The Therapeutic Strategies for Uremic Toxins Control in Chronic Kidney Disease

Ping-Hsun Lu, Min-Chien Yu, Meng-Jiun Wei, Ko-Lin Kuo, Ping-Hsun Lu, Min-Chien Yu, Meng-Jiun Wei, Ko-Lin Kuo

Abstract

Uremic toxins (UTs) are mainly produced by protein metabolized by the intestinal microbiota and converted in the liver or by mitochondria or other enzymes. The accumulation of UTs can damage the intestinal barrier integrity and cause vascular damage and progressive kidney damage. Together, these factors lead to metabolic imbalances, which in turn increase oxidative stress and inflammation and then produce uremia that affects many organs and causes diseases including renal fibrosis, vascular disease, and renal osteodystrophy. This article is based on the theory of the intestinal-renal axis, from bench to bedside, and it discusses nonextracorporeal therapies for UTs, which are classified into three categories: medication, diet and supplement therapy, and complementary and alternative medicine (CAM) and other therapies. The effects of medications such as AST-120 and meclofenamate are described. Diet and supplement therapies include plant-based diet, very low-protein diet, probiotics, prebiotics, synbiotics, and nutraceuticals. The research status of Chinese herbal medicine is discussed for CAM and other therapies. This review can provide some treatment recommendations for the reduction of UTs in patients with chronic kidney disease.

Keywords: chronic kidney disease; complementary and alternative medicine; conventional medical therapy; diet control; dietary supplement; uremic toxin.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Proposed mechanism of UT generation and therapeutic methods. GI, gastrointestinal; OAT, organic anion transporter; SULT, sulfotransferase; UT, uremic toxin.

References

    1. Coresh J., Selvin E., Stevens L.A., Manzi J., Kusek J.W., Eggers P., Van Lente F., Levey A.S. Prevalence of chronic kidney disease in the United States. JAMA. 2007;298:2038–2047. doi: 10.1001/jama.298.17.2038.
    1. Saran R., Robinson B., Abbott K.C., Agodoa L.Y., Bhave N., Bragg-Gresham J., Balkrishnan R., Dietrich X., Eckard A., Eggers P.W. US renal data system 2017 annual data report: Epidemiology of kidney disease in the United States. Am. J. Kidney Dis. 2018;71:A7. doi: 10.1053/j.ajkd.2018.01.002.
    1. Duranton F., Cohen G., De Smet R., Rodriguez M., Jankowski J., Vanholder R., Argiles A. Normal and pathologic concentrations of uremic toxins. J. Am. Soc. Nephrol. 2012;23:1258–1270. doi: 10.1681/ASN.2011121175.
    1. Hung S.C., Kuo K.L., Huang H.L., Lin C.C., Tsai T.H., Wang C.H., Chen J.W., Lin S.J., Huang P.H., Tarng D.C. Indoxyl sulfate suppresses endothelial progenitor cell-mediated neovascularization. Kidney Int. 2016;89:574–585. doi: 10.1016/j.kint.2015.11.020.
    1. Iwasaki Y., Kazama J.J., Yamato H., Shimoda H., Fukagawa M. Accumulated uremic toxins attenuate bone mechanical properties in rats with chronic kidney disease. Bone. 2013;57:477–483. doi: 10.1016/j.bone.2013.07.037.
    1. Soulage C.O., Koppe L., Fouque D. Protein-bound uremic toxins… new targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J. Ren. Nutr. 2013;23:464–466. doi: 10.1053/j.jrn.2013.06.003.
    1. Lau W.L., Savoj J., Nakata M.B., Vaziri N.D. Altered microbiome in chronic kidney disease: Systemic effects of gut-derived uremic toxins. Clin. Sci. 2018;132:509–522. doi: 10.1042/CS20171107.
    1. Lu P.-H., Tai Y.-C., Yu M.-C., Lin I.-H., Kuo K.-L. Western and complementary alternative medicine treatment of uremic pruritus: A literature review. Tzu Chi Med. J. 2021 doi: 10.4103/tcmj.tcmj_151_20.
    1. Kuo K.-L., Zhao J.-F., Huang P.-H., Guo B.-C., Tarng D.-C., Lee T.-S. Indoxyl sulfate impairs valsartan-induced neovascularization. Redox Biol. 2020;30:101433. doi: 10.1016/j.redox.2020.101433.
    1. Vanholder R., Glorieux G., De Smet R., Lameire N., European Uremic Toxin Work Group New insights in uremic toxins. Kidney Int. Suppl. 2003;63:1934–1943. doi: 10.1046/j.1523-1755.2003.00924.x.
    1. Castillo-Rodríguez E., Pizarro-Sánchez S., Sanz A., Ramos A., Sanchez-Niño M., Martin-Cleary C., Fernandez-Fernandez B., Ortiz A. Inflammatory Cytokines as Uremic Toxins: “Ni Son Todos Los Que Estan, Ni Estan Todos Los Que Son”. Toxins. 2017;9:114. doi: 10.3390/toxins9040114.
    1. Vanholder R.C., Eloot S., Glorieux G.L. Future Avenues to Decrease Uremic Toxin Concentration. Am. J. Kidney Dis. 2016;67:664–676. doi: 10.1053/j.ajkd.2015.08.029.
    1. Koppe L., Fouque D., Soulage C.O. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins. 2018;10:155. doi: 10.3390/toxins10040155.
    1. Popkov V.A., Silachev D.N., Zalevsky A.O., Zorov D.B., Plotnikov E.Y. Mitochondria as a Source and a Target for Uremic Toxins. Int. J. Mol. Sci. 2019;20:3094. doi: 10.3390/ijms20123094.
    1. Niwa T. Indoxyl sulfate is a nephro-vascular toxin. J. Ren. Nutr. 2010;20:S2–S6. doi: 10.1053/j.jrn.2010.05.002.
    1. Saito H., Yoshimura M., Saigo C., Komori M., Nomura Y., Yamamoto Y., Sagata M., Wakida A., Chuman E., Nishi K., et al. Hepatic sulfotransferase as a nephropreventing target by suppression of the uremic toxin indoxyl sulfate accumulation in ischemic acute kidney injury. Toxicol. Sci. 2014;141:206–217. doi: 10.1093/toxsci/kfu119.
    1. Sumida K., Yamagata K., Kovesdy C.P. Constipation in CKD. Kidney Int. Rep. 2020;5:121–134. doi: 10.1016/j.ekir.2019.11.002.
    1. Zhao Y., Yu Y.-B. Intestinal microbiota and chronic constipation. SpringerPlus. 2016;5:1–8. doi: 10.1186/s40064-016-2821-1.
    1. Meijers B., Glorieux G., Poesen R., Bakker S.J. Nonextracorporeal methods for decreasing uremic solute concentration: A future way to go? Semin. Nephrol. 2014;34:228–243. doi: 10.1016/j.semnephrol.2014.02.012.
    1. Enomoto A., Takeda M., Taki K., Takayama F., Noshiro R., Niwa T., Endou H. Interactions of human organic anion as well as cation transporters with indoxyl sulfate. Eur. J. Pharmacol. 2003;466:13–20. doi: 10.1016/S0014-2999(03)01530-9.
    1. Fülöp T., Zsom L., Tapolyai M.B., Molnar M.Z., Salim S.A., Arany I., Hamrahian M., Rosivall L. Peritoneal dialysis: The unique features by compartmental delivery of renal replacement therapy. Med. Hypotheses. 2017;108:128–132. doi: 10.1016/j.mehy.2017.09.005.
    1. Lameire N., Vanholder R., De Smet R. Uremic toxins and peritoneal dialysis. Kidney Int. Suppl. 2001;78:S292–S297. doi: 10.1046/j.1523-1755.2001.59780292.x.
    1. Vanholder R., Baurmeister U., Brunet P., Cohen G., Glorieux G., Jankowski J. A bench to bedside view of uremic toxins. J. Am. Soc. Nephrol. 2008;19:863–870. doi: 10.1681/ASN.2007121377.
    1. Lemoine S., Pillot B., Rognant N., Augeul L., Rayberin M., Varennes A., Laville M., Ovize M., Juillard L. Postconditioning with cyclosporine a reduces early renal dysfunction by inhibiting mitochondrial permeability transition. Transplantation. 2015;99:717–723. doi: 10.1097/TP.0000000000000530.
    1. Koyama K., Ito A., Yamamoto J., Nishio T., Kajikuri J., Dohi Y., Ohte N., Sano A., Nakamura H., Kumagai H., et al. Randomized controlled trial of the effect of short-term coadministration of methylcobalamin and folate on serum ADMA concentration in patients receiving long-term hemodialysis. Am. J. Kidney Dis. 2010;55:1069–1078. doi: 10.1053/j.ajkd.2009.12.035.
    1. Evenepoel P., Bammens B., Verbeke K., Vanrenterghem Y. Acarbose treatment lowers generation and serum concentrations of the protein-bound solute p-cresol: A pilot study. Kidney Int. 2006;70:192–198. doi: 10.1038/sj.ki.5001523.
    1. Goicoechea M., de Vinuesa S.G., Verdalles U., Ruiz-Caro C., Ampuero J., Rincón A., Arroyo D., Luño J. Effect of allopurinol in chronic kidney disease progression and cardiovascular risk. Clin. J. Am. Soc. Nephrol. 2010;5:1388–1393. doi: 10.2215/CJN.01580210.
    1. Saigo C., Nomura Y., Yamamoto Y., Sagata M., Matsunaga R., Jono H., Nishi K., Saito H. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters. Drug Des. Dev. Ther. 2014;8:1073–1082. doi: 10.2147/DDDT.S67456.
    1. Garibotto G., Sofia A., Parodi E.L., Ansaldo F., Bonanni A., Picciotto D., Signori A., Vettore M., Tessari P., Verzola D. Effects of Low-Protein, and Supplemented Very Low-Protein Diets, on Muscle Protein Turnover in Patients With CKD. Kidney Int. Rep. 2018;3:701–710. doi: 10.1016/j.ekir.2018.01.003.
    1. Huo X., Meng Q., Wang C., Zhu Y., Liu Z., Ma X., Ma X., Peng J., Sun H., Liu K. Cilastatin protects against imipenem-induced nephrotoxicity via inhibition of renal organic anion transporters (OATs) Acta Pharm. Sin. B. 2019;9:986–996. doi: 10.1016/j.apsb.2019.02.005.
    1. Asai M., Kumakura S., Kikuchi M. Review of the efficacy of AST-120 (KREMEZIN(®)) on renal function in chronic kidney disease patients. Ren. Fail. 2019;41:47–56. doi: 10.1080/0886022X.2018.1561376.
    1. Chen Y.-C., Wu M.-Y., Hu P.-J., Chen T.-T., Shen W.-C., Chang W.-C., Wu M.-S. Effects and safety of an oral adsorbent on chronic kidney disease progression: A systematic review and meta-analysis. J. Clin. Med. 2019;8:1718. doi: 10.3390/jcm8101718.
    1. Fatouros I.G., Douroudos I., Panagoutsos S., Pasadakis P., Nikolaidis M.G., Chatzinikolaou A., Sovatzidis A., Michailidis Y., Jamurtas A.Z., Mandalidis D., et al. Effects of L-carnitine on oxidative stress responses in patients with renal disease. Med. Sci. Sports Exerc. 2010;42:1809–1818. doi: 10.1249/MSS.0b013e3181dbacab.
    1. Trimarchi H., Schiel A., Freixas E., Díaz M. Randomized trial of methylcobalamin and folate effects on homocysteine in hemodialysis patients. Nephron. 2002;91:58–63. doi: 10.1159/000057605.
    1. Marzocco S., Dal Piaz F., Di Micco L., Torraca S., Sirico M.L., Tartaglia D., Autore G., Di Iorio B. Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif. 2013;35:196–201. doi: 10.1159/000346628.
    1. Wang Y.F. Analysis on the effects of reduced glutathione intervening in microinflammation of uremia patients with maintenance hemodialysis. Chin. J. Front. Med. Sci. 2016;8:101–104.
    1. Sato E., Saigusa D., Mishima E., Uchida T., Miura D., Morikawa-Ichinose T., Kisu K., Sekimoto A., Saito R., Oe Y., et al. Impact of the Oral Adsorbent AST-120 on Organ-Specific Accumulation of Uremic Toxins: LC-MS/MS and MS Imaging Techniques. Toxins. 2017;10:19. doi: 10.3390/toxins10010019.
    1. Sener G., Paskaloglu K., Satiroglu H., Alican I., Kaçmaz A., Sakarcan A. L-Carnitine Ameliorates Oxidative Damage due to Chronic Renal Failure in Rats. J. Cardiovasc. Pharmacol. 2004;43:698–705. doi: 10.1097/00005344-200405000-00013.
    1. Konop M., Radkowski M., Grochowska M., Perlejewski K., Samborowska E., Ufnal M. Enalapril decreases rat plasma concentration of TMAO, a gut bacteria-derived cardiovascular marker. Biomarkers. 2018;23:380–385. doi: 10.1080/1354750X.2018.1432689.
    1. Akizawa T., Asano Y., Morita S., Wakita T., Onishi Y., Fukuhara S., Gejyo F., Matsuo S., Yorioka N., Kurokawa K. Effect of a carbonaceous oral adsorbent on the progression of CKD: A multicenter, randomized, controlled trial. Am. J. Kidney Dis. 2009;54:459–467. doi: 10.1053/j.ajkd.2009.05.011.
    1. Cha R.-H., Kang S.W., Park C.W., Cha D.R., Na K.Y., Kim S.G., Yoon S.A., Han S.Y., Chang J.H., Park S.K. A randomized, controlled trial of oral intestinal sorbent AST-120 on renal function deterioration in patients with advanced renal dysfunction. Clin. J. Am. Soc. Nephrol. 2016;11:559–567. doi: 10.2215/CJN.12011214.
    1. Armaly Z., Artol S., Jabbour A.R., Saffouri A., Habashi N., Abd Elkadir A., Ghattas N., Farah R., Kinaneh S., Nseir W. Impact of pretreatment with carnitine and tadalafil on contrast-induced nephropathy in CKD patients. Ren. Fail. 2019;41:976–986. doi: 10.1080/0886022X.2019.1669459.
    1. Hornik C.P., Herring A.H., Benjamin D.K., Jr., Capparelli E.V., Kearns G.L., van den Anker J., Cohen-Wolkowiez M., Clark R.H., Smith P.B. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatric Infect. Dis. J. 2013;32:748. doi: 10.1097/INF.0b013e31828be70b.
    1. Koyama K., Usami T., Takeuchi O., Morozumi K., Kimura G. Efficacy of methylcobalamin on lowering total homocysteine plasma concentrations in haemodialysis patients receiving high-dose folic acid supplementation. Nephrol. Dial. Transplant. 2002;17:916–922. doi: 10.1093/ndt/17.5.916.
    1. Martí-Carvajal A.J., Solà I., Lathyris D., Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2017;8:CD006612. doi: 10.1002/14651858.CD006612.pub5.
    1. Shah A.P., Kalantar-Zadeh K., Kopple J.D. Is there a role for ketoacid supplements in the management of CKD? Am. J. Kidney Dis. 2015;65:659–673. doi: 10.1053/j.ajkd.2014.09.029.
    1. Ling X.C., Kuo K.-L. Oxidative stress in chronic kidney disease. Ren. Replace. Ther. 2018;4:1–9. doi: 10.1186/s41100-018-0195-2.
    1. Ceballos-Picot I., Witko-Sarsat V., Merad-Boudia M., Nguyen A.T., Thévenin M., Jaudon M.C., Zingraff J., Verger C., Jingers P., Descamps-Latscha B. Glutathione antioxidant system as a marker of oxidative stress in chronic renal failure. Free Radic. Biol. Med. 1996;21:845–853. doi: 10.1016/0891-5849(96)00233-X.
    1. Zhang H., Forman H.J., Choi J. γ-Glutamyl transpeptidase in glutathione biosynthesis. Methods Enzymol. 2005;401:468–483.
    1. Schmitt B., Vicenzi M., Garrel C., Denis F.M. Effects of N-acetylcysteine, oral glutathione (GSH) and a novel sublingual form of GSH on oxidative stress markers: A comparative crossover study. Redox Biol. 2015;6:198–205. doi: 10.1016/j.redox.2015.07.012.
    1. Snelson M., Biruete A., McFarlane C., Campbell K. A Renal Clinician’s Guide to the Gut Microbiota. J. Ren. Nutr. 2020;30:384–395. doi: 10.1053/j.jrn.2019.11.002.
    1. Di Iorio B.R., Rocchetti M.T., De Angelis M., Cosola C., Marzocco S., Di Micco L., di Bari I., Accetturo M., Vacca M., Gobbetti M., et al. Nutritional Therapy Modulates Intestinal Microbiota and Reduces Serum Levels of Total and Free Indoxyl Sulfate and P-Cresyl Sulfate in Chronic Kidney Disease (Medika Study) J. Clin. Med. 2019;8:1424. doi: 10.3390/jcm8091424.
    1. Kumar V., Yadav A.K., Lal A., Kumar V., Singhal M., Billot L., Gupta K.L., Banerjee D., Jha V. A randomized trial of vitamin D supplementation on vascular function in CKD. J. Am. Soc. Nephrol. 2017;28:3100–3108. doi: 10.1681/ASN.2017010003.
    1. Meijers B.K., De Preter V., Verbeke K., Vanrenterghem Y., Evenepoel P. p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol. Dial. Transplant. 2010;25:219–224. doi: 10.1093/ndt/gfp414.
    1. Ranganathan N., Ranganathan P., Friedman E.A., Joseph A., Delano B., Goldfarb D.S., Tam P., Rao A.V., Anteyi E., Musso C.G. Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv. Ther. 2010;27:634–647. doi: 10.1007/s12325-010-0059-9.
    1. Taki K., Takayama F., Niwa T. Beneficial effects of Bifidobacteria in a gastroresistant seamless capsule on hyperhomocysteinemia in hemodialysis patients. J. Ren. Nutr. 2005;15:77–80. doi: 10.1053/j.jrn.2004.09.028.
    1. Marzocco S., Fazeli G., Di Micco L., Autore G., Adesso S., Dal Piaz F., Heidland A., Di Iorio B. Supplementation of Short-Chain Fatty Acid, Sodium Propionate, in Patients on Maintenance Hemodialysis: Beneficial Effects on Inflammatory Parameters and Gut-Derived Uremic Toxins, A Pilot Study (PLAN Study) J. Clin. Med. 2018;7:315. doi: 10.3390/jcm7100315.
    1. Nakabayashi I., Nakamura M., Kawakami K., Ohta T., Kato I., Uchida K., Yoshida M. Effects of synbiotic treatment on serum level of p-cresol in haemodialysis patients: A preliminary study. Nephrol. Dial. Transplant. 2010;26:1094–1098. doi: 10.1093/ndt/gfq624.
    1. Kandouz S., Mohamed A.S., Zheng Y., Sandeman S., Davenport A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodial. Int. 2016;20:610–617. doi: 10.1111/hdi.12414.
    1. Hall J.A., Fritsch D.A., Yerramilli M., Obare E., Yerramilli M., Jewell D.E. A longitudinal study on the acceptance and effects of a therapeutic renal food in pet dogs with IRIS-Stage 1 chronic kidney disease. J. Anim. Physiol. Anim. Nutr. 2018;102:297–307. doi: 10.1111/jpn.12692.
    1. Madduma Hewage S., Prashar S., Debnath S.C., Karmin O., Siow Y.L. Inhibition of Inflammatory Cytokine Expression Prevents High-Fat Diet-Induced Kidney Injury: Role of Lingonberry Supplementation. Front. Med. 2020;7:80. doi: 10.3389/fmed.2020.00080.
    1. Hu Q., Ren J., Li G., Wu J., Wu X., Wang G., Gu G., Ren H., Hong Z., Li J. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 2018;9:403. doi: 10.1038/s41419-018-0436-x.
    1. Ephraim E., Jackson M.I., Yerramilli M., Jewell D.E. Soluble fiber and omega-3 fatty acids reduce levels of advanced glycation end products and uremic toxins in senior dogs by modulating the gut microbiome. J. Food Sci. Nutr. Res. 2020;3:18–33. doi: 10.26502/jfsnr.2642-11000036.
    1. Isaak C.K., Wang P., Prashar S., Karmin O., Brown D.C., Debnath S.C., Siow Y.L. Supplementing diet with Manitoba lingonberry juice reduces kidney ischemia-reperfusion injury. J. Sci. Food Agric. 2017;97:3065–3076. doi: 10.1002/jsfa.8200.
    1. Eid H.M., Ouchfoun M., Brault A., Vallerand D., Musallam L., Arnason J.T., Haddad P.S. Lingonberry (Vaccinium vitis-idaea L.) exhibits antidiabetic activities in a mouse model of diet-induced obesity. Evid. Based Complementary Altern. Med. 2014;2014:645812. doi: 10.1155/2014/645812.
    1. Escribano-Lopez I., Diaz-Morales N., Rovira-Llopis S., de Marañon A.M., Orden S., Alvarez A., Bañuls C., Rocha M., Murphy M.P., Hernandez-Mijares A. The mitochondria-targeted antioxidant MitoQ modulates oxidative stress, inflammation and leukocyte-endothelium interactions in leukocytes isolated from type 2 diabetic patients. Redox Biol. 2016;10:200–205. doi: 10.1016/j.redox.2016.10.017.
    1. Dare A.J., Bolton E.A., Pettigrew G.J., Bradley J.A., Saeb-Parsy K., Murphy M.P. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ. Redox Biol. 2015;5:163–168. doi: 10.1016/j.redox.2015.04.008.
    1. Montemurno E., Cosola C., Dalfino G., Daidone G., De Angelis M., Gobbetti M., Gesualdo L. What would you like to eat, Mr CKD microbiota? A Mediterranean diet, please! Kidney Blood Press. Res. 2014;39:114–123. doi: 10.1159/000355785.
    1. Murthy M., Venkitanarayan K., Rangavajhyala N., Shahani K. Delineation of beneficial characteristics of effective probiotics. JAMA. 2000;3:38–43.
    1. Lee Y.-K., Salminen S. The coming of age of probiotics. Trends Food Sci. Technol. 1995;6:241–245. doi: 10.1016/S0924-2244(00)89085-8.
    1. Reddy B.S. Possible mechanisms by which pro-and prebiotics influence colon carcinogenesis and tumor growth. J. Nutr. 1999;129:1478S–1482S. doi: 10.1093/jn/129.7.1478S.
    1. Puddu A., Sanguineti R., Montecucco F., Viviani G.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediat. Inflamm. 2014;2014:162021. doi: 10.1155/2014/162021.
    1. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr. Pap. 1998;66:1–140.
    1. Kau A.L., Ahern P.P., Griffin N.W., Goodman A.L., Gordon J.I. Human nutrition, the gut microbiome and the immune system. Nature. 2011;474:327–336. doi: 10.1038/nature10213.
    1. Pisano A., D’Arrigo G., Coppolino G., Bolignano D. Biotic Supplements for Renal Patients: A Systematic Review and Meta-Analysis. Nutrients. 2018;10:1224. doi: 10.3390/nu10091224.
    1. Friedman A., Moe S. Review of the effects of omega-3 supplementation in dialysis patients. Clin. J. Am. Soc. Nephrol. 2006;1:182–192. doi: 10.2215/CJN.00740805.
    1. Shahidi F., Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018;9:345–381. doi: 10.1146/annurev-food-111317-095850.
    1. Uwaezuoke S.N., Muoneke U.V., Mbanefo N.R. The supportive treatment of IgA nephropathy and idiopathic nephrotic syndrome: How useful are omega-3 polyunsaturated fatty acids? Int. J. Nephrol. Renov. Dis. 2020;13:27. doi: 10.2147/IJNRD.S237527.
    1. Bouzidi N., Mekki K., Boukaddoum A., Dida N., Kaddous A., Bouchenak M. Effects of omega-3 polyunsaturated fatty-acid supplementation on redox status in chronic renal failure patients with dyslipidemia. J. Ren. Nutr. 2010;20:321–328. doi: 10.1053/j.jrn.2010.01.002.
    1. Krishnamurthy V.M.R., Wei G., Baird B.C., Murtaugh M., Chonchol M.B., Raphael K.L., Greene T., Beddhu S. High dietary fiber intake is associated with decreased inflammation and all-cause mortality in patients with chronic kidney disease. Kidney Int. 2012;81:300–306. doi: 10.1038/ki.2011.355.
    1. De Vrese M., Schrezenmeir J. Probiotics, prebiotics, and synbiotics. Food Biotechnol. 2008;111:1–66.
    1. Plaza-Díaz J., Ruiz-Ojeda F.J., Vilchez-Padial L.M., Gil A. Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients. 2017;9:555. doi: 10.3390/nu9060555.
    1. Meirlaen L., Levy E.I., Vandenplas Y. Prevention and Management with Pro-, Pre and Synbiotics in Children with Asthma and Allergic Rhinitis: A Narrative Review. Nutrients. 2021;13:934. doi: 10.3390/nu13030934.
    1. Chauveau P., Koppe L., Combe C., Lasseur C., Trolonge S., Aparicio M. Vegetarian diets and chronic kidney disease. Nephrol. Dial. Transplant. 2019;34:199–207. doi: 10.1093/ndt/gfy164.
    1. Carrero J.J., González-Ortiz A., Avesani C.M., Bakker S.J., Bellizzi V., Chauveau P., Clase C.M., Cupisti A., Espinosa-Cuevas A., Molina P. Plant-based diets to manage the risks and complications of chronic kidney disease. Nat. Rev. Nephrol. 2020;16:525–542. doi: 10.1038/s41581-020-0297-2.
    1. Liu H.W., Tsai W.H., Liu J.S., Kuo K.L. Association of Vegetarian Diet with Chronic Kidney Disease. Nutrients. 2019;11:279. doi: 10.3390/nu11020279.
    1. Cases A., Cigarran-Guldris S., Mas S., Gonzalez-Parra E. Vegetable-Based Diets for Chronic Kidney Disease? It is Time to Reconsider. Nutrients. 2019;11:1263. doi: 10.3390/nu11061263.
    1. Pilz S., Iodice S., Zittermann A., Grant W.B., Gandini S. Vitamin D status and mortality risk in CKD: A meta-analysis of prospective studies. Am. J. Kidney Dis. 2011;58:374–382. doi: 10.1053/j.ajkd.2011.03.020.
    1. Zhang Q.-Y., Jiang C.-M., Sun C., Tang T.-F., Jin B., Cao D.-W., He J.-S., Zhang M. Hypovitaminosis D is associated with endothelial dysfunction in patients with non-dialysis chronic kidney disease. J. Nephrol. 2015;28:471–476. doi: 10.1007/s40620-014-0167-8.
    1. Zhang L., Yang L., Shergis J., Zhang L., Zhang A.L., Guo X., Qin X., Johnson D., Liu X., Lu C. Chinese herbal medicine for diabetic kidney disease: A systematic review and meta-analysis of randomised placebo-controlled trials. BMJ Open. 2019;9:e025653. doi: 10.1136/bmjopen-2018-025653.
    1. Moreillon J.J., Bowden R.G., Deike E., Griggs J., Wilson R., Shelmadine B., Cooke M., Beaujean A. The use of an anti-inflammatory supplement in patients with chronic kidney disease. J. Complement. Integr. Med. 2013;10:143–152. doi: 10.1515/jcim-2012-0011.
    1. Yu J.S., Ho C.H., Wang H.Y., Chen Y.H., Hsieh C.L. Acupuncture on Renal Function in Patients with Chronic Kidney Disease: A Single-Blinded, Randomized, Preliminary Controlled Study. J. Altern. Complement. Med. 2017;23:624–631. doi: 10.1089/acm.2016.0119.
    1. Zhou X., Wu Q., Wang Y., Ren Q., Zhu W., Yao Z., Chen J. Moxibustion as an Adjuvant Therapy for Chronic Kidney Disease: A Systematic Review and Meta-Analysis of 23 Randomized Controlled Trials. Evid. Based Complementary Altern. Med. 2020;2020:6128673. doi: 10.1155/2020/6128673.
    1. Li H.-D., Meng X.-M., Huang C., Zhang L., Lv X.-W., Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front. Pharmacol. 2019;10:379. doi: 10.3389/fphar.2019.00376.
    1. Zheng Y., Cai G.-Y., He L.-Q., Lin H.-L., Cheng X.-H., Wang N.-S., Jian G.-H., Liu X.-S., Liu Y.-N., Ni Z.-H. Efficacy and safety of Niaoduqing particles for delaying moderate-to-severe renal dysfunction: A randomized, double-blind, placebo-controlled, multicenter clinical study. Chin. Med. J. 2017;130:2402. doi: 10.4103/0366-6999.216407.
    1. Tu Y., Sun W., Wan Y.G., Gao K., Liu H., Yu B.Y., Hu H., Huang Y.R. Dahuang Fuzi Decoction ameliorates tubular epithelial apoptosis and renal damage via inhibiting TGF-beta1-JNK signaling pathway activation in vivo. J. Ethnopharmacol. 2014;156:115–124. doi: 10.1016/j.jep.2014.08.035.
    1. Li J., Wang Y., Xu X., Cao W., Shen Z., Wang N., Leng J., Zou N., Shang E., Zhu Z., et al. Improved dialysis removal of protein-bound uremic toxins by salvianolic acids. Phytomedicine. 2019;57:166–173. doi: 10.1016/j.phymed.2018.12.018.
    1. Huang Y.-R., Wei Q.-X., Wan Y.-G., Sun W., Mao Z.-M., Chen H.-L., Meng X.-J., Shi X.-M., Tu Y., Zhu Q. Ureic clearance granule, alleviates renal dysfunction and tubulointerstitial fibrosis by promoting extracellular matrix degradation in renal failure rats, compared with enalapril. J. Ethnopharmacol. 2014;155:1541–1552. doi: 10.1016/j.jep.2014.07.048.
    1. Hsu Y.-H., Chen T.-H., Wu M.-Y., Lin Y.-F., Chen W.-L., Cheng T.-H., Chen C.-H. Protective effects of Zhibai Dihuang Wan on renal tubular cells affected with gentamicin-induced apoptosis. J. Ethnopharmacol. 2014;151:635–642. doi: 10.1016/j.jep.2013.11.031.
    1. Lu P.-H., Lee H.-Y., Liou Y.-L., Tung S.-F., Kuo K.-L., Chen Y.-H. Nephroprotective Role of Zhibai Dihuang Wan in Aristolochic Acid-Intoxicated Zebrafish. BioMed Res. Int. 2020;2020:5204348. doi: 10.1155/2020/5204348.
    1. Korish A.A., Arafah M.M. Catechin combined with vitamins C and E ameliorates insulin resistance (IR) and atherosclerotic changes in aged rats with chronic renal failure (CRF) Arch. Gerontol. Geriatr. 2008;46:25–39. doi: 10.1016/j.archger.2007.02.006.
    1. Qin Y., Zhai Q., Li Y., Cao M., Xu Y., Zhao K., Wang T. Cyanidin-3-O-glucoside ameliorates diabetic nephropathy through regulation of glutathione pool. Biomed. Pharm. 2018;103:1223–1230. doi: 10.1016/j.biopha.2018.04.137.
    1. Wang Y., Wang B., Du F., Su X., Sun G., Zhou G., Bian X., Liu N. Epigallocatechin-3-Gallate Attenuates Oxidative Stress and Inflammation in Obstructive Nephropathy via NF-κB and Nrf2/HO-1 Signalling Pathway Regulation. Basic Clin. Pharm. Toxicol. 2015;117:164–172. doi: 10.1111/bcpt.12383.
    1. Ye Q., Zhu Y.I., Ye S., Liu H., She X., Niu Y., Ming Y. Gypenoside attenuates renal ischemia/reperfusion injury in mice by inhibition of ERK signaling. Exp. Ther. Med. 2016;11:1499–1505. doi: 10.3892/etm.2016.3034.
    1. Cai H.-D., Su S.-L., Qian D.-W., Guo S., Tao W.-W., Cong X.D., Tang R., Duan J.-A. Renal protective effect and action mechanism of Huangkui capsule and its main five flavonoids. J. Ethnopharmacol. 2017;206:152–159. doi: 10.1016/j.jep.2017.02.046.
    1. Wang Y.-Y., Li J.-P., Lu J.-B., Li C.-X., Yu J.-G., Zhang S., Jiang S., Guo J.-M., Duan J.-A. Effect and mechanism of Huangkui capsule on reduction of uremic toxin accumulation in an animal model of chronic kidney disease. Acta Pharm. Sin. 2019;54:10.
    1. Xu D., Chen M., Ren X., Ren X., Wu Y. Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB signaling pathway. Fitoterapia. 2014;97:148–155. doi: 10.1016/j.fitote.2014.06.005.
    1. Feng L., Ke N., Cheng F., Guo Y., Li S., Li Q., Li Y. The protective mechanism of ligustrazine against renal ischemia/reperfusion injury. J. Surg. Res. 2011;166:298–305. doi: 10.1016/j.jss.2009.04.005.
    1. Liu W.J., Tang H.T., Jia Y.T., Ma B., Fu J.F., Wang Y., Lv K.Y., Xia Z.F. Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats. Shock. 2010;34:314–320. doi: 10.1097/SHK.0b013e3181ceede4.
    1. Luo L.-N., Xie D.Q., Zhang X.G., Jiang R. Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation. Exp. Ther. Med. 2016;12:2009–2014. doi: 10.3892/etm.2016.3603.
    1. Liu C., Cheng Z., Wang Y., Dai X., Zhang J., Xue D. Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration. Diagn. Pathol. 2015;10:120. doi: 10.1186/s13000-015-0347-4.
    1. Chen M.L., Yi L., Zhang Y., Zhou X., Ran L., Yang J., Zhu J.D., Zhang Q.Y., Mi M.T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio. 2016;7:e02210-15. doi: 10.1128/mBio.02210-15.
    1. Feng C., Xie X., Wu M., Li C., Gao M., Liu M., Qi X., Ren J. Tanshinone I protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A. Environ. Toxicol. Pharmacol. 2013;36:850–857. doi: 10.1016/j.etap.2013.07.017.
    1. Lu Z., Zeng Y., Lu F., Liu X., Zou C. Rhubarb Enema Attenuates Renal Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats by Alleviating Indoxyl Sulfate Overload. PLoS ONE. 2015;10:e0144726. doi: 10.1371/journal.pone.0144726.
    1. Ji C., Deng Y., Yang A., Lu Z., Chen Y., Liu X., Han L., Zou C. Rhubarb Enema Improved Colon Mucosal Barrier Injury in 5/6 Nephrectomy Rats May Associate With Gut Microbiota Modification. Front. Pharmacol. 2020;11:1092. doi: 10.3389/fphar.2020.01092.
    1. Plotnikov E.Y., Chupyrkina A.A., Jankauskas S.S., Pevzner I.B., Silachev D.N., Skulachev V.P., Zorov D.B. Mechanisms of nephroprotective effect of mitochondria-targeted antioxidants under rhabdomyolysis and ischemia/reperfusion. Biochim. Biophys. Acta. 2011;1812:77–86. doi: 10.1016/j.bbadis.2010.09.008.
    1. Hatcher H., Planalp R., Cho J., Torti F., Torti S. Curcumin: From ancient medicine to current clinical trials. Cell. Mol. Life Sci. 2008;65:1631–1652. doi: 10.1007/s00018-008-7452-4.
    1. Usharani P., Mateen A., Naidu M., Raju Y., Chandra N. Effect of NCB-02, atorvastatin and placebo on endothelial function, oxidative stress and inflammatory markers in patients with type 2 diabetes mellitus. Drugs R D. 2008;9:243–250. doi: 10.2165/00126839-200809040-00004.
    1. Ghosh S.S., Massey H.D., Krieg R., Fazelbhoy Z.A., Ghosh S., Sica D.A., Fakhry I., Gehr T.W. Curcumin ameliorates renal failure in 5/6 nephrectomized rats: Role of inflammation. Am. J. Physiol. Ren. Physiol. 2009;296:F1146–F1157. doi: 10.1152/ajprenal.90732.2008.
    1. Sengupta K., Alluri K.V., Satish A.R., Mishra S., Golakoti T., Sarma K.V., Dey D., Raychaudhuri S.P. A double blind, randomized, placebo controlled study of the efficacy and safety of 5-Loxin® for treatment of osteoarthritis of the knee. Arthritis Res. Ther. 2008;10:1–11. doi: 10.1186/ar2461.
    1. Madisch A., Miehlke S., Eichele O., Mrwa J., Bethke B., Kuhlisch E., Bästlein E., Wilhelms G., Morgner A., Wigginghaus B. Boswellia serrata extract for the treatment of collagenous colitis. A double-blind, randomized, placebo-controlled, multicenter trial. Int. J. Colorectal Dis. 2007;22:1445–1451. doi: 10.1007/s00384-007-0364-1.
    1. Liu G., Zhou Q., Tong X. The clinical application and pharmacological research progress of Dahuang fuzi Decoction. Chin. Arch. Tradit. Chin. Med. 2010;28:1848–1851.
    1. Li J.-P., Guo J.-M., Hua Y.-Q., Zhu K.Y., Tang Y.-P., Zhao B.-C., Jia L.-F., Zhao J., Tang Z.-S., Duan J.-A. The mixture of Salvia miltiorrhiza–Carthamus tinctorius (Danhong injection) alleviates low-dose aspirin induced gastric mucosal damage in rats. Phytomedicine. 2016;23:662–671. doi: 10.1016/j.phymed.2016.03.006.
    1. Wang X., Yu S., Jia Q., Chen L., Zhong J., Pan Y., Shen P., Shen Y., Wang S., Wei Z. NiaoDuQing granules relieve chronic kidney disease symptoms by decreasing renal fibrosis and anemia. Oncotarget. 2017;8:55920. doi: 10.18632/oncotarget.18473.
    1. Yin X.-F., Han L.-L. Effect of uremic clearance granule on the systemic micro-inflammatory state of patients after peritoneal dialysis. Pract. Pharm. Clin. Remedies. 2013;2:125–126.
    1. Ye M.-Y., Zheng J., Zhang J. The Influence of Niaoduqing Particle on the Calcium and Phosphorus Metabolism and FGF23 in Patients with Chronic Kidney Disease. Med. Innov. China. 2015;12:16–18.
    1. Wojcikowski K., Johnson D.W., Gobe G. Herbs or natural substances as complementary therapies for chronic kidney disease: Ideas for future studies. J. Lab. Clin. Med. 2006;147:160–166. doi: 10.1016/j.lab.2005.11.011.
    1. Ishikawa T., Suzukawa M., Ito T., Yoshida H., Ayaori M., Nishiwaki M., Yonemura A., Hara Y., Nakamura H. Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification. Am. J. Clin. Nutr. 1997;66:261–266. doi: 10.1093/ajcn/66.2.261.
    1. Arts I.C., Hollman P.C., Feskens E.J., Bueno de Mesquita H.B., Kromhout D. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: The Zutphen Elderly Study. Am. J. Clin. Nutr. 2001;74:227–232. doi: 10.1093/ajcn/74.2.227.
    1. Chander V., Singh D., Chopra K. Catechin, a natural antioxidant protects against rhabdomyolysis-induced myoglobinuric acute renal failure. Pharmacol. Res. 2003;48:503–509. doi: 10.1016/S1043-6618(03)00207-X.
    1. Sumien N., Forster M.J., Sohal R.S. Supplementation with vitamin E fails to attenuate oxidative damage in aged mice. Exp. Gerontol. 2003;38:699–704. doi: 10.1016/S0531-5565(03)00068-8.
    1. Mahfouz M., Kummerow F. Vitamin C or vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. Int. J. Biochem. Cell Biol. 2004;36:1919–1932. doi: 10.1016/j.biocel.2004.01.028.
    1. He J., Giusti M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010;1:163–187. doi: 10.1146/annurev.food.080708.100754.
    1. McCullough M.L., Peterson J.J., Patel R., Jacques P.F., Shah R., Dwyer J.T. Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am. J. Clin. Nutr. 2012;95:454–464. doi: 10.3945/ajcn.111.016634.
    1. Wang Y.Q., Li Q.S., Zheng X.Q., Lu J.L., Liang Y.R. Antiviral Effects of Green Tea EGCG and Its Potential Application against COVID-19. Molecules. 2021;26:3962. doi: 10.3390/molecules26133962.
    1. Hodges J.K., Sasaki G.Y., Bruno R.S. Anti-inflammatory activities of green tea catechins along the gut-liver axis in nonalcoholic fatty liver disease: Lessons learned from preclinical and human studies. J. Nutr. Biochem. 2020;85:108478. doi: 10.1016/j.jnutbio.2020.108478.
    1. Filippini T., Malavolti M., Borrelli F., Izzo A.A., Fairweather-Tait S.J., Horneber M., Vinceti M. Green tea (Camellia sinensis) for the prevention of cancer. Cochrane Database Syst. Rev. 2020;3:CD005004. doi: 10.1002/14651858.CD005004.pub3.
    1. Nguyen N.H., Ha T.K.Q., Yang J.L., Pham H.T.T., Oh W.K. Triterpenoids from the genus Gynostemma: Chemistry and pharmacological activities. J. Ethnopharmacol. 2021;268:113574. doi: 10.1016/j.jep.2020.113574.
    1. Quan Y., Yang Y., Wang H., Shu B., Gong Q.H., Qian M. Gypenosides attenuate cholesterol-induced DNA damage by inhibiting the production of reactive oxygen species in human umbilical vein endothelial cells. Mol. Med. Rep. 2015;11:2845–2851. doi: 10.3892/mmr.2014.3095.
    1. Li N., Tang H., Wu L., Ge H., Wang Y., Yu H., Zhang X., Ma J., Gu H.F. Chemical constituents, clinical efficacy and molecular mechanisms of the ethanol extract of Abelmoschus manihot flowers in treatment of kidney diseases. Phytother. Res. 2021;35:198–206. doi: 10.1002/ptr.6818.
    1. Chen Y., Cai G., Sun X., Chen X. Treatment of chronic kidney disease using a traditional Chinese medicine, Flos Abelmoschus manihot (Linnaeus) Medicus (Malvaceae) Clin. Exp. Pharmacol. Physiol. 2016;43:145–148. doi: 10.1111/1440-1681.12528.
    1. Zhang L., Li P., Xing C.Y., Zhao J.Y., He Y.N., Wang J.Q., Wu X.F., Liu Z.S., Zhang A.P., Lin H.L., et al. Efficacy and safety of Abelmoschus manihot for primary glomerular disease: A prospective, multicenter randomized controlled clinical trial. Am. J. Kidney Dis. 2014;64:57–65. doi: 10.1053/j.ajkd.2014.01.431.
    1. Li P., Lin H., Ni Z., Zhan Y., He Y., Yang H., Fang J., Wang N., Li W., Cai G., et al. Efficacy and safety of Abelmoschus manihot for IgA nephropathy: A multicenter randomized clinical trial. Phytomedicine. 2020;76:153231. doi: 10.1016/j.phymed.2020.153231.
    1. Wojtyniak K., Szymański M., Matławska I. Leonurus cardiaca L. (motherwort): A review of its phytochemistry and pharmacology. Phytother. Res. 2013;27:1115–1120. doi: 10.1002/ptr.4850.
    1. Liu X.H., Pan L.L., Yang H.B., Gong Q.H., Zhu Y.Z. Leonurine attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: Involvement of reactive oxygen species and NF-κB pathways. Eur. J. Pharmacol. 2012;680:108–114. doi: 10.1016/j.ejphar.2012.01.012.
    1. Zhang Z.-H., Yu S.-Z., Wang Z.-T., Zhao B.-L., Hou J.-W., Yang F.-J., Xin W.-J. Scavenging effects of tetramethylpyrazine on active oxygen free radicals. Zhongguo Yao Li Xue Bao = Acta Pharmacol. Sin. 1994;15:229–231.
    1. Wu W., Qiu F. Experimental study on ischemia and reperfusion injury of rat liver and effects of ligustrazine and salvia compound. Chin. Med. Sci. J. = Chung-Kuo I Hsueh K’o Hsueh Tsa Chih. 1994;9:162–166.
    1. Feng L., Xiong Y., Cheng F., Zhang L., Li S., Li Y. Effect of ligustrazine on ischemia-reperfusion injury in murine kidney. Transpl. Proc. 2004;36:1949–1951. doi: 10.1016/j.transproceed.2004.07.050.
    1. Li F., Gong Q., Wang L., Shi J. Osthole attenuates focal inflammatory reaction following permanent middle cerebral artery occlusion in rats. Biol. Pharm. Bull. 2012;35:1686–1690. doi: 10.1248/bpb.b12-00133.
    1. Zhang J., Dou W., Zhang E., Sun A., Ding L., Wei X., Chou G., Mani S., Wang Z. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 2014;306:G27–G36. doi: 10.1152/ajpgi.00465.2012.
    1. Chen X., Liu C., Lu Y., Yang Z., Lv Z., Xu Q., Pan Q., Lu L. Paeoniflorin regulates macrophage activation in dimethylnitrosamine-induced liver fibrosis in rats. BMC Complementary Altern. Med. 2012;12:1–11. doi: 10.1186/1472-6882-12-254.
    1. Chung J.H., Manganiello V., Dyck J.R.B. Resveratrol as a calorie restriction mimetic: Therapeutic implications. Trends Cell Biol. 2012;22:546–554. doi: 10.1016/j.tcb.2012.07.004.
    1. Larrosa M., Yañéz-Gascón M.J., Selma M.V., González-Sarrías A., Toti S., Cerón J.J., Tomás-Barberán F., Dolara P., Espín J.C. Effect of a Low Dose of Dietary Resveratrol on Colon Microbiota, Inflammation and Tissue Damage in a DSS-Induced Colitis Rat Model. J. Agric. Food Chem. 2009;57:2211–2220. doi: 10.1021/jf803638d.
    1. Rakici O., Kiziltepe U., Coskun B., Aslamaci S., Akar F. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery. Int. J. Cardiol. 2005;105:209–215. doi: 10.1016/j.ijcard.2005.01.013.
    1. Magyar K., Halmosi R., Palfi A., Feher G., Czopf L., Fulop A., Battyany I., Sumegi B., Toth K., Szabados E. Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease. Clin. Hemorheol. Microcirc. 2012;50:179–187. doi: 10.3233/CH-2011-1424.
    1. Xiong Y., Chen L., Fan L., Wang L., Zhou Y., Qin D., Sun Q., Wu J., Cao S. Free total rhubarb anthraquinones protect intestinal injury via regulation of the intestinal immune response in a rat model of severe acute pancreatitis. Front. Pharmacol. 2018;9:75. doi: 10.3389/fphar.2018.00075.
    1. Wang L., Cui Y.-L., Zhang Z., Lin Z.-F., Chen D.-C. Rhubarb monomers protect intestinal mucosal barrier in sepsis via junction proteins. Chin. Med. J. 2017;130:1218. doi: 10.4103/0366-6999.205855.
    1. Fetisova E.K., Avetisyan A.V., Izyumov D.S., Korotetskaya M.V., Chernyak B.V., Skulachev V.P. Mitochondria-targeted antioxidant SkQR1 selectively protects MDR (Pgp 170)-negative cells against oxidative stress. FEBS Lett. 2010;584:562–566. doi: 10.1016/j.febslet.2009.12.002.
    1. Silachev D.N., Plotnikov E.Y., Pevzner I.B., Zorova L.D., Balakireva A.V., Gulyaev M.V., Pirogov Y.A., Skulachev V.P., Zorov D.B. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic–ischemic brain injury. Molecules. 2018;23:1871. doi: 10.3390/molecules23081871.
    1. Cai Y., Zhang W., Chen Z., Shi Z., He C., Chen M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int. J. Nanomed. 2016;11:121.
    1. Zhou J., Jiang Y.Y., Chen H., Wu Y.C., Zhang L. Tanshinone I attenuates the malignant biological properties of ovarian cancer by inducing apoptosis and autophagy via the inactivation of PI3K/AKT/mTOR pathway. Cell Prolif. 2020;53:e12739. doi: 10.1111/cpr.12739.
    1. World Health Organization . Acupuncture: Review and Analysis of Reports on Controlled Clinical Trials. World Health Organization; Geneve, Switzerland: 2002.
    1. Cabýoglu M.T., Ergene N., Tan U. The mechanism of acupuncture and clinical applications. Int. J. Neurosci. 2006;116:115–125. doi: 10.1080/00207450500341472.
    1. Xiong W., He F.F., You R.Y., Xiong J., Wang Y.M., Zhang C., Meng X.F., Su H. Acupuncture Application in Chronic Kidney Disease and its Potential Mechanisms. Am. J. Chin. Med. 2018;46:1169–1185. doi: 10.1142/S0192415X18500611.
    1. Huang Q.-F., Wu H.-G., Liu J., Hong J. Bibliometric analysis of diseases spectrum of moxibustion therapy. J. Acupunct. Tuina Sci. 2012;10:342–348. doi: 10.1007/s11726-012-0633-6.
    1. Lin J.-G., Li T., Hsu S. Newly Edited Color Book of Acupuncture and Moxibustion. JYIN Publishing Company; Taipei, Taiwan: 2009. pp. 107–108.
    1. Cardini F., Weixin H. Moxibustion for correction of breech presentation: A randomized controlled trial. JAMA. 1998;280:1580–1584. doi: 10.1001/jama.280.18.1580.
    1. Chiu J.-H. How does moxibustion possibly work? Evid. Based Complementary Altern. Med. 2013;2013:198584. doi: 10.1155/2013/198584.
    1. Deng H., Shen X. The mechanism of moxibustion: Ancient theory and modern research. Evid. Based Complementary Altern. Med. 2013;2013:379291. doi: 10.1155/2013/379291.
    1. Li Y., Sun Y., Zhang C., Wang K., Shen P., Huang D., Ma W., Zhang J., Li L., He L. Moxibustion alleviates injury in a rat focal segmental glomerulosclerosis model. Evid. Based Complementary Altern. Med. 2017;2017:7169547. doi: 10.1155/2017/7169547.

Source: PubMed

3
구독하다