Evaluation of Cardiac Repolarization in the Randomized Phase 2 Study of Intermediate- or High-Risk Smoldering Multiple Myeloma Patients Treated with Daratumumab Monotherapy

Ajai Chari, Markus Munder, Katja Weisel, Matthew Jenner, Ceri Bygrave, Maria Teresa Petrucci, Mario Boccadoro, Michele Cavo, Niels W C J van de Donk, Mehmet Turgut, Fatih Demirkan, Ihsan Karadogan, Edward Libby, Robert Kleiman, Steven Kuppens, Rajesh Bandekar, Tobias Neff, Christoph Heuck, Ming Qi, Pamela L Clemens, Hartmut Goldschmidt, Ajai Chari, Markus Munder, Katja Weisel, Matthew Jenner, Ceri Bygrave, Maria Teresa Petrucci, Mario Boccadoro, Michele Cavo, Niels W C J van de Donk, Mehmet Turgut, Fatih Demirkan, Ihsan Karadogan, Edward Libby, Robert Kleiman, Steven Kuppens, Rajesh Bandekar, Tobias Neff, Christoph Heuck, Ming Qi, Pamela L Clemens, Hartmut Goldschmidt

Abstract

Introduction: Daratumumab is a CD38-targeting monoclonal antibody that has demonstrated clinical benefit for multiple myeloma. Daratumumab inhibition of CD38, which is expressed on immune cell populations and cardiomyocytes, could potentially affect cardiac function. This QTc substudy of the phase 2 CENTAURUS study investigated the potential effect of intravenous daratumumab monotherapy on QTc prolongation and other electrocardiogram (ECG) parameters, including concentration-QTc effect modeling.

Methods: Patients had intermediate- or high-risk smoldering multiple myeloma. Patients with QT interval corrected by Fridericia's formula (QTcF) > 470 ms, QRS interval ≥ 110 ms, or PR interval ≥ 200 ms were excluded. Triplicate ECGs were collected at screening, Dose 1, and Dose 8. Analyses of on-treatment ECGs were conducted with a time-matched baseline (primary analysis). By time-point, pharmacokinetic-pharmacodynamic (PK/PD), and outlier analyses were conducted.

Results: Of 123 patients in CENTAURUS, 31 were enrolled in the QTc substudy. Daratumumab produced a small increase in heart rate (5-12 beats per minute) of unclear significance. There was a small but clinically insignificant effect on QTc, as measured by both time-matched time-point and PK/PD analyses. The primary analysis demonstrated a maximum mean increase in QTcF of 9.1 ms (90% 2-sided upper confidence interval [CI], 14.1 ms). The primary PK/PD analysis predicted a maximum QTcF increase of 8.5 ms (90% 2-sided upper CI, 13.5 ms). No patient had an abnormal U wave, a new QTcF > 500 ms, or > 60 ms change from baseline for QTcF.

Conclusion: Analysis of ECG intervals and concentration-QTc relationships showed a small but clinically insignificant effect of daratumumab.

Trial registration: ClinicalTrials.gov Identifier: NCT02316106.

Keywords: Daratumumab; Monoclonal antibody; Pharmacokinetic-pharmacodynamic analysis; QTc substudy; Smoldering multiple myeloma.

Figures

Fig. 1
Fig. 1
CENTAURUS study design [20]. QW once weekly, Q2W every 2 weeks, Q4W every 4 weeks, Q8W every 8 weeks, IV intravenously, PD progressive disease, LPFD last patient first dose, CR complete response. This figure was adapted from Fig. 1a from Landgren et al. (10.1038/s41375-020-0718-z) [20], which is licensed under the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)
Fig. 2
Fig. 2
Time-point analyses. Mean change from baseline in a heart rate, b PR interval, c QRS duration, and d QTcF interval. Values are means ± 90% CIs; estimates and CIs are model based. PR interval time from onset of P wave to the start of the QRS complex, QRS duration interval of time between Q wave and S wave, QTcF interval QT interval corrected for heart rate using Fridericia’s formula, CI confidence interval, IV intravenously, bpm beats per minute, C Cycle, D Dose
Fig. 3
Fig. 3
Relationship between QTcF change from baseline and serum concentration of daratumumab. Shown is a scatterplot of all QTcF change from baseline and daratumumab serum concentration pairs at each time point. Each of the 31 patients could have up to 4 pairs for each of the time points: Cycle 1 Dose 1 post-infusion, Cycle 1 Dose 8 pre-infusion, Cycle 1 Dose 8 post-infusion, and Cycle 1 Dose 8 1 h post-infusion. The prediction line was based on a mixed-effects regression model using concentration, treatment dose, and least square mean estimates of the time values. QTcF interval QT interval corrected for heart rate using Fridericia’s formula, IV intravenously

References

    1. de Weers M, Tai YT, van der Veer MS, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186:1840–1848. doi: 10.4049/jimmunol.1003032.
    1. Lammerts van Bueren J, Jakobs D, Kaldenhoven N, et al. Direct in vitro comparison of daratumumab with surrogate analogs of CD38 antibodies MOR03087, SAR650984 and Ab79. Blood. 2014;124:3474.
    1. Overdijk MB, Verploegen S, Bogels M, et al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs. 2015;7:311–321. doi: 10.1080/19420862.2015.1007813.
    1. Overdijk MB, Jansen JH, Nederend M, et al. The therapeutic CD38 monoclonal antibody daratumumab induces programmed cell death via Fcγ receptor–mediated cross-linking. J Immunol. 2016;197:807–813. doi: 10.4049/jimmunol.1501351.
    1. Krejcik J, Casneuf T, Nijhof IS, et al. Daratumumab depletes CD38+ immune-regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 2016;128:384–394. doi: 10.1182/blood-2015-12-687749.
    1. van de Donk NW, Janmaat ML, Mutis T, et al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol Rev. 2016;270:95–112. doi: 10.1111/imr.12389.
    1. Lokhorst HM, Plesner T, Laubach JP, et al. Targeting CD38 with daratumumab monotherapy in multiple myeloma. N Engl J Med. 2015;373:1207–1219. doi: 10.1056/NEJMoa1506348.
    1. Lonial S, Weiss BM, Usmani S, et al. Daratumumab monotherapy in patients with treatment-refractory multiple myeloma (SIRIUS): an open-label, randomised, phase 2 trial. Lancet. 2016;387:1551–1560. doi: 10.1016/S0140-6736(15)01120-4.
    1. Usmani S, Nahi H, Weiss BM, et al. Safety and efficacy of daratumumab monotherapy in patients with heavily pretreated relapsed and refractory multiple myeloma: final results from GEN501 and SIRIUS. Poster presented at: The 59th American Society for Hematology (ASH) Annual Meeting & Exposition; December 9–12, 2017; Atlanta, GA.
    1. Palumbo A, Chanan-Khan A, Weisel K, et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038.
    1. Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;375:1319–1331. doi: 10.1056/NEJMoa1607751.
    1. Mateos MV, Dimopoulos MA, Cavo M, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378:518–528. doi: 10.1056/NEJMoa1714678.
    1. Deaglio S, Mehta K, Malavasi F. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk Res. 2001;25:1–12. doi: 10.1016/S0145-2126(00)00093-X.
    1. Lin P, Owens R, Tricot G, Wilson CS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol. 2004;121:482–488. doi: 10.1309/74R4TB90BUWH27JX.
    1. Santonocito AM, Consoli U, Bagnato S, et al. Flow cytometric detection of aneuploid CD38++ plasmacells and CD19+ B-lymphocytes in bone marrow, peripheral blood and PBSC harvest in multiple myeloma patients. Leuk Res. 2004;28:469–477. doi: 10.1016/j.leukres.2003.09.015.
    1. Fernandez JE, Deaglio S, Donati D, et al. Analysis of the distribution of human CD38 and of its ligand CD31 in normal tissues. J Biol Regul Homeost Agents. 1998;12:81–91.
    1. Wei W, Graeff R, Yue J. Roles and mechanisms of the CD38/cyclic adenosine diphosphate ribose/Ca2+ signaling pathway. World J Biol Chem. 2014;5:58–67. doi: 10.4331/wjbc.v5.i1.58.
    1. Chari A, Suvannasankha A, Fay JW, et al. Daratumumab plus pomalidomide and dexamethasone in relapsed and/or refractory multiple myeloma. Blood. 2017;130:974–981. doi: 10.1182/blood-2017-05-785246.
    1. DARZALEX® (daratumumab) injection, for intravenous use [package insert]. Horsham, PA: Janssen Biotech, Inc.; 2020.
    1. Landgren CO, Chari A, Cohen YC, et al. Daratumumab monotherapy for patients with intermediate-risk or high-risk smoldering multiple myeloma: a randomized, open-label, multicenter, phase 2 study (CENTAURUS) Leukemia. 2020;34:1840–1852. doi: 10.1038/s41375-020-0718-z.
    1. Dispenzieri A, Stewart AK, Chanan-Khan A, et al. Smoldering multiple myeloma requiring treatment: time for a new definition? Blood. 2013;122:4172–4181. doi: 10.1182/blood-2013-08-520890.
    1. Sarapa N, Britto MR. Challenges of characterizing proarrhythmic risk due to QTc prolongation induced by nonadjuvant anticancer agents. Expert Opin Drug Saf. 2008;7:305–318. doi: 10.1517/14740338.7.3.305.
    1. Morganroth J, Brown AM, Critz S, et al. Variability of the QTc interval: impact on defining drug effect and low-frequency cardiac event. Am J Cardiol. 1993;72:26B–31B. doi: 10.1016/0002-9149(93)90037-D.
    1. Isbister GK, Page CB. Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Br J Clin Pharmacol. 2013;76:48–57. doi: 10.1111/bcp.12040.
    1. Redfern W, Carlsson L, Davis A, et al. Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res. 2003;58:32–45. doi: 10.1016/S0008-6363(02)00846-5.
    1. Shah RR, Morganroth J, Kleiman RB. ICH E14 Q&A(R2) document: commentary on the further updated recommendations on thorough QT studies. Br J Clin Pharmacol. 2015;79:456–464. doi: 10.1111/bcp.12477.
    1. van der Heyden MAG, Smits ME, Vos MA. Drugs and trafficking of ion channels: a new pro-arrhythmic threat on the horizon? Br J Pharmacol. 2008;153:406–409. doi: 10.1038/sj.bjp.0707618.
    1. Florian JA, Tornoe CW, Brundage R, Parekh A, Garnett CE. Population pharmacokinetic and concentration—QTc models for moxifloxacin: pooled analysis of 20 thorough QT studies. J Clin Pharmacol. 2011;51:1152–1162. doi: 10.1177/0091270010381498.
    1. Yan LK, Zhang J, Ng MJ, Dang Q. Statistical characteristics of moxifloxacin-induced QTc effect. J Biopharm Stat. 2010;20:497–507. doi: 10.1080/10543400903581945.
    1. Fradley MG, Moslehi J. QT prolongation and oncology drug development. Card Electrophysiol Clin. 2015;7:341–355. doi: 10.1016/j.ccep.2015.03.013.
    1. Locatelli M, Criscitiello C, Esposito A, et al. QTc prolongation induced by targeted biotherapies used in clinical practice and under investigation: a comprehensive review. Target Oncol. 2015;10:27–43. doi: 10.1007/s11523-014-0325-x.
    1. Porta-Sanchez A, Gilbert C, Spears D, et al. Incidence, diagnosis, and management of QT prolongation induced by cancer therapies: a systematic review. J Am Heart Assoc. 2017;6:e007724. doi: 10.1161/JAHA.117.007724.
    1. Usmani SZ, Nahi H, Mateos MV, et al. Subcutaneous delivery of daratumumab in relapsed or refractory multiple myeloma. Blood. 2019;134:668–677. doi: 10.1182/blood.2019000667.

Source: PubMed

3
구독하다