Levosimendan Infusion versus Dobutamine (LIDO) Study. Efficacy and safety of intravenous levosimendan compared with dobutamine in severe low-output heart failure (the LIDO study): a randomised double-blind trial. Lancet. 2002;360:196–202. doi: 10.1016/S0140-6736(02)09455-2.
    1. Linton R, Band D, O'Brien T, Jonas M, Leach R. Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med. 1997;25:1796–800. doi: 10.1097/00003246-199711000-00015.
    1. Linton RA, Band DM, Haire KM. A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth. 1993;71:262–266.
    1. Linton RA, Jonas MM, Tibby SM, Murdoch IA, O'Brien TK, Linton NW, Band DM. Cardiac output measured by lithium dilution and transpulmonary thermodilution in patients in a paediatric intensive care unit. Intensive Care Med. 2000;26:1507–1511. doi: 10.1007/s001340051347.
    1. Stetz CW, Miller RG, Kelly GE, Raffin TA. Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis. 1982;126:1001–1004.
    1. JBand D, Linton NW, Kelly F, Burden T, Chevalier S, Thompson R, Birch N, Powell J. The pharmacokinetics of intravenous lithium chloride in patients and normal volunteers. J Trace Microbe Techn. 2001;19:313–320. doi: 10.1081/TMA-100002220.
    1. Linton NW, Linton R. Estimation of changes in cardiac output from arterial blood pressure waveform in the upper limb. Br J Anaesth. 2001;86:486–496. doi: 10.1093/bja/86.4.486.
    1. Michard F, Teboul JL. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest. 2002;121:2000–2008. doi: 10.1378/chest.121.6.2000.

Source: PubMed

3
구독하다