Effect of Abdominal Binding on Diaphragmatic Neuromuscular Efficiency, Exertional Breathlessness, and Exercise Endurance in Chronic Obstructive Pulmonary Disease

Sara J Abdallah, Benjamin M Smith, Courtney Wilkinson-Maitland, Pei Zhi Li, Jean Bourbeau, Dennis Jensen, Sara J Abdallah, Benjamin M Smith, Courtney Wilkinson-Maitland, Pei Zhi Li, Jean Bourbeau, Dennis Jensen

Abstract

We tested the hypothesis that abdominal binding (AB) would reduce breathlessness and improve exercise tolerance by enhancing neuromuscular efficiency of the diaphragm during exercise in adults with chronic obstructive pulmonary disease (COPD). In a randomized, controlled, crossover trial, 20 adults with COPD (mean ± SD FEV1, 60 ± 16% predicted) completed a symptom-limited constant-load cycle endurance exercise test at 75% of their peak incremental power output with concomitant measures of the diaphragm electromyogram (EMGdi) and respiratory pressures without (CTRL) vs. with AB sufficient to increase end-expiratory gastric pressure (Pga,ee) by 6.7 ± 0.3 cmH2O at rest. Compared to CTRL, AB enhanced diaphragmatic neuromuscular efficiency during exercise (p < 0.05), as evidenced by a 25% increase in the quotient of EMGdi to tidal transdiaphragmatic pressure swing. By contrast, AB had no demonstrable effect on exertional breathlessness and exercise tolerance; spirometry and plethysmography-derived pulmonary function test parameters at rest; and cardiac, metabolic, breathing pattern, inspiratory reserve volume and EMGdi responses during exercise (all p > 0.05 vs. CTRL). In conclusion, enhanced neuromuscular efficiency of the diaphragm during exercise with AB was not associated with relief of exertional breathlessness and improved exercise tolerance in adults with COPD. Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT01852006.

Keywords: abdominal binding; breathlessness; diaphragm; exercise endurance; neuromuscular efficiency.

Figures

FIGURE 1
FIGURE 1
Consort diagram of the study population.
FIGURE 2
FIGURE 2
Effects of abdominal binding (AB) vs. control (CTRL) on (A) breathlessness intensity, (B) breathlessness unpleasantness and (C) leg discomfort during constant-load cycle endurance exercise testing at 75% of peak incremental power output in adults with chronic obstructive pulmonary disease (n = 20). Data points are mean ± SEM values at rest, at standardized submaximal times during exercise (including isotime of 5.1 ± 1.0 min), and at peak exercise.
FIGURE 3
FIGURE 3
Effects of abdominal binding (AB) vs. control (CTRL) on (A) the rate of oxygen consumption (VO2), (B) the rate of carbon dioxide production (VCO2), (C) heart rate and (D) oxygen pulse (O2 pulse) during constant-load cycle endurance exercise testing at 75% of peak incremental power output in adults with chronic obstructive pulmonary disease (n = 20). Data points are mean ± SEM values at rest, at standardized submaximal times during exercise (including isotime of 5.1 ± 1.0 min), and at peak exercise.
FIGURE 4
FIGURE 4
Effects of abdominal binding (AB) vs. control (CTRL) on (A) ventilation, (B) inspiratory capacity, (C) tidal volume, (D) inspiratory reserve volume, (E) breathing frequency, and (F) peak expiratory flow during constant-load cycle endurance exercise testing at 75% of peak incremental power output in adults with chronic obstructive pulmonary disease (n = 20). Pes, esophageal pressure. Data points are mean ± SEM values at rest, at standardized submaximal times during exercise (including isotime of 5.1 ± 1.0 min), and at peak exercise. ∗p < 0.05 vs. CTRL.
FIGURE 5
FIGURE 5
Effects of abdominal binding (AB) vs. control (CTRL) on (A) the root mean square of the crural diaphragm electromyogram (EMGdi,rms), (B) transdiaphragmatic pressure (Pdi), (C) esophageal pressure (Pes), (D) tidal Pdi swing (Pdi,tidal) vs. EMGdi,rms, (E) gastric pressure (Pga) and (F) the quotient of Pdi,tidal to EMGdi,rms (an index of diaphragmatic neuromuscular efficiency) responses during constant-load cycle endurance exercise testing at 75% of peak incremental power output in adults with chronic obstructive pulmonary disease (n = 20). Dashed lines in panels B,C,E denote peak tidal expiratory Pdi, Pes, and Pga, respectively. Data points are mean ± SEM values at rest, at standardized submaximal times during exercise (including isotime of 5.1 ± 1.0 min), and at peak exercise. ∗p < 0.05 vs. CTRL.

References

    1. Abdallah S. J., Chan D. S., Glicksman R., Mendonca C. T., Luo Y., Bourbeau J., et al. (2017). Abdominal binding improves neuromuscular efficiency of the human diaphragm during exercise. Front. Physiol. 8:345. 10.3389/fphys.2017.00345
    1. Alexander H., Kontz W. (1934). Symptomatic relief of emphysema by an abdominal belt. Am. J. Med. Sci. 187 687–691. 10.1097/00000441-193405000-00015
    1. Bestall J. C., Paul E. A., Garrod R., Garnham R., Jones P. W., Wedzicha J. A. (1999). Usefulness of the Medical Research Council (MRC) dyspnoea scale as a measure of disability in patients with chronic obstructive pulmonary disease. Thorax 54 581–586. 10.1136/thx.54.7.581
    1. Borg G. A. (1982). Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 14 377–381. 10.1249/00005768-198205000-00012
    1. Briscoe W. A., Dubois A. B. (1958). The relationship between airway resistance, airway conductance and lung volume in subjects of different age and body size. J. Clin. Invest. 37 1279–1285. 10.1172/JCI103715
    1. Burrows B., Kasik J. E., Niden A. H., Barclay W. R. (1961). Clinical usefulness of the single-breath pulmonucy diffusing capacity test. Am. Rev. Respir. Dis. 84 789–806.
    1. Cassart M., Pettiaux N., Gevenois P. A., Paiva M., Estenne M. (1997). Effect of chronic hyperinflation on diaphragm length and surface area. Am. J. Respir. Crit. Care Med. 156 504–508. 10.1164/ajrccm.156.2.9612089
    1. Celli B. R., Rassulo J., Berman J. S., Make B. (1985). Respiratory consequences of abdominal hernia in a patient with severe chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 131 178–180.
    1. Ciavaglia C. E., Guenette J. A., Langer D., Webb K. A., Alberto Neder J., O’Donnell D. E. (2014). Differences in respiratory muscle activity during cycling and walking do not influence dyspnea perception in obese patients with COPD. J. Appl. Physiol. 117 1292–1301. 10.1152/japplphysiol.00502.2014
    1. Crapo R. O., Morris A. H., Gardner R. M. (1981). Reference spirometric values using techniques and equipment that meet ats recommendations. Am. Rev. Respir. Dis. 123 659–664.
    1. Dodd D. S., Brancatisano T. P., Engel L. A. (1985). Effect of abdominal strapping on chest wall mechanics during exercise in patients with severe chronic air-flow obstruction. Am. Rev. Respir. Dis. 131 816–821.
    1. Elbehairy A. F., Guenette J. A., Faisal A., Ciavaglia C. E., Webb K. A., Jensen D., et al. (2016). Mechanisms of exertional dyspnoea in symptomatic smokers without COPD. Eur. Respir. J. 48 694–705. 10.1183/13993003.00077-2016
    1. Faisal A., Alghamdi B. J., Ciavaglia C. E., Elbehairy A. F., Webb K. A., Ora J., et al. (2016). Common mechanisms of dyspnea in chronic interstitial and obstructive lung disorders. Am. J. Respir. Crit. Care Med. 193 299–309. 10.1164/rccm.201504-0841OC
    1. Faul F., Erdfelder E., Buchner A., Lang A. G. (2009). Statistical power analyses using G∗Power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41 1149–1160. 10.3758/BRM.41.4.1149
    1. Finucane K. E., Singh B. (2012). Diaphragm efficiency estimated as power output relative to activation in chronic obstructive pulmonary disease. J. Appl. Physiol. 113 1567–1575. 10.1152/japplphysiol.01453.2011
    1. Gordon B. (1934). The mechanism and use of abdominal supports and the treatment of pulmonary diseases. Am. J. Med. Sci. 187 692–699. 10.1097/00000441-193405000-00016
    1. Gorman R. B., Mckenzie D. K., Butler J. E., Tolman J. F., Gandevia S. C. (2005). Diaphragm length and neural drive after lung volume reduction surgery. Am. J. Respir. Crit. Care Med. 172 1259–1266. 10.1164/rccm.200412-1695OC
    1. Guenette J. A., Chin R. C., Cheng S., Dominelli P. B., Raghavan N., Webb K. A., et al. (2014). Mechanisms of exercise intolerance in global initiative for chronic obstructive lung disease grade 1 COPD. Eur. Respir. J. 44 1177–1187. 10.1183/09031936.00034714
    1. Guenette J. A., Chin R. C., Cory J. M., Webb K. A., O’Donnell D. E. (2013). Inspiratory capacity during exercise: measurement. Analysis, and Interpretation. Pulm. Med. 2013:956081. 10.1155/2013/956081
    1. Guenette J. A., Webb K. A., O’Donnell D. E. (2012). Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur. Respir. J. 40 322–329. 10.1183/09031936.00157711
    1. Hankinson J. L., Odencrantz J. R., Fedan K. B. (1999). Spirometric reference values from a sample of the general U.S. population. Am. J. Respir. Crit. Care Med. 159 179–187. 10.1164/ajrccm.159.1.9712108
    1. Hussain S. N., Rabinovitch B., Macklem P. T., Pardy R. L. (1985). Effects of separate rib cage and abdominal restriction on exercise performance in normal humans. J. Appl. Physiol. 58 2020–2026. 10.1152/jappl.1985.58.6.2020
    1. Jensen D., O’Donnell D. E., Li R., Luo Y. M. (2011). Effects of dead space loading on neuro-muscular and neuro-ventilatory coupling of the respiratory system during exercise in healthy adults: implications for dyspnea and exercise tolerance. Respir. Physiol. Neurobiol. 179 219–226. 10.1016/j.resp.2011.08.009
    1. Jolley C. J., Luo Y. M., Steier J., Rafferty G. F., Polkey M. I., Moxham J. (2015). Neural respiratory drive and breathlessness in COPD. Eur. Respir. J. 45 355–364. 10.1183/09031936.00063014
    1. Jones N. L., Makrides L., Hitchcock C., Chypchar T., Mccartney N. (1985). Normal standards for an incremental progressive cycle ergometer test. Am. Rev. Respir. Dis. 131 700–708.
    1. Jones P. W., Harding G., Berry P., Wiklund I., Chen W. H., Kline Leidy N. (2009). Development and first validation of the COPD assessment test. Eur. Respir. J. 34 648–654. 10.1183/09031936.00102509
    1. Koo P., Gartman E. J., Sethi J. M., Mccool F. D. (2015). Physiology in Medicine: physiological basis of diaphragmatic dysfunction with abdominal hernias-implications for therapy. J. Appl. Physiol. 118 142–147. 10.1152/japplphysiol.00276.2014
    1. Laghi F., Jubran A., Topeli A., Fahey P. J., Garrity E. R., Jr., de Pinto D. J. (2004). Effect of lung volume reduction surgery on diaphragmatic neuromechanical coupling at 2 years. Chest 125 2188–2195. 10.1378/chest.125.6.2188
    1. Laghi F., Jubran A., Topeli A., Fahey P. J., Garrity E. R., Jr., Arcidi J. M., et al. (1998). Effect of lung volume reduction surgery on neuromechanical coupling of the diaphragm. Am. J. Respir. Crit. Care Med. 157 475–483. 10.1164/ajrccm.157.2.9705082
    1. Laghi F., Tobin M. J. (2003). Disorders of the respiratory muscles. Am. J. Respir. Crit. Care Med. 168 10–48. 10.1164/rccm.2206020
    1. Lahrmann H., Wild M., Wanke T., Tschernko E., Wisser W., Klepetko W., et al. (1999). Neural drive to the diaphragm after lung volume reduction surgery. Chest 116 1593–1600. 10.1378/chest.116.6.1593
    1. Langer D., Ciavaglia C. E., Faisal A., Webb K. A., Neder J. A., Gosselink R., et al. (2018). Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J. Appl. Physiol. 125 381–392. 10.1152/japplphysiol.01078.2017
    1. Macintyre N., Crapo R. O., Viegi G., Johnson D. C., Van Der Grinten C. P., Brusasco V., et al. (2005). Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 26 720–735. 10.1183/09031936.05.00034905
    1. Mahler D. A., Weinberg D. H., Wells C. K., Feinstein A. R. (1984). The measurement of dyspnea. Contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest 85 751–758. 10.1378/chest.85.6.751
    1. McGavin C. R., Artvinli M., Naoe H., Mchardy G. J. (1978). Dyspnoea, disability, and distance walked: comparison of estimates of exercise performance in respiratory disease. Br. Med. J. 2 241–243. 10.1136/bmj.2.6132.241
    1. Mendonca C. T., Schaeffer M. R., Riley P., Jensen D. (2014). Physiological mechanisms of dyspnea during exercise with external thoracic restriction: role of increased neural respiratory drive. J. Appl. Physiol. 116 570–581. 10.1152/japplphysiol.00950.2013
    1. Miller M. R., Crapo R., Hankinson J., Brusasco V., Burgos F., Casaburi R., et al. (2005a). General considerations for lung function testing. Eur. Respir. J. 26 153–161. 10.1183/09031936.05.00034505
    1. Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005b). Standardisation of spirometry. Eur. Respir. J. 26 319–338. 10.1183/09031936.05.00034805
    1. O’Donnell D. E., Elbehairy A. F., Faisal A., Neder J. A., Webb K. A., Canadian Respiratory Research (Crrn). (2018). Sensory-mechanical effects of a dual bronchodilator and its anticholinergic component in COPD. Respir. Physiol. Neurobiol. 247 116–125. 10.1016/j.resp.2017.10.001
    1. O’Donnell D. E., Hong H. H., Webb K. A. (2000). Respiratory sensation during chest wall restriction and dead space loading in exercising men. J. Appl. Physiol. 88 1859–1869. 10.1152/jappl.2000.88.5.1859
    1. Puente-Maestu L., Villar F., De Miguel J., Stringer W. W., Sanz P., Sanz M. L., et al. (2009). Clinical relevance of constant power exercise duration changes in COPD. Eur. Respir. J. 34 340–345. 10.1183/09031936.00078308
    1. Ries A. L. (2005). Minimally clinically important difference for the UCSD shortness of breath questionnaire, borg scale, and visual analog scale. COPD 2 105–110. 10.1081/COPD-200050655
    1. Sinderby C., Spahija J., Beck J., Kaminski D., Yan S., Comtois N., et al. (2001). Diaphragm activation during exercise in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 163 1637–1641. 10.1164/ajrccm.163.7.2007033
    1. Vogelmeier C. F., Criner G. J., Martinez F. J., Anzueto A., Barnes P. J., Bourbeau J., et al. (2017). Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am. J. Respir. Crit. Care Med. 195 557–582. 10.1164/rccm.201701-0218PP
    1. Wanger J., Clausen J. L., Coates A., Pedersen O. F., Brusasco V., Burgos F., et al. (2005). Standardisation of the measurement of lung volumes. Eur. Respir. J. 26 511–522. 10.1183/09031936.05.00035005
    1. West C. R., Campbell I. G., Shave R. E., Romer L. M. (2012). Effects of abdominal binding on cardiorespiratory function in cervical spinal cord injury. Respir. Physiol. Neurobiol. 180 275–282. 10.1016/j.resp.2011.12.003
    1. West C. R., Goosey-Tolfrey V. L., Campbell I. G., Romer L. M. (2014). Effect of abdominal binding on respiratory mechanics during exercise in athletes with cervical spinal cord injury. J. Appl. Physiol. 117 36–45. 10.1152/japplphysiol.00218.2014
    1. Zigmond A. S., Snaith R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatr. Scand. 67 361–370. 10.1111/j.1600-0447.1983.tb09716.x

Source: PubMed

3
구독하다