Cardiovascular Health Does Not Change Following High-Intensity Interval Training in Women with Polycystic Ovary Syndrome

Ida Almenning Kiel, Helen Jones, Sofie Lionett, Ragnhild Røsbjørgen, Stian Lydersen, Eszter Vanky, Trine Moholdt, Ida Almenning Kiel, Helen Jones, Sofie Lionett, Ragnhild Røsbjørgen, Stian Lydersen, Eszter Vanky, Trine Moholdt

Abstract

Introduction: polycystic ovary syndrome (PCOS) is associated with cardiovascular disease (CVD) risk factors. First-line therapy for PCOS is lifestyle changes including exercise. We compared CVD risk factors between women with and without PCOS and examined the responses to high-intensity interval training (HIIT).

Methods: women with PCOS were randomized to HIIT (n = 41) or a non-exercise control group (n = 23) for 16 weeks. Women without PCOS (n = 15) were age- and BMI-matched to participants with PCOS and completed 16 weeks of HIIT. CVD markers included blood pressure, heart rate, flow mediated dilatation (FMD), carotid intima-media thickness (IMT), and circulating concentrations of lipids, glucose, insulin, and matrix metalloproteinase-9 (MMP-9).

Results: resting heart rate was higher in women with PCOS than without PCOS (p =0.011) and was reduced after HIIT in women with PCOS (-2.8 beats/min, 95% CI: -5.4, -0.2, p = 0.037). FMD was not significantly different between women with PCOS (5.5%, SD 4.1) and those without PCOS (8.2%, SD 3.9) at baseline. HIIT reduced time-to-peak dilatation of the brachial artery in women with PCOS compared with women without PCOS (-55 s, 95% CI: -96, -13, p = 0.012).

Conclusions: we found little difference in CVD risk factors between women with and without PCOS at baseline, but some indications of endothelial dysfunction in women with PCOS.

Keywords: HIIT; PCOS; cardiovascular disease; exercise; flow-mediated endothelial function; matrix metalloproteinase-9.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study protocol. Women without polycystic ovary syndrome (Non-PCOS) were matched for age body mass index (BMI) to women with polycystic ovary syndrome (PCOS). Low-volume high-intensity interval training (LV-HIIT) and high-volume high-intensity interval training (HV-HIIT) were pooled in the analysis for both women with and without PCOS to improve statistical power. FMD = flow-mediated dilatation, IMT = carotid intima-media thickness, Non-Ex = non-exercise control group.
Figure 2
Figure 2
Effects of 16 weeks of high-intensity interval training or non-exercise: (A) resting diameter (mm); (B) peak diameter (mm); (C) time-to-peak (sec); (D) FMD (%). The PCOS high-intensity interval training group (PCOS HIIT) is depicted in blue bars, the PCOS Non-exercise group (PCOS Non-Ex) in red bars, and the Non-PCOS high-intensity interval training group (Non-PCOS HIIT) in black bars. The bars and error bars represent estimated means and standard error (SE) based on linear mixed model. # Between-group difference (p = 0.012), * Within-group difference (p = 0.038).

References

    1. Wekker V., van Dammen L., Koning A., Heida K.Y., Painter R.C., Limpens J., Laven J.S.E., Roeters van Lennep J.E., Roseboom T.J., Hoek A. Long-term cardiometabolic disease risk in women with PCOS: A systematic review and meta-analysis. Hum. Reprod. Update. 2020;26:942–960. doi: 10.1093/humupd/dmaa029.
    1. Wild R.A., Carmina E., Diamanti-Kandarakis E., Dokras A., Escobar-Morreale H.F., Futterweit W., Lobo R., Norman R.J., Talbott E., Dumesic D.A. Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: A consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J. Clin. Endocrinol. Metab. 2010;95:2038–2049. doi: 10.1210/jc.2009-2724.
    1. Thijssen D.H.J., Bruno R.M., van Mil A., Holder S.M., Faita F., Greyling A., Zock P.L., Taddei S., Deanfield J.E., Luscher T., et al. Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans. Eur. Heart J. 2019;40:2534–2547. doi: 10.1093/eurheartj/ehz350.
    1. Stein J.H., Korcarz C.E., Hurst R.T., Lonn E., Kendall C.B., Mohler E.R., Najjar S.S., Rembold C.M., Post W.S. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: A consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J. Am. Soc. Echocardiogr. 2008;21:93–111. doi: 10.1016/j.echo.2007.11.011. quiz 189–190.
    1. Inaba Y., Chen J.A., Bergmann S.R. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: A meta-analysis. Int. J. Cardiovasc. Imaging. 2010;26:631–640. doi: 10.1007/s10554-010-9616-1.
    1. Lorenz M.W., Markus H.S., Bots M.L., Rosvall M., Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: A systematic review and meta-analysis. Circulation. 2007;115:459–467. doi: 10.1161/CIRCULATIONAHA.106.628875.
    1. Sprung V.S., Atkinson G., Cuthbertson D.J., Pugh C.J., Aziz N., Green D.J., Cable N.T., Jones H. Endothelial function measured using flow-mediated dilation in polycystic ovary syndrome: A meta-analysis of the observational studies. Clin. Endocrinol. 2013;78:438–446. doi: 10.1111/j.1365-2265.2012.04490.x.
    1. Sprung V.S., Jones H., Pugh C.J., Aziz N.F., Daousi C., Kemp G.J., Green D.J., Cable N.T., Cuthbertson D.J. Endothelial dysfunction in hyperandrogenic polycystic ovary syndrome is not explained by either obesity or ectopic fat deposition. Clin. Sci. (Lond.) 2014;126:67–74. doi: 10.1042/CS20130186.
    1. Meyer M.L., Malek A.M., Wild R.A., Korytkowski M.T., Talbott E.O. Carotid artery intima-media thickness in polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update. 2012;18:112–126. doi: 10.1093/humupd/dmr046.
    1. Dambala K., Paschou S.A., Michopoulos A., Siasos G., Goulis D.G., Vavilis D., Tarlatzis B.C. Biomarkers of Endothelial Dysfunction in Women with Polycystic Ovary Syndrome. Angiology. 2019;70:797–801. doi: 10.1177/0003319719840091.
    1. Galis Z.S., Khatri J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ. Res. 2002;90:251–262. doi: 10.1161/res.90.3.251.
    1. Goldman S., Shalev E. MMPS and TIMPS in ovarian physiology and pathophysiology. Front. Biosci. 2004;9:2474–2483. doi: 10.2741/1409.
    1. Sylus A.M., Nandeesha H., Chitra T. Matrix metalloproteinase-9 increases and Interleukin-10 reduces with increase in body mass index in polycystic ovary syndrome: A cross-sectional study. Int. J. Reprod. Biomed. 2020;18:605–610. doi: 10.18502/ijrm.v13i8.7502.
    1. Lewandowski K.C., Komorowski J., O’Callaghan C.J., Tan B.K., Chen J., Prelevic G.M., Randeva H.S. Increased circulating levels of matrix metalloproteinase-2 and -9 in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006;91:1173–1177. doi: 10.1210/jc.2005-0648.
    1. Ranjbaran J., Farimani M., Tavilani H., Ghorbani M., Karimi J., Poormonsefi F., Khodadadi I. Matrix metalloproteinases 2 and 9 and MMP9/NGAL complex activity in women with PCOS. Reproduction. 2016;151:305–311. doi: 10.1530/REP-15-0340.
    1. Liu B., Cai L.Y., Lv H.M., Xia L., Zhang Y.J., Zhang H.X., Guan Y.M. Raised serum levels of matrix metalloproteinase-9 in women with polycystic ovary syndrome and its association with insulin-like growth factor binding protein-1. Gynecol. Endocrinol. 2008;24:285–288. doi: 10.1080/09513590802056995.
    1. Orio F., Muscogiuri G., Giallauria F., Savastano S., Bottiglieri P., Tafuri D., Predotti P., Colarieti G., Colao A., Palomba S. Oral contraceptives versus physical exercise on cardiovascular and metabolic risk factors in women with polycystic ovary syndrome: A randomized controlled trial. Clin. Endocrinol. 2016;85:764–771. doi: 10.1111/cen.13112.
    1. Sprung V.S., Cuthbertson D.J., Pugh C.J., Aziz N., Kemp G.J., Daousi C., Green D.J., Cable N.T., Jones H. Exercise training in polycystic ovarian syndrome enhances flow-mediated dilation in the absence of changes in fatness. Med. Sci. Sports Exerc. 2013;45:2234–2242. doi: 10.1249/MSS.0b013e31829ba9a1.
    1. Almenning I., Rieber-Mohn A., Lundgren K.M., Shetelig Løvvik T., Garnæs K.K., Moholdt T. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study. PLoS ONE. 2015;10:e0138793. doi: 10.1371/journal.pone.0138793.
    1. Rauramaa R., Hassinen M. Exercise Training and Endothelial Function. Curr. Cardiovasc. Risk Rep. 2011;5:323–330. doi: 10.1007/s12170-011-0173-5.
    1. Kadoglou N.P., Vrabas I.S., Sailer N., Kapelouzou A., Fotiadis G., Noussios G., Karayannacos P.E., Angelopoulou N. Exercise ameliorates serum MMP-9 and TIMP-2 levels in patients with type 2 diabetes. Diabetes Metab. 2010;36:144–151. doi: 10.1016/j.diabet.2009.11.004.
    1. Kiel I.A., Lionett S., Parr E.B., Jones H., Røset M.A.H., Salvesen Ø., Vanky E., Moholdt T. Improving reproductive function in women with polycystic ovary syndrome with high-intensity interval training (IMPROV-IT): Study protocol for a two-centre, three-armed randomised controlled trial. BMJ Open. 2020;10:e034733. doi: 10.1136/bmjopen-2019-034733.
    1. Kiel I.A., Lionett S., Parr E.B., Jones H., Røset M.A.H., Salvesen Ø., Hawley J.A., Vanky E., Moholdt T. High-Intensity Interval Training in Polycystic Ovary Syndrome: A Two-Center, Three-Armed Randomized Controlled Trial. Med. Sci. Sports Exerc. 2022 doi: 10.1249/MSS.0000000000002849.
    1. Lionett S., Kiel I.A., Camera D.M., Vanky E., Parr E.B., Lydersen S., Hawley J.A., Moholdt T. Circulating and Adipose Tissue miRNAs in Women with Polycystic Ovary Syndrome and Responses to High-Intensity Interval Training. Front. Physiol. 2020;11:904. doi: 10.3389/fphys.2020.00904.
    1. Lionett S., Kiel I.A., Røsbjørgen R., Lydersen S., Larsen S., Moholdt T. Absent Exercise-Induced Improvements in Fat Oxidation in Women with Polycystic Ovary Syndrome after High-Intensity Interval Training. Front. Physiol. 2021;12:649794. doi: 10.3389/fphys.2021.649794.
    1. The Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS) Hum. Reprod. 2004;19:41–47. doi: 10.1093/humrep/deh098.
    1. Atkinson G., Batterham A.M. The percentage flow-mediated dilation index: A large-sample investigation of its appropriateness, potential for bias and causal nexus in vascular medicine. Vasc. Med. 2013;18:354–365. doi: 10.1177/1358863X13508446.
    1. Touboul P.J., Hennerici M.G., Meairs S., Adams H., Amarenco P., Bornstein N., Csiba L., Desvarieux M., Ebrahim S., Hernandez Hernandez R., et al. Mannheim carotid intima-media thickness and plaque consensus (2004–2006–2011). An update on behalf of the advisory board of the 3rd, 4th and 5th watching the risk symposia, at the 13th, 15th and 20th European Stroke Conferences, Mannheim, Germany, 2004, Brussels, Belgium, 2006, and Hamburg, Germany, 2011. Cerebrovasc. Dis. 2012;34:290–296. doi: 10.1159/000343145.
    1. Pradhan S., Gautam K., Pyakurel D. Comparison of calculated LDL-cholesterol using the Friedewald formula and de Cordova formula with a directly measured LDL-cholesterol in Nepalese population. Pract. Lab. Med. 2020;20:e00165. doi: 10.1016/j.plabm.2020.e00165.
    1. Gerlach R.F., Demacq C., Jung K., Tanus-Santos J.E. Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (MMP)-9 levels in serum versus plasma. Clin. Biochem. 2007;40:119–123. doi: 10.1016/j.clinbiochem.2006.10.007.
    1. Lee K., Kang I., Mack W.J., Mortimer J., Sattler F., Salem G., Dieli-Conwright C.M. Effect of High Intensity Interval Training on Matrix Metalloproteinases in Women with Breast Cancer Receiving Anthracycline-Based Chemotherapy. Sci. Rep. 2020;10:5839. doi: 10.1038/s41598-020-61927-x.
    1. Twisk J., Bosman L., Hoekstra T., Rijnhart J., Welten M., Heymans M. Different ways to estimate treatment effects in randomised controlled trials. Contemp. Clin. Trials Commun. 2018;10:80–85. doi: 10.1016/j.conctc.2018.03.008.
    1. Cussons A.J., Watts G.F., Stuckey B.G. Dissociation of endothelial function and arterial stiffness in nonobese women with polycystic ovary syndrome (PCOS) Clin. Endocrinol. 2009;71:808–814. doi: 10.1111/j.1365-2265.2009.03598.x.
    1. Carmina E., Lobo R.A. Is There Really Increased Cardiovascular Morbidity in Women with Polycystic Ovary Syndrome? J. Womens Health. 2018;27:1385–1388. doi: 10.1089/jwh.2018.7162.
    1. Daskalopoulos G.N., Karkanaki A., Karagiannis A., Mikhailidis D.P., Athyros V.G. Is the risk for cardiovascular disease increased in all phenotypes of the polycystic ovary syndrome? Angiology. 2011;62:285–290. doi: 10.1177/0003319711399571.
    1. Gomes V.A., Vieira C.S., Jacob-Ferreira A.L., Belo V.A., Soares G.M., Fernandes J.B., Ferriani R.A., Tanus-Santos J.E. Imbalanced circulating matrix metalloproteinases in polycystic ovary syndrome. Mol. Cell. Biochem. 2011;353:251–257. doi: 10.1007/s11010-011-0793-6.
    1. Fiuza-Luces C., Santos-Lozano A., Joyner M., Carrera-Bastos P., Picazo O., Zugaza J.L., Izquierdo M., Ruilope L.M., Lucia A. Exercise benefits in cardiovascular disease: Beyond attenuation of traditional risk factors. Nat. Rev. Cardiol. 2018;15:731–743. doi: 10.1038/s41569-018-0065-1.
    1. Woodward A., Klonizakis M., Broom D. Exercise and Polycystic Ovary Syndrome. Adv. Exp. Med. Biol. 2020;1228:123–136. doi: 10.1007/978-981-15-1792-1_8.
    1. Benham J.L., Yamamoto J.M., Friedenreich C.M., Rabi D.M., Sigal R.J. Role of exercise training in polycystic ovary syndrome: A systematic review and meta-analysis. Clin. Obes. 2018;8:275–284. doi: 10.1111/cob.12258.
    1. Patten R.K., Boyle R.A., Moholdt T., Kiel I., Hopkins W.G., Harrison C.L., Stepto N.K. Exercise Interventions in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Physiol. 2020;11:606. doi: 10.3389/fphys.2020.00606.
    1. Park J., Park H. Effects of 6 months of aerobic and resistance exercise training on carotid artery intima media thickness in overweight and obese older women. Geriatr. Gerontol. Int. 2017;17:2304–2310. doi: 10.1111/ggi.12972.
    1. Kim D.K., Jee J.H., Park W.H. Effects of Aerobic and Resistance Exercise Training on Carotid Intima-Media Thickness in Abdominal Obese Women. Metab. Syndr. Relat. Disord. 2021;19:200–204. doi: 10.1089/met.2020.0118.
    1. Carmina E., Orio F., Palomba S., Longo R.A., Cascella T., Colao A., Lombardi G., Rini G.B., Lobo R.A. Endothelial dysfunction in PCOS: Role of obesity and adipose hormones. Am. J. Med. 2006;119:356.e1–356.e6. doi: 10.1016/j.amjmed.2005.10.059.

Source: PubMed

3
구독하다