Interleukin-36 Cytokine/Receptor Signaling: A New Target for Tissue Fibrosis

Elaina Melton, Hongyu Qiu, Elaina Melton, Hongyu Qiu

Abstract

Tissue fibrosis is a major unresolved medical problem, which impairs the function of various systems. The molecular mechanisms involved are poorly understood, which hinders the development of effective therapeutic strategies. Emerging evidence from recent studies indicates that interleukin 36 (IL-36) and the corresponding receptor (IL-36R), a newly-characterized cytokine/receptor signaling complex involved in immune-inflammation, play an important role in the pathogenesis of fibrosis in multiple tissues. This review focuses on recent experimental findings, which implicate IL-36R and its associated cytokines in different forms of organ fibrosis. Specifically, it outlines the molecular basis and biological function of IL-36R in normal cells and sums up the pathological role in the development of fibrosis in the lung, kidney, heart, intestine, and pancreas. We also summarize the new progress in the IL-36/IL-36R-related mechanisms involved in tissue fibrosis and enclose the potential of IL-36R inhibition as a therapeutic strategy to combat pro-fibrotic pathologies. Given its high association with disease, gaining new insight into the immuno-mechanisms that contribute to tissue fibrosis could have a significant impact on human health.

Keywords: IL-1 receptor family; IL-36; IL-36R; IL-38; inflammation; tissue fibrosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Structural and molecular depiction of interleukin 36 receptor (IL-36R) signaling cascade. Upon binding to its agonists (IL-36α, IL-36β, or IL-36γ), IL-36R heterdimerizes with its co-receptor IL-1R3 (IL-1RAcP). The formation of the IL-36R/IL-36/IL-1R3 complex results in the recruitment of MyD88 and IRAKs, which subsequently activates the MAPK and NFKB pathways. Activation of MAPK results in the transcription of inflammatory genes regulated by AP-1, while the phosphorylation of IKβα (a negative regulator of NFKB) by Ikβ kinase leads to the translocation of NFKB to the nucleus, which aids in the transcription of genes important for mediating inflammation. The IL-36R mediated activation of pro-inflammatory gene expression can be inhibited by IL-36Ra or IL-38. Extracellular domain (ECD), toll/interleukin-1 receptor domain (TIR), myeloid differentiation primary response 88 (MyD88), interleukin-1 receptor associated kinases like 1 and 2 (IRAKs), mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), NF-Kappa-B Inhibitor Alpha (IKβα), and nuclear factor kappa light chain enhancer of activated B cells (NFKB), CCl, C-C motif chemokine ligand; CXCL, C-X-C motif chemokine ligand; IFN, interferon.
Figure 2
Figure 2
Major contributions of immune and non-immune cells in tissue fibrosis. During fibrosis, macrophages and T cells promote fibrosis via activation of myofibroblasts and release of pro-fibrotic inflammatory factors. Non-immune cells can also be transformed into “myofibroblast-like” cells to produce collagen factors that advance the progression of fibrosis. TGF, transforming growth factor; PDGF, platelet-derived growth factor; EMT, epithelial to mesenchymal transformation: EndMT, endothelial to mesenchymal transformation; ECM, extracellular matrix; TSLP, thymic stromal lymphopoietin; Endothelin-1 (ET).
Figure 3
Figure 3
Potential molecular mechanisms of IL-36R induced tissue fibrosis. IL-36R signaling promotes fibrosis development in tissues by (1) regulating dendritic cell and T cell immune responses through a MyD88 dependent pathway and (2) driving inflammation, extracellular matrix (ECM), and fibrogenic gene upregulation in fibroblasts. Nod-like receptor family pyrin domain containing 3 (NLRP3).

References

    1. Wynn T.A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 2004;4:583–594. doi: 10.1038/nri1412.
    1. Zeisberg M., Kalluri R. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 2013;304:C216–C225. doi: 10.1152/ajpcell.00328.2012.
    1. Kisseleva T., Brenner D.A. Fibrogenesis of parenchymal organs. Proc. Am. Thorac. Soc. 2008;5:338–342. doi: 10.1513/pats.200711-168DR.
    1. Abraham D.J., Shiwen X., Black C.M., Sa S., Xu Y., Leask A. Tumor necrosis factor alpha suppresses the induction of connective tissue growth factor by transforming growth factor-beta in normal and scleroderma fibroblasts. J. Biol. Chem. 2000;275:15220–15225. doi: 10.1074/jbc.275.20.15220.
    1. Kim Y., Ratziu V., Choi S.G., Lalazar A., Theiss G., Dang Q., Kim S.J., Friedman S.L. Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J. Biol. Chem. 1998;273:33750–33758. doi: 10.1074/jbc.273.50.33750.
    1. Moon J.O., Welch T.P., Gonzalez F.J., Copple B.L. Reduced liver fibrosis in hypoxia-inducible factor-1alpha-deficient mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2009;296:G582–G592. doi: 10.1152/ajpgi.90368.2008.
    1. Helmig S., Belwe A., Schneider J. Association of transforming growth factor beta1 gene polymorphisms and asbestos-induced fibrosis and tumors. J. Investig. Med. 2009;57:655–661. doi: 10.2310/JIM.0b013e3181a4f32a.
    1. Border W.A., Okuda S., Languino L.R., Sporn M.B., Ruoslahti E. Suppression of experimental glomerulonephritis by antiserum against transforming growth factor beta 1. Nature. 1990;346:371–374. doi: 10.1038/346371a0.
    1. Kuwahara F., Kai H., Tokuda K., Kai M., Takeshita A., Egashira K., Imaizumi T. Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation. 2002;106:130–135. doi: 10.1161/01.CIR.0000020689.12472.E0.
    1. Richeldi L., du Bois R.M. Pirfenidone in idiopathic pulmonary fibrosis: The CAPACITY program. Expert Rev. Respir. Med. 2011;5:473–481. doi: 10.1586/ers.11.52.
    1. Nakanishi H., Sugiura T., Streisand J.B., Lonning S.M., Roberts J.D., Jr. TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am. J. Physiol. Lung Cell Mol. Physiol. 2007;293:L151–L161. doi: 10.1152/ajplung.00389.2006.
    1. Steen E.H., Wang X., Balaji S., Butte M.J., Bollyky P.L., Keswani S.G. The Role of the Anti-Inflammatory Cytokine Interleukin-10 in Tissue Fibrosis. Adv. Wound Care. 2020;9:184–198. doi: 10.1089/wound.2019.1032.
    1. Shamskhou E.A., Kratochvil M.J., Orcholski M.E., Nagy N., Kaber G., Steen E., Balaji S., Yuan K., Keswani S., Danielson B., et al. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials. 2019;203:52–62. doi: 10.1016/j.biomaterials.2019.02.017.
    1. Fields J.K., Gunther S., Sundberg E.J. Structural Basis of IL-1 Family Cytokine Signaling. Front. Immunol. 2019;10:1412. doi: 10.3389/fimmu.2019.01412.
    1. Boraschi D., Italiani P., Weil S., Martin M.U. The family of the interleukin-1 receptors. Immunol. Rev. 2018;281:197–232. doi: 10.1111/imr.12606.
    1. Boraschi D., Tagliabue A. The interleukin-1 receptor family. Semin. Immunol. 2013;25:394–407. doi: 10.1016/j.smim.2013.10.023.
    1. Mantovani A., Dinarello C.A., Molgora M., Garlanda C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity. 2019;50:778–795. doi: 10.1016/j.immuni.2019.03.012.
    1. Kotsiou O.S., Gourgoulianis K.I., Zarogiannis S.G. IL-33/ST2 Axis in Organ Fibrosis. Front. Immunol. 2018;9:2432. doi: 10.3389/fimmu.2018.02432.
    1. Wang E.W., Jia X.S., Ruan C.W., Ge Z.R. miR-487b mitigates chronic heart failure through inhibition of the IL-33/ST2 signaling pathway. Oncotarget. 2017;8:51688–51702. doi: 10.18632/oncotarget.18393.
    1. Xu D., Mu R., Wei X. The Roles of IL-1 Family Cytokines in the Pathogenesis of Systemic Sclerosis. Front. Immunol. 2019;10:2025. doi: 10.3389/fimmu.2019.02025.
    1. Chi H.H., Hua K.F., Lin Y.C., Chu C.L., Hsieh C.Y., Hsu Y.J., Ka S.M., Tsai Y.L., Liu F.C., Chen A. IL-36 Signaling Facilitates Activation of the NLRP3 Inflammasome and IL-23/IL-17 Axis in Renal Inflammation and Fibrosis. J. Am. Soc. Nephrol. 2017;28:2022–2037. doi: 10.1681/ASN.2016080840.
    1. Yuan Z.C., Xu W.D., Liu X.Y., Liu X.Y., Huang A.F., Su L.C. Biology of IL-36 Signaling and Its Role in Systemic Inflammatory Diseases. Front. Immunol. 2019;10:2532. doi: 10.3389/fimmu.2019.02532.
    1. Bassoy E.Y., Towne J.E., Gabay C. Regulation and function of interleukin-36 cytokines. Immunol. Rev. 2018;281:169–178. doi: 10.1111/imr.12610.
    1. Ding L., Wang X., Hong X., Lu L., Liu D. IL-36 cytokines in autoimmunity and inflammatory disease. Oncotarget. 2018;9:2895–2901. doi: 10.18632/oncotarget.22814.
    1. Neurath M.F. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev. 2020 doi: 10.1016/j.cytogfr.2020.06.006.
    1. Lovenberg T.W., Crowe P.D., Liu C., Chalmers D.T., Liu X.J., Liaw C., Clevenger W., Oltersdorf T., De Souza E.B., Maki R.A. Cloning of a cDNA encoding a novel interleukin-1 receptor related protein (IL 1R-rp2) J. NeuroImmunol. 1996;70:113–122. doi: 10.1016/S0165-5728(96)00047-1.
    1. Rivers-Auty J., Daniels M.J.D., Colliver I., Robertson D.L., Brough D. Redefining the ancestral origins of the interleukin-1 superfamily. Nat. Commun. 2018;9:1156. doi: 10.1038/s41467-018-03362-1.
    1. Fagerberg L., Hallstrom B.M., Oksvold P., Kampf C., Djureinovic D., Odeberg J., Habuka M., Tahmasebpoor S., Danielsson A., Edlund K., et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600.
    1. Born T.L., Smith D.E., Garka K.E., Renshaw B.R., Bertles J.S., Sims J.E. Identification and characterization of two members of a novel class of the interleukin-1 receptor (IL-1R) family. Delineation Of a new class of IL-1R-related proteins based on signaling. J. Biol. Chem. 2000;275:41528. doi: 10.1074/jbc.M004077200.
    1. Larson E.T., Brennan D.L., Hickey E.R., Ganesan R., Kroe-Barrett R., Farrow N.A. X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains. Protein Sci. 2020;29:1679–1686. doi: 10.1002/pro.3862.
    1. Towne J.E., Garka K.E., Renshaw B.R., Virca G.D., Sims J.E. Interleukin (IL)-1F6, IL-1F8, and IL-1F9 signal through IL-1Rrp2 and IL-1RAcP to activate the pathway leading to NF-kappaB and MAPKs. J. Biol. Chem. 2004;279:13677–13688. doi: 10.1074/jbc.M400117200.
    1. Muzio M., Ni J., Feng P., Dixit V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 1997;278:1612–1615. doi: 10.1126/science.278.5343.1612.
    1. Medzhitov R., Preston-Hurlburt P., Kopp E., Stadlen A., Chen C., Ghosh S., Janeway C.A., Jr. MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell. 1998;2:253–258. doi: 10.1016/S1097-2765(00)80136-7.
    1. Wesche H., Henzel W.J., Shillinglaw W., Li S., Cao Z. MyD88: An adapter that recruits IRAK to the IL-1 receptor complex. Immunity. 1997;7:837–847. doi: 10.1016/S1074-7613(00)80402-1.
    1. Henry C.M., Sullivan G.P., Clancy D.M., Afonina I.S., Kulms D., Martin S.J. Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines. Cell Rep. 2016;14:708–722. doi: 10.1016/j.celrep.2015.12.072.
    1. Towne J.E., Renshaw B.R., Douangpanya J., Lipsky B.P., Shen M., Gabel C.A., Sims J.E. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36alpha, IL-36beta, and IL-36gamma) or antagonist (IL-36Ra) activity. J. Biol. Chem. 2011;286:42594–42602. doi: 10.1074/jbc.M111.267922.
    1. Karin M., Ben-Neriah Y. Phosphorylation meets ubiquitination: The control of NF-[kappa]B activity. Annu Rev. Immunol. 2000;18:621–663. doi: 10.1146/annurev.immunol.18.1.621.
    1. Yi G., Ybe J.A., Saha S.S., Caviness G., Raymond E., Ganesan R., Mbow M.L., Kao C.C. Structural and Functional Attributes of the Interleukin-36 Receptor. J. Biol. Chem. 2016;291:16597–16609. doi: 10.1074/jbc.M116.723064.
    1. Bridgewood C., Stacey M., Alase A., Lagos D., Graham A., Wittmann M. IL-36gamma has proinflammatory effects on human endothelial cells. Exp. Dermatol. 2017;26:402–408. doi: 10.1111/exd.13228.
    1. Chustz R.T., Nagarkar D.R., Poposki J.A., Favoreto S., Jr., Avila P.C., Schleimer R.P., Kato A. Regulation and function of the IL-1 family cytokine IL-1F9 in human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 2011;45:145–153. doi: 10.1165/rcmb.2010-0075OC.
    1. van de Veerdonk F.L., Netea M.G. New Insights in the Immunobiology of IL-1 Family Members. Front. Immunol. 2013;4:167. doi: 10.3389/fimmu.2013.00167.
    1. Vigne S., Palmer G., Lamacchia C., Martin P., Talabot-Ayer D., Rodriguez E., Ronchi F., Sallusto F., Dinh H., Sims J.E., et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood. 2011;118:5813–5823. doi: 10.1182/blood-2011-05-356873.
    1. Ramadas R.A., Ewart S.L., Iwakura Y., Medoff B.D., LeVine A.M. IL-36alpha exerts pro-inflammatory effects in the lungs of mice. PLoS ONE. 2012;7:e45784. doi: 10.1371/journal.pone.0045784.
    1. Mutamba S., Allison A., Mahida Y., Barrow P., Foster N. Expression of IL-1Rrp2 by human myelomonocytic cells is unique to DCs and facilitates DC maturation by IL-1F8 and IL-1F9. Eur. J. Immunol. 2012;42:607–617. doi: 10.1002/eji.201142035.
    1. Harusato A., Abo H., Ngo V.L., Yi S.W., Mitsutake K., Osuka S., Kohlmeier J.E., Li J.D., Gewirtz A.T., Nusrat A., et al. IL-36gamma signaling controls the induced regulatory T cell-Th9 cell balance via NFkappaB activation and STAT transcription factors. Mucosal Immunol. 2017;10:1455–1467. doi: 10.1038/mi.2017.21.
    1. Marrakchi S., Guigue P., Renshaw B.R., Puel A., Pei X.Y., Fraitag S., Zribi J., Bal E., Cluzeau C., Chrabieh M., et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N. Engl. J. Med. 2011;365:620–628. doi: 10.1056/NEJMoa1013068.
    1. Cowen E.W., Goldbach-Mansky R. DIRA, DITRA, and new insights into pathways of skin inflammation: what’s in a name? Arch. Dermatol. 2012;148:381–384. doi: 10.1001/archdermatol.2011.3014.
    1. Bachelez H., Choon S.E., Marrakchi S., Burden A.D., Tsai T.F., Morita A., Turki H., Hall D.B., Shear M., Baum P., et al. Inhibition of the Interleukin-36 Pathway for the Treatment of Generalized Pustular Psoriasis. N. Engl. J. Med. 2019;380:981–983. doi: 10.1056/NEJMc1811317.
    1. Blumberg H., Dinh H., Trueblood E.S., Pretorius J., Kugler D., Weng N., Kanaly S.T., Towne J.E., Willis C.R., Kuechle M.K., et al. Opposing activities of two novel members of the IL-1 ligand family regulate skin inflammation. J. Exp. Med. 2007;204:2603–2614. doi: 10.1084/jem.20070157.
    1. Ramani K., Biswas P.S. Interleukin-17: Friend or foe in organ fibrosis. Cytokine. 2019;120:282–288. doi: 10.1016/j.cyto.2018.11.003.
    1. Mack M. Inflammation and fibrosis. Matrix Biol. 2018;68-69:106–121. doi: 10.1016/j.matbio.2017.11.010.
    1. Ueha S., Shand F.H., Matsushima K. Cellular and molecular mechanisms of chronic inflammation-associated organ fibrosis. Front. Immunol. 2012;3:71. doi: 10.3389/fimmu.2012.00071.
    1. Brown M., O’Reilly S. The immunopathogenesis of fibrosis in systemic sclerosis. Clin. Exp. Immunol. 2019;195:310–321. doi: 10.1111/cei.13238.
    1. Jun J.I., Lau L.F. Resolution of organ fibrosis. J. Clin. Investig. 2018;128:97–107. doi: 10.1172/JCI93563.
    1. Hochreiter-Hufford A., Ravichandran K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 2013;5:a008748. doi: 10.1101/cshperspect.a008748.
    1. Wynn T.A., Vannella K.M. Macrophages in Tissue Repair, Regeneration, and Fibrosis. Immunity. 2016;44:450–462. doi: 10.1016/j.immuni.2016.02.015.
    1. Biernacka A., Dobaczewski M., Frangogiannis N.G. TGF-beta signaling in fibrosis. Growth Factors. 2011;29:196–202. doi: 10.3109/08977194.2011.595714.
    1. Strutz F., Okada H., Lo C.W., Danoff T., Carone R.L., Tomaszewski J.E., Neilson E.G. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 1995;130:393–405. doi: 10.1083/jcb.130.2.393.
    1. Lin S.L., Kisseleva T., Brenner D.A., Duffield J.S. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am. J. Pathol. 2008;173:1617–1627. doi: 10.2353/ajpath.2008.080433.
    1. Ronnov-Jessen L., Petersen O.W., Koteliansky V.E., Bissell M.J. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J. Clin. Investig. 1995;95:859–873. doi: 10.1172/JCI117736.
    1. Zeisberg E.M., Tarnavski O., Zeisberg M., Dorfman A.L., McMullen J.R., Gustafsson E., Chandraker A., Yuan X., Pu W.T., Roberts A.B., et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med. 2007;13:952–961. doi: 10.1038/nm1613.
    1. Perez L., Munoz-Durango N., Riedel C.A., Echeverria C., Kalergis A.M., Cabello-Verrugio C., Simon F. Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev. 2017;33:41–54. doi: 10.1016/j.cytogfr.2016.09.002.
    1. Abe R., Donnelly S.C., Peng T., Bucala R., Metz C.N. Peripheral blood fibrocytes: Differentiation pathway and migration to wound sites. J. Immunol. 2001;166:7556–7562. doi: 10.4049/jimmunol.166.12.7556.
    1. Galligan C.L., Keystone E.C., Fish E.N. Fibrocyte and T cell interactions promote disease pathogenesis in rheumatoid arthritis. J. Autoimmun. 2016;69:38–50. doi: 10.1016/j.jaut.2016.02.008.
    1. Hong K.M., Belperio J.A., Keane M.P., Burdick M.D., Strieter R.M. Differentiation of human circulating fibrocytes as mediated by transforming growth factor-beta and peroxisome proliferator-activated receptor gamma. J. Biol. Chem. 2007;282:22910–22920. doi: 10.1074/jbc.M703597200.
    1. Wu C.F., Chiang W.C., Lai C.F., Chang F.C., Chen Y.T., Chou Y.H., Wu T.H., Linn G.R., Ling H., Wu K.D., et al. Transforming growth factor beta-1 stimulates profibrotic epithelial signaling to activate pericyte-myofibroblast transition in obstructive kidney fibrosis. Am. J. Pathol. 2013;182:118–131. doi: 10.1016/j.ajpath.2012.09.009.
    1. Chen Y.T., Chang F.C., Wu C.F., Chou Y.H., Hsu H.L., Chiang W.C., Shen J., Chen Y.M., Wu K.D., Tsai T.J., et al. Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. Kidney Int. 2011;80:1170–1181. doi: 10.1038/ki.2011.208.
    1. Leaf I.A., Nakagawa S., Johnson B.G., Cha J.J., Mittelsteadt K., Guckian K.M., Gomez I.G., Altemeier W.A., Duffield J.S. Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury. J. Clin. Investig. 2017;127:321–334. doi: 10.1172/JCI87532.
    1. Herrera J., Henke C.A., Bitterman P.B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Investig. 2018;128:45–53. doi: 10.1172/JCI93557.
    1. Parker M.W., Rossi D., Peterson M., Smith K., Sikstrom K., White E.S., Connett J.E., Henke C.A., Larsson O., Bitterman P.B. Fibrotic extracellular matrix activates a profibrotic positive feedback loop. J. Clin. Investig. 2014;124:1622–1635. doi: 10.1172/JCI71386.
    1. Wick G., Grundtman C., Mayerl C., Wimpissinger T.F., Feichtinger J., Zelger B., Sgonc R., Wolfram D. The immunology of fibrosis. Annu. Rev. Immunol. 2013;31:107–135. doi: 10.1146/annurev-immunol-032712-095937.
    1. Borthwick L.A., Wynn T.A., Fisher A.J. Cytokine mediated tissue fibrosis. Biochim. Biophys. Acta. 2013;1832:1049–1060. doi: 10.1016/j.bbadis.2012.09.014.
    1. Gieseck R.L., 3rd, Wilson M.S., Wynn T.A. Type 2 immunity in tissue repair and fibrosis. Nat. Rev. Immunol. 2018;18:62–76. doi: 10.1038/nri.2017.90.
    1. Lo Re S., Lecocq M., Uwambayinema F., Yakoub Y., Delos M., Demoulin J.B., Lucas S., Sparwasser T., Renauld J.C., Lison D., et al. Platelet-derived growth factor-producing CD4+ Foxp3+ regulatory T lymphocytes promote lung fibrosis. Am. J. Respir. Crit. Care Med. 2011;184:1270–1281. doi: 10.1164/rccm.201103-0516OC.
    1. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2008;214:199–210. doi: 10.1002/path.2277.
    1. Gaffen S.L. Recent advances in the IL-17 cytokine family. Curr. Opin. Immunol. 2011;23:613–619. doi: 10.1016/j.coi.2011.07.006.
    1. Cortez D.M., Feldman M.D., Mummidi S., Valente A.J., Steffensen B., Vincenti M., Barnes J.L., Chandrasekar B. IL-17 stimulates MMP-1 expression in primary human cardiac fibroblasts via p38 MAPK- and ERK1/2-dependent C/EBP-beta, NF-kappaB, and AP-1 activation. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H3356–H3365. doi: 10.1152/ajpheart.00928.2007.
    1. Leung G., Wang A., Fernando M., Phan V.C., McKay D.M. Bone marrow-derived alternatively activated macrophages reduce colitis without promoting fibrosis: Participation of IL-10. Am. J. Physiol. Gastrointest. Liver Physiol. 2013;304:G781–G792. doi: 10.1152/ajpgi.00055.2013.
    1. Baroni G.S., D’Ambrosio L., Curto P., Casini A., Mancini R., Jezequel A.M., Benedetti A. Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology. 1996;23:1189–1199. doi: 10.1002/hep.510230538.
    1. Oldroyd S.D., Thomas G.L., Gabbiani G., El Nahas A.M. Interferon-gamma inhibits experimental renal fibrosis. Kidney Int. 1999;56:2116–2127. doi: 10.1046/j.1523-1755.1999.00775.x.
    1. Iimuro Y., Nishio T., Morimoto T., Nitta T., Stefanovic B., Choi S.K., Brenner D.A., Yamaoka Y. Delivery of matrix metalloproteinase-1 attenuates established liver fibrosis in the rat. Gastroenterology. 2003;124:445–458. doi: 10.1053/gast.2003.50063.
    1. Foronjy R.F., Sun J., Lemaitre V., D’Armiento J.M. Transgenic expression of matrix metalloproteinase-1 inhibits myocardial fibrosis and prevents the transition to heart failure in a pressure overload mouse model. Hypertens. Res. 2008;31:725–735. doi: 10.1291/hypres.31.725.
    1. Thannickal V.J., Zhou Y., Gaggar A., Duncan S.R. Fibrosis: Ultimate and proximate causes. J. Clin. Investig. 2014;124:4673–4677. doi: 10.1172/JCI74368.
    1. Liu F., Lagares D., Choi K.M., Stopfer L., Marinkovic A., Vrbanac V., Probst C.K., Hiemer S.E., Sisson T.H., Horowitz J.C., et al. Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2015;308:L344–L357. doi: 10.1152/ajplung.00300.2014.
    1. Tschumperlin D.J., Ligresti G., Hilscher M.B., Shah V.H. Mechanosensing and fibrosis. J. Clin. Investig. 2018;128:74–84. doi: 10.1172/JCI93561.
    1. Giannoudaki E., Hernandez-Santana Y.E., Mulfaul K., Doyle S.L., Hams E., Fallon P.G., Mat A., O’Shea D., Kopf M., Hogan A.E., et al. Interleukin-36 cytokines alter the intestinal microbiome and can protect against obesity and metabolic dysfunction. Nat. Commun. 2019;10:4003. doi: 10.1038/s41467-019-11944-w.
    1. Scheibe K., Kersten C., Schmied A., Vieth M., Primbs T., Carle B., Knieling F., Claussen J., Klimowicz A.C., Zheng J., et al. Inhibiting Interleukin 36 Receptor Signaling Reduces Fibrosis in Mice With Chronic Intestinal Inflammation. Gastroenterology. 2019;156:1082–1097. doi: 10.1053/j.gastro.2018.11.029.
    1. Xu Z., Yuan X., Gao Q., Li Y., Li M. Interleukin-38 overexpression prevents bleomycin-induced mouse pulmonary fibrosis. Naunyn Schmiedebergs Arch. Pharmacol. 2020 doi: 10.1007/s00210-020-01920-3.
    1. Wei Y., Lan Y., Zhong Y., Yu K., Xu W., Zhu R., Sun H., Ding Y., Wang Y., Zeng Q. Interleukin-38 alleviates cardiac remodelling after myocardial infarction. J. Cell Mol. Med. 2020;24:371–384. doi: 10.1111/jcmm.14741.
    1. Sommerfeld S.D., Cherry C., Schwab R.M., Chung L., Maestas D.R., Jr., Laffont P., Stein J.E., Tam A., Ganguly S., Housseau F., et al. Interleukin-36gamma-producing macrophages drive IL-17-mediated fibrosis. Sci. Immunol. 2019;4 doi: 10.1126/sciimmunol.aax4783.
    1. Maron-Gutierrez T., Castiglione R.C., Xisto D.G., Oliveira M.G., Cruz F.F., Pecanha R., Carreira-Junior H., Ornellas D.S., Moraes M.O., Takiya C.M., et al. Bone marrow-derived mononuclear cell therapy attenuates silica-induced lung fibrosis. Eur. Respir. J. 2011;37:1217–1225. doi: 10.1183/09031936.00205009.
    1. Tan H.L., Rosenthal M. IL-17 in lung disease: Friend or foe? Thorax. 2013;68:788–790. doi: 10.1136/thoraxjnl-2013-203307.
    1. Borthwick L.A. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin ImmunoPathol. 2016;38:517–534. doi: 10.1007/s00281-016-0559-z.
    1. Gabay C., Towne J.E. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J. Leukoc. Biol. 2015;97:645–652. doi: 10.1189/jlb.3RI1014-495R.
    1. Parsanejad R., Fields W.R., Steichen T.J., Bombick B.R., Doolittle D.J. Distinct regulatory profiles of interleukins and chemokines in response to cigarette smoke condensate in normal human bronchial epithelial (NHBE) cells. J. Interferon Cytokine Res. 2008;28:703–712. doi: 10.1089/jir.2008.0139.
    1. Celada L.J., Kropski J.A., Herazo-Maya J.D., Luo W., Creecy A., Abad A.T., Chioma O.S., Lee G., Hassell N.E., Shaginurova G.I., et al. PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-beta1 production. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aar8356.
    1. Wu L., Ong S., Talor M.V., Barin J.G., Baldeviano G.C., Kass D.A., Bedja D., Zhang H., Sheikh A., Margolick J.B., et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J. Exp. Med. 2014;211:1449–1464. doi: 10.1084/jem.20132126.
    1. Zeisberg M., Neilson E.G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 2010;21:1819–1834. doi: 10.1681/ASN.2010080793.
    1. Ichii O., Otsuka S., Sasaki N., Yabuki A., Ohta H., Takiguchi M., Hashimoto Y., Endoh D., Kon Y. Local overexpression of interleukin-1 family, member 6 relates to the development of tubulointerstitial lesions. Lab. Investig. 2010;90:459–475. doi: 10.1038/labinvest.2009.148.
    1. Nishikawa H., Taniguchi Y., Matsumoto T., Arima N., Masaki M., Shimamura Y., Inoue K., Horino T., Fujimoto S., Ohko K., et al. Knockout of the interleukin-36 receptor protects against renal ischemia-reperfusion injury by reduction of proinflammatory cytokines. Kidney Int. 2018;93:599–614. doi: 10.1016/j.kint.2017.09.017.
    1. Ichii O., Kimura J., Okamura T., Horino T., Nakamura T., Sasaki H., Elewa Y.H.A., Kon Y. IL-36alpha Regulates Tubulointerstitial Inflammation in the Mouse Kidney. Front. Immunol. 2017;8:1346. doi: 10.3389/fimmu.2017.01346.
    1. Kozawa S., Ueda R., Urayama K., Sagawa F., Endo S., Shiizaki K., Kurosu H., Maria de Almeida G., Hasan S.M., Nakazato K., et al. The Body-wide Transcriptome Landscape of Disease Models. iScience. 2018;2:238–268. doi: 10.1016/j.isci.2018.03.014.
    1. Cowling R.T., Kupsky D., Kahn A.M., Daniels L.B., Greenberg B.H. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl. Res. 2019;209:138–155. doi: 10.1016/j.trsl.2019.03.004.
    1. Frangogiannis N.G. Regulation of the inflammatory response in cardiac repair. Circ. Res. 2012;110:159–173. doi: 10.1161/CIRCRESAHA.111.243162.
    1. Sanada S., Hakuno D., Higgins L.J., Schreiter E.R., McKenzie A.N., Lee R.T. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Investig. 2007;117:1538–1549. doi: 10.1172/JCI30634.
    1. Daniels L.B., Bayes-Genis A. Using ST2 in cardiovascular patients: A review. Future Cardiol. 2014;10:525–539. doi: 10.2217/fca.14.36.
    1. Frangogiannis N.G. The immune system and cardiac repair. Pharmacol. Res. 2008;58:88–111. doi: 10.1016/j.phrs.2008.06.007.
    1. Martinez E.C., Lilyanna S., Wang P., Vardy L.A., Jiang X., Armugam A., Jeyaseelan K., Richards A.M. MicroRNA-31 promotes adverse cardiac remodeling and dysfunction in ischemic heart disease. J. Mol. Cell Cardiol. 2017;112:27–39. doi: 10.1016/j.yjmcc.2017.08.013.
    1. Zhong Y., Yu K., Wang X., Wang X., Ji Q., Zeng Q. Elevated Plasma IL-38 Concentrations in Patients with Acute ST-Segment Elevation Myocardial Infarction and Their Dynamics after Reperfusion Treatment. Mediators Inflamm. 2015;2015:490120. doi: 10.1155/2015/490120.
    1. Ippolito C., Colucci R., Segnani C., Errede M., Girolamo F., Virgintino D., Dolfi A., Tirotta E., Buccianti P., Di Candio G., et al. Fibrotic and Vascular Remodelling of Colonic Wall in Patients with Active Ulcerative Colitis. J. Crohns Colitis. 2016;10:1194–1204. doi: 10.1093/ecco-jcc/jjw076.
    1. Gordon I.O., Agrawal N., Goldblum J.R., Fiocchi C., Rieder F. Fibrosis in ulcerative colitis: Mechanisms, features, and consequences of a neglected problem. Inflamm. Bowel Dis. 2014;20:2198–2206. doi: 10.1097/MIB.0000000000000080.
    1. Colombel J.F., Keir M.E., Scherl A., Zhao R., de Hertogh G., Faubion W.A., Lu T.T. Discrepancies between patient-reported outcomes, and endoscopic and histological appearance in UC. Gut. 2017;66:2063–2068. doi: 10.1136/gutjnl-2016-312307.
    1. Rieder F., Fiocchi C., Rogler G. Mechanisms, Management, and Treatment of Fibrosis in Patients With Inflammatory Bowel Diseases. Gastroenterology. 2017;152:340–350. doi: 10.1053/j.gastro.2016.09.047.
    1. Klingberg F., Hinz B., White E.S. The myofibroblast matrix: Implications for tissue repair and fibrosis. J. Pathol. 2013;229:298–309. doi: 10.1002/path.4104.
    1. Wu F., Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. J. Immunol. 2007;179:6988–7000. doi: 10.4049/jimmunol.179.10.6988.
    1. Rieder F., Zimmermann E.M., Remzi F.H., Sandborn W.J. Crohn’s disease complicated by strictures: A systematic review. Gut. 2013;62:1072–1084. doi: 10.1136/gutjnl-2012-304353.
    1. Russell S.E., Horan R.M., Stefanska A.M., Carey A., Leon G., Aguilera M., Statovci D., Moran T., Fallon P.G., Shanahan F., et al. IL-36alpha expression is elevated in ulcerative colitis and promotes colonic inflammation. Mucosal Immunol. 2016;9:1193–1204. doi: 10.1038/mi.2015.134.
    1. Nishida A., Hidaka K., Kanda T., Imaeda H., Shioya M., Inatomi O., Bamba S., Kitoh K., Sugimoto M., Andoh A. Increased Expression of Interleukin-36, a Member of the Interleukin-1 Cytokine Family, in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016;22:303–314. doi: 10.1097/MIB.0000000000000654.
    1. Neufert C., Neurath M.F., Atreya R. Rationale for IL-36 receptor antibodies in ulcerative colitis. Expert Opin. Biol. Ther. 2020;20:339–342. doi: 10.1080/14712598.2020.1695775.
    1. Nishida A., Inatomi O., Fujimoto T., Imaeda H., Tani M., Andoh A. Interleukin-36alpha Induces Inflammatory Mediators From Human Pancreatic Myofibroblasts Via a MyD88 Dependent Pathway. Pancreas. 2017;46:539–548. doi: 10.1097/MPA.0000000000000765.
    1. Lowes M.A., Russell C.B., Martin D.A., Towne J.E., Krueger J.G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 2013;34:174–181. doi: 10.1016/j.it.2012.11.005.
    1. Rios-Navarro C., de Pablo C., Collado-Diaz V., Orden S., Blas-Garcia A., Martinez-Cuesta M.A., Esplugues J.V., Alvarez A. Differential effects of anti-TNF-alpha and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur. J. Pharmacol. 2015;765:355–365. doi: 10.1016/j.ejphar.2015.08.054.
    1. Zaba L.C., Cardinale I., Gilleaudeau P., Sullivan-Whalen M., Suarez-Farinas M., Fuentes-Duculan J., Novitskaya I., Khatcherian A., Bluth M.J., Lowes M.A., et al. Amelioration of epidermal hyperplasia by TNF inhibition is associated with reduced Th17 responses. J. Exp. Med. 2007;204:3183–3194. doi: 10.1084/jem.20071094.
    1. Indramohan M., Sieve A.N., Break T.J., Berg R.E. Inflammatory monocyte recruitment is regulated by interleukin-23 during systemic bacterial infection. Infect. Immun. 2012;80:4099–4105. doi: 10.1128/IAI.00589-12.
    1. Tang T.T., Yuan J., Zhu Z.F., Zhang W.C., Xiao H., Xia N., Yan X.X., Nie S.F., Liu J., Zhou S.F., et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 2012;107:232. doi: 10.1007/s00395-011-0232-6.
    1. Yang Y., Wang H., Kouadir M., Song H., Shi F. Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell Death Dis. 2019;10:128. doi: 10.1038/s41419-019-1413-8.
    1. Hirano Y., Kurosu H., Shiizaki K., Iwazu Y., Tsuruoka S., Kuro O.M. Interleukin-36alpha as a potential biomarker for renal tubular damage induced by dietary phosphate load. FEBS Open Bio. 2020;10:894–903. doi: 10.1002/2211-5463.12845.
    1. Ge S., Hertel B., Susnik N., Rong S., Dittrich A.M., Schmitt R., Haller H., von Vietinghoff S. Interleukin 17 receptor A modulates monocyte subsets and macrophage generation in vivo. PLoS ONE. 2014;9:e85461. doi: 10.1371/journal.pone.0085461.
    1. Peng X., Xiao Z., Zhang J., Li Y., Dong Y., Du J. IL-17A produced by both gammadelta T and Th17 cells promotes renal fibrosis via RANTES-mediated leukocyte infiltration after renal obstruction. J. Pathol. 2015;235:79–89. doi: 10.1002/path.4430.
    1. van de Veerdonk F.L., Stoeckman A.K., Wu G., Boeckermann A.N., Azam T., Netea M.G., Joosten L.A., van der Meer J.W., Hao R., Kalabokis V., et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc. Natl. Acad. Sci. USA. 2012;109:3001–3005. doi: 10.1073/pnas.1121534109.
    1. Chen Y., Li C., Weng D., Song L., Tang W., Dai W., Yu Y., Liu F., Zhao M., Lu C., et al. Neutralization of interleukin-17A delays progression of silica-induced lung inflammation and fibrosis in C57BL/6 mice. Toxicol. Appl. Pharmacol. 2014;275:62–72. doi: 10.1016/j.taap.2013.11.012.
    1. Tominaga M., Okamoto M., Kawayama T., Matsuoka M., Kaieda S., Sakazaki Y., Kinoshita T., Mori D., Inoue A., Hoshino T. Overexpression of IL-38 protein in anticancer drug-induced lung injury and acute exacerbation of idiopathic pulmonary fibrosis. Respir. Investig. 2017;55:293–299. doi: 10.1016/j.resinv.2017.06.001.
    1. LeBleu V.S., Teng Y., O’Connell J.T., Charytan D., Muller G.A., Muller C.A., Sugimoto H., Kalluri R. Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat. Med. 2013;19:227–231. doi: 10.1038/nm.2989.
    1. Shepard B.D., Pluznick J.L. How does your kidney smell? Emerging roles for olfactory receptors in renal function. Pediatr. Nephrol. 2016;31:715–723. doi: 10.1007/s00467-015-3181-8.
    1. Kim K.K., Wei Y., Szekeres C., Kugler M.C., Wolters P.J., Hill M.L., Frank J.A., Brumwell A.N., Wheeler S.E., Kreidberg J.A., et al. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J. Clin. Investig. 2009;119:213–224. doi: 10.1172/JCI36940.
    1. Broekema M., Harmsen M.C., van Luyn M.J., Koerts J.A., Petersen A.H., van Kooten T.G., van Goor H., Navis G., Popa E.R. Bone marrow-derived myofibroblasts contribute to the renal interstitial myofibroblast population and produce procollagen I after ischemia/reperfusion in rats. J. Am. Soc. Nephrol. 2007;18:165–175. doi: 10.1681/ASN.2005070730.
    1. Zhou B., von Gise A., Ma Q., Hu Y.W., Pu W.T. Genetic fate mapping demonstrates contribution of epicardium-derived cells to the annulus fibrosis of the mammalian heart. Dev. Biol. 2010;338:251–261. doi: 10.1016/j.ydbio.2009.12.007.

Source: PubMed

3
구독하다