Emerging infectious diseases that threaten the blood supply

Harvey J Alter, Susan L Stramer, Roger Y Dodd, Harvey J Alter, Susan L Stramer, Roger Y Dodd

Abstract

Following the devastating effects of blood-transmitted human immunodeficiency virus (HIV), blood establishments have become increasingly vigilant for the emergence or re-emergence of new threats to the safety of the blood supply. Many agents have fulfilled the broad definition of emerging blood-transmitted infections, including West Nile virus (WNV), Trypanosoma cruzi, Plasmodium spp., Babesia spp., parvovirus B19, dengue virus, and the prions that cause variant Creutzfeld-Jacob disease (vCJD). Other agents such as human herpes virus-8 (HHV-8-Kaposi's sarcoma virus) and Borellia (Lyme disease) and, perhaps, avian flu virus, are known to have a viremic phase, but have not yet been proved to be transfusion-transmitted. In the wake of these threats, transfusion services use a variety of donor screening interventions, including serologic assays, nucleic acid assays, and geographic exclusions based on potential exposure. The ultimate safeguard may be a pre-emptive pathogen inactivation strategy that will disrupt all nucleic acid-containing agents (though not prions). Considerable effort and resources have been invested in this arena, but currently no single technique is effective for inactivation of both liquid and cellular blood products and toxicity issues have not been completely resolved. The blood supply is remarkably safe with the risk of major pathogens such as hepatitis C virus (HCV) and HIV now reduced to less than one transmission per 2 to 3 million exposures. However, to approach near-zero infectious disease risk for emerging and re-emerging pathogens, new strategies such as pathogen inactivation or multi-pathogen microarray technology will need to be developed or refined.

References

    1. Mungai M., Tegtmeier G., Chamberland M., Parise M. Transfusion-transmitted malaria in the United States from 1963 through 1999. N Engl J Med. 2001;344:1973–1978.
    1. Leiby D.A. Babesiosis and blood transfusion: flying under the radar. Vox Sang. 2006;90:157–165.
    1. Krause P.J., Lepore T., Sikand V.K., Gadbaw J., Jr, Burke G., Telford S.R., III Atovaquone and azithromycin for the treatment of babesiosis. N Engl J Med. 2000;343:1454–1458.
    1. Leiby D.A., Chung A.P., Cable R.G., Trouern-Trend J., McCullough J., Homer M.J. Relationship between tick bites and the seroprevalence of Babesia microti and Anaplasma phagocytophila (previously Ehrlichia sp.) in blood donors. Transfusion. 2002;42:1585–1591.
    1. Chagas disease after organ transplantation—United States, 2001. MMWR Morb Mortal Wkly Rep. 2002;51:210–212.
    1. Wendel S. Transfusion-transmitted Chagas’ disease. Curr Opin Hematol. 1998;5:406–411.
    1. Leiby D.A., Herron R.M., Jr, Read E.J., Lenes B.A., Stumpf R.J. Trypanosoma cruzi in Los Angeles and Miami blood donors: Impact of evolving donor demographics on seroprevalence and implications for transfusion transmission. Transfusion. 2002;42:549–555.
    1. Biggerstaff B.J., Petersen L.R. Estimated risk of transmission of the West Nile virus through blood transfusion in the US, 2002. Transfusion. 2003;43:1007–1017.
    1. Pealer L.N., Marfin A.A., Petersen L.R., Lanciotti R.S., Page P.L., Stramer S.L. Transmission of West Nile virus through blood transfusion in the United States in 2002. N Engl J Med. 2003;349:1236–1245.
    1. Stramer S.L., Fang C.T., Foster G.A., Wagner A.G., Brodsky J.P., Dodd R.Y. West Nile virus among blood donors in the United States, 2003 and 2004. N Engl J Med. 2005;353:451–459.
    1. Young N.S., Brown K.E. Parvovirus B19. N Engl J Med. 2004;350:586–597.
    1. Anderson M.J., Higgins P.G., Davis L.R., Willman J.S., Jones S.E., Kidd I.M. Experimental parvoviral infection in humans. J Infect Dis. 1985;152:257–265.
    1. Brown K.E., Young N.S., Alving B.M., Barbosa L.H. Parvovirus B19: Implications for transfusion medicine: Summary of a workshop. Transfusion. 2001;41:130–135.
    1. Azzi A., Morfini M., Mannucci P.M. The transfusion-associated transmission of parvovirus B19. Transfus Med Rev. 1999;13:194–204.
    1. Pellett P.E., Wright D.J., Engels E.A., Ablashi D.V., Dollard S.C., Forghani B. Multicenter comparison of serologic assays and estimation of human herpesvirus 8 seroprevalence among US blood donors. Transfusion. 2003;43:1260–1268.
    1. Dodd R.Y. Human herpesvirus-8: What (not) to do? Transfusion. 2005;45:463–465.
    1. Hladik W., Dollard S.C., Mermin J., Fowlkes A.L., Downing R., Fowlkes A.L. Transmission of human herpesvirus 8 by blood transfusion. N Engl J Med. 2006;355:1331–1338.
    1. Hien T.T., de Jong J.M., Farrar J. Avian influenza—A challenge to global health care structures. N Engl J Med. 2004;351:2363–2365.
    1. Ungchusak K., Auewarakul P., Dowell S.F., Kitphati R., Auwanit W., Puthavathana P. Probable person-to-person transmission of avian influenza A (H5N1) N Engl J Med. 2005;352:333–340.
    1. Katz J.M., Lim W., Bridges C.B., Rowe T., Hu-Primmer J., Lu X. Antibody response in individuals infected with avian influenza A (H5N1) viruses and detection of anti-H5 antibody among household and social contacts. J Infect Dis. 1999;180:1763–1770.
    1. Chotpitayasunondh T., Ungchusak K., Hanshaoworakul W., Chunsuthiwat S., Sawanpanyalert P., Kijphati R. Human disease from influenza A (H5N1), Thailand, 2004. Emerg Infect Dis. 2005;11:201–209.
    1. Writing Committee of the World Health Organization Consultation on Human Influenza A/H5: Avian influenza A (H5N1) infections in humans. N Engl J Med. 2005;353:1374–1385.
    1. Llewelyn C.A., Hewitt P.E., Knight R.S., Amar K., Cousens S., Mackenzie J. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet. 2004;363:417–421.
    1. Peden A.H., Head M.W., Ritchie D.L., Bell J.E., Ironside J.W. Preclinical vCJD after blood transfusion in a PRNP codon 129 heterozygous patient. Lancet. 2004;364:527–529.
    1. Hilton D.A., Ghani A.C., Conyers L., Edwards P., McCardle L., Ritchie D. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol. 2004;203:733–739.
    1. Sowemimo-Coker S.O., Pesci S., Andrade F., Kim A., Kascsak R.B., Kascsak R.J. Pall leukotrap affinity prion-reduction filter removes exogenous infectious prions and endogenous infectivity from red cell concentrates. Vox Sang. 2006;90:265–275.
    1. Gregori L., Gurgel P.V., Gheorghiu L., Edwardson P., Lathrop J.T. Reduction of transmissible spongiform encephalopathy infectivity from human red blood cells with prion protein affinity ligands. Transfusion. 2006;46:1152–1161.
    1. Boneva R.S., Grindon A.J., Orton S.L., Switzer W.M., Shanmugam V., Hussain A.I. Simian foamy virus infection in a blood donor. Transfusion. 2002;42:886–891.
    1. Alter H.J. New viruses and their relationship to hepatitis. In: Schinazi R.F., Sommadossi J.-P., Rice C.M., editors. Frontiers in Viral Hepatitis. Elsevier; The Netherlands: 2003. pp. 35–46.
    1. Slichter S.J., Raife T.J., Davis K., Rheinschmidt M., Buchholz D.H., Corash L. Platelets photochemically treated with amotosalen HCl and ultraviolet A light correct prolonged bleeding times in patients with thrombocytopenia. Transfusion. 2006;46:731–740.
    1. Ruane P.H., Edrich R., Gampp D., Keil S.D., Leonard R.L., Goodrich R.P. Photochemical inactivation of selected viruses and bacteria in platelet concentrates using riboflavin and light. Transfusion. 2004;44:877–885.
    1. AuBuchon J.P., Herschel L., Roger J., Taylor H., Whitley P., Li J. Efficacy of apheresis platelets treated with riboflavin and ultraviolet light for pathogen reduction. Transfusion. 2005;45:1335–1341.
    1. Pelletier J.P., Transue S., Snyder E.L. Pathogen inactivation techniques. Best Pract Res Clin Haematol. 2006;19:205–242.

Source: PubMed

3
구독하다