The Role of von Willebrand Factor in Vascular Inflammation: From Pathogenesis to Targeted Therapy

Felice Gragnano, Simona Sperlongano, Enrica Golia, Francesco Natale, Renatomaria Bianchi, Mario Crisci, Fabio Fimiani, Ivana Pariggiano, Vincenzo Diana, Andreina Carbone, Arturo Cesaro, Claudia Concilio, Giuseppe Limongelli, Mariagiovanna Russo, Paolo Calabrò, Felice Gragnano, Simona Sperlongano, Enrica Golia, Francesco Natale, Renatomaria Bianchi, Mario Crisci, Fabio Fimiani, Ivana Pariggiano, Vincenzo Diana, Andreina Carbone, Arturo Cesaro, Claudia Concilio, Giuseppe Limongelli, Mariagiovanna Russo, Paolo Calabrò

Abstract

Beyond its role in hemostasis, von Willebrand factor (VWF) is an emerging mediator of vascular inflammation. Recent studies highlight the involvement of VWF and its regulator, ADAMTS13, in mechanisms that underlie vascular inflammation and immunothrombosis, like leukocyte rolling, adhesion, and extravasation; vascular permeability; ischemia/reperfusion injury; complements activation; and NETosis. The VWF/ADAMTS13 axis is implicated in the pathogenesis of atherosclerosis, promoting plaque formation and inflammation through macrophage and neutrophil recruitment in inflamed lesions. Moreover, VWF and ADAMTS13 have been recently proposed as prognostic biomarkers in cardiovascular, metabolic, and inflammatory diseases, such as diabetes, stroke, myocardial infarction, and sepsis. All these features make VWF an attractive therapeutic target in thromboinflammation. Several lines of research have recently investigated "tailor-made" inhibitors of VWF. Results from animal models and clinical studies support the potent anti-inflammatory and antithrombotic effect of VWF antagonism, providing reassuring data on its safety profile. This review describes the role of VWF in vascular inflammation "from bench to bedside" and provides an updated overview of the drugs that can directly interfere with the VWF/ADAMTS13 axis.

Figures

Figure 1
Figure 1
Functional heterogeneity of von Willebrand factor (VWF). VWF is best known for its role in hemostasis and thrombosis, supporting platelet adhesion/aggregation and protecting FVIII from proteolytic degradation in blood flow. However, it is now clear that VWF functions extend much further than that. VWF plays a key role in vascular inflammation, favoring leukocyte recruitment and extravasation, activating complement cascade, and participating in NETosis. In cardiovascular disease, including CAD and stroke, VWF is a predictor of future CV events. In atherosclerosis, VWF promotes plaque formation and inflammation in animal models. An increase in VWF activity or ADAMTS13 deficiency may result in microvascular obstruction and thrombotic microangiopathy (TMA). In sepsis, inflammatory and infective stimuli may induce an acute imbalance in the VWF/ADAMTS13 ratio with possible thrombotic complications (i.e., DIC). Finally, a growing interest is emerging on selective VWF antagonism as a new therapeutic option to provide a further advance in the treatment of thrombotic and inflammatory disorders. VWF: von Willebrand factor; ADAMTS13: a disintegrin and metalloprotease with the thrombospondin motif; TMA: thrombotic microangiopathy; CV: cardiovascular; CAD: coronary artery disease; TTP: thrombotic thrombocytopenic purpura; HUS: hemolytic uremic syndrome.
Figure 2
Figure 2
The “solar system” of VWF-mediated vascular inflammation. VWF is central in the “solar system” of vascular inflammation, and many inflammatory pathways orbit in its “gravitational field.” VWF supports leukocyte and platelet recruitment in inflamed tissue, modulates vascular permeability and edema formation, may promote atherosclerotic plaque formation and inflammation, and provides an activating surface for complement activation and NETosis. All these mechanisms may contribute to tissue injury and organ failure in thromboinflammatory disorders.
Figure 3
Figure 3
VWF-mediated thromboinflammation in high-shear conditions. At high shear rates (e.g., arterioles, microcirculation, and artery stenosis), the inactive globular-shaped VWF rapidly unfolds and elongates in a highly reactive long-chain conformation. The elongated VWF can bind to platelets (a), allowing them to roll and adhere to the damaged endothelial surface. Platelet-decorated UL-VWF strings on activated endothelium represent a solid anchoring matrix for leukocyte adhesion (b), so permitting leukocyte recruitment in the inflamed site. In the bloodstream, VWF also binds to “neutrophil extracellular traps” (NETs) (c), inflammatory mediators (decondensed nucleosomes, extracellular DNA, and proteins) released by activated neutrophils, creating a network able to recruit both platelets and leukocytes and to promote thrombus formation.

References

    1. Willebrand E. A. Hereditar pseudohemofili. Finska Lakarsallskapets Hand. 1926;1(67):7–112.
    1. Nilsson I. M. In memory of Erik Jorpes. von Willebrand’s disease from 1926-1983. Scandinavian Journal of Haematology. Supplementum. 1984;40(33):21–43.
    1. Meyer D., Larrieu M. J. Von Willebrand factor and platelet adhesiveness. Journal of Clinical Pathology. 1970;23(3):228–231. doi: 10.1136/jcp.23.3.228.
    1. Zimmerman T. S., Ratnoff O. D., Powell A. E. Immunologic differentiation of classic hemophilia (factor VIII deficiency) and von Willebrand’s disease, with observations on combined deficiencies of antihemophilic factor and proaccelerin (factor V) and on an acquired circulating anticoagulant against antihemophilic factor. The Journal of Clinical Investigation. 1971;50(1):244–254. doi: 10.1172/JCI106480.
    1. Lenting P. J., Casari C., Christophe O. D., Denis C. V. von Willebrand factor: the old, the new and the unknown. Journal of Thrombosis and Haemostasis. 2012;10(12):2428–2437. doi: 10.1111/jth.12008.
    1. Zhou Y. F., Eng E. T., Zhu J., Lu C., Walz T., Springer T. A. Sequence and structure relationships within von Willebrand factor. Blood. 2012;120(2):449–458.
    1. Bryckaert M., Rosa J. P., Denis C. V., Lenting P. J. Of von Willebrand factor and platelets. Cellular and Molecular Life Sciences. 2015;72(2):307–326. doi: 10.1007/s00018-014-1743-8.
    1. Springer T. A. von Willebrand factor, Jedi knight of the bloodstream. Blood. 2014;124(9):1412–1425. doi: 10.1111/nin.12197.
    1. Padilla A., Moake J. L., Bernardo A., et al. P-selectin anchors newly released ultralarge von Willebrand factor multimers to the endothelial cell surface. Blood. 2004;103(6):2150–6. doi: 10.1182/blood-2003-08-2956.
    1. Crawley J. T., de Groot R., Xiang Y., Luken B. M., Lane D. A. Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood. 2011;118(12):3212–3221. doi: 10.1182/blood-2011-02-306597.
    1. Sorrentino S., Studt J. D., Medalia O., Tanuj Sapra K. Roll, adhere, spread and contract: structural mechanics of platelet function. European Journal of Cell Biology. 2015;94(3-4):129–138. doi: 10.1016/j.ejcb.2015.01.001.
    1. Jackson S. P. The growing complexity of platelet aggregation. Blood. 2007;109(12):5087–5095. doi: 10.1182/blood-2006-12-027698.
    1. Ruggeri Z. M. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Practice & Research. Clinical Haematology. 2001;14(2):257–279.
    1. Smith N. L., Chen M. H., Dehghan A., et al. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010;121(12):1382–1392. doi: 10.1161/CIRCULATIONAHA.109.869156.
    1. Vischer U. M. von Willebrand factor, endothelial dysfunction, and cardiovascular disease. Journal of Thrombosis and Haemostasis. 2006;4(6):1186–1193. doi: 10.1371/journal.pone.0173796.
    1. Vischer U. M., Herrmann F. R., Peyrard T., Nzietchueng R., Benetos A. Plasma von Willebrand factor and arterial aging. Journal of Thrombosis and Haemostasis. 2005;3(4):794–795. doi: 10.1111/j.1538-7836.2005.01242.x.
    1. van Mourik J. A., Boertjes R., Huisveld I. A., et al. von Willebrand factor propeptide in vascular disorders: a tool to distinguish between acute and chronic endothelial cell perturbation. Blood. 1999;94(1):179–185. doi: 10.1002/jlcr.3501.
    1. Brott D. A., Katein A., Thomas H., et al. Evaluation of von Willebrand factor and von Willebrand factor propeptide in models of vascular endothelial cell activation, perturbation, and/or injury. Toxicologic Pathology. 2014;42(4):672–683. doi: 10.1177/0192623313518664.
    1. Zarei S., Frieden M., Kaufmann J. E., Vischer U. M. The regulation of endothelial VWF secretion by nitric oxide: is it physiological? Journal of Thrombosis and Haemostasis. 2006;4(1):263–265. doi: 10.1111/j.1538-7836.2005.01626.x.
    1. Schwameis M., Schörgenhofer C., Assinger A., Steiner M. M., Jilma B. VWF excess and ADAMTS13 deficiency: a unifying pathomechanism linking inflammation to thrombosis in DIC, malaria, and TTP. Thrombosis and Haemostasis. 2015;113(4):708–718. doi: 10.1160/TH14-09-0731.
    1. De Meyer S. F., Denorme F., Langhauser F., Geuss E., Fluri F., Kleinschnitz C. Thromboinflammation in stroke brain damage. Stroke. 2016;47(4):1165–1172. doi: 10.1161/STROKEAHA.115.011238.
    1. Engelmann B., Massberg S. Thrombosis as an intravascular effector of innate immunity. Nature Reviews. Immunology. 2013;13(1):34–45.
    1. Pendu R., Terraube V., Christophe O. D., et al. P-selectin glycoprotein ligand 1 and beta2-integrins cooperate in the adhesion of leukocytes to von Willebrand factor. Blood. 2006;108(12):3746–3752.
    1. Golia E., Limongelli G., Natale F., et al. Adipose tissue and vascular inflammation in coronary artery disease. World Journal of Cardiology. 2014;6(7):539–554. doi: 10.4330/wjc.v6.i7.539.
    1. Forte L., Cimmino G., Loffredo F., et al. C-reactive protein is released in the coronary circulation and causes endothelial dysfunction in patients with acute coronary syndromes. International Journal of Cardiology. 2011;152(1):7–12. doi: 10.1016/j.ijcard.2011.05.062.
    1. Calabrò P., Golia E., Yeh E. T. Role of C-reactive protein in acute myocardial infarction and stroke: possible therapeutic approaches. Current Pharmaceutical Biotechnology. 2012;13(1):4–16.
    1. Memoli B., Procino A., Calabrò P., et al. Inflammation may modulate IL-6 and C-reactive protein gene expression in the adipose tissue: the role of IL-6 cell membrane receptor. American Journal of Physiology. Endocrinology and Metabolism. 2007;293(4):E1030–E1035. doi: 10.1152/ajpendo.00697.2006.
    1. Pottinger B. E., Read R. C., Paleolog E. M., Higgins P. G., Pearson J. D. von Willebrand factor is an acute phase reactant in man. Thrombosis Research. 1989;53(4):387–394.
    1. Meigs J. B., Mittleman M. A., Nathan D. M., et al. Hyperinsulinemia, hyperglycemia, and impaired hemostasis: the Framingham Offspring Study. Jama. 2000;283(2):221–228. doi: 10.1001/jama.283.2.221.
    1. Jager A., van Hinsbergh V. W., Kostense P. J., et al. von Willebrand factor, C-reactive protein, and 5-year mortality in diabetic and nondiabetic subjects: the Hoorn Study. Arteriosclerosis, Thrombosis, and Vascular Biology. 1999;19(12):3071–3078. doi: 10.1161/01.ATV.19.12.3071.
    1. Bockmeyer C. L., Claus R. A., Budde U., et al. Inflammation-associated ADAMTS13 deficiency promotes formation of ultra-large von Willebrand factor. Haematologica. 2008;93(1):137–140. doi: 10.3324/haematol.11677.
    1. Vischer U. M., Barth H., Wollheim C. B. Regulated von Willebrand factor secretion is associated with agonist-specific patterns of cytoskeletal remodeling in cultured endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000;20(3):883–891.
    1. Bernardo A., Ball C., Nolasco L., Moake J. F., Dong J. F. Effects of inflammatory cytokines on the release and cleavage of the endothelial cell-derived ultralarge von Willebrand factor multimers under flow. Blood. 2004;104(1):100–106. doi: 10.1182/blood-2004-01-0107.
    1. Ley K. Molecular mechanisms of leukocyte recruitment in the inflammatory process. Cardiovascular Research. 1996;32(4):733–742.
    1. McEver R. P., Cummings R. D. Perspectives series: cell adhesion in vascular biology: role of PSGL-1 binding to selectins in leukocyte recruitment. The Journal of Clinical Investigation. 1997;100(3):485–491. doi: 10.1172/JCI119556.
    1. Cerletti C., Evangelista V., de Gaetano G. P-selectin-beta 2-integrin cross-talk: a molecular mechanism for polymorphonuclear leukocyte recruitment at the site of vascular damage. Thrombosis and Haemostasis. 1999;82(2):787–793.
    1. Wagner D. D. The Weibel-Palade body: the storage granule for von Willebrand factor and P-selectin. Thrombosis and Haemostasis. 1993;70(1):105–110.
    1. Denis C. V., André P., Saffaripour S., Wagner D. D. Defect in regulated secretion of P-selectin affects leukocyte recruitment in von Willebrand factor-deficient mice. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(7):4072–4077. doi: 10.1073/pnas.061307098.
    1. Koivunen E., Ranta T. M., Annila A., et al. Inhibition of β2integrin–mediated leukocyte cell adhesion by leucine–leucine–glycine motif–containing peptides. The Journal of Cell Biology. 2001;153(5):905–916.
    1. Bernardo A., Ball C., Nolasco L., Choi H., Moake J. L., Dong J. F. Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. Journal of Thrombosis and Haemostasis. 2005;3(3):562–570. doi: 10.1111/j.1538-7836.2005.01122.x.
    1. Petri B., Broermann A., Li H., et al. von Willebrand factor promotes leukocyte extravasation. Blood. 2010;116(22):4712–4719. doi: 10.1182/blood-2010-03-276311.
    1. Thurman J. M., Holers V. M. The central role of the alternative complement pathway in human disease. Journal of Immunology. 2006;176(3):1305–1310.
    1. Turner N. A., Moake J. Assembly and activation of alternative complement components on endothelial cell-anchored ultra-large von Willebrand factor links complement and hemostasis-thrombosis. PloS One. 2013;8(3, article e59372) doi: 10.1371/journal.pone.0059372.
    1. Turner N., Nolasco L., Nolasco J., Sartain S., Moake J. Thrombotic microangiopathies and the linkage between von Willebrand factor and the alternative complement pathway. Seminars in Thrombosis and Hemostasis. 2014;40(5):544–550. doi: 10.1055/s-0034-1383547.
    1. Cserti C. M., Landaw S., Uhl L. Do infections provoke exacerbations and relapses of thrombotic thrombocytopenic purpura? Journal of Clinical Apheresis. 2007;22(1):21–25. doi: 10.1002/jca.20114.
    1. Réti M., Farkas P., Csuka D., et al. Complement activation in thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis. 2012;10(5):791–798. doi: 10.1111/j.1538-7836.2012.04674.x.
    1. Kambas K., Mitroulis I., Ritis K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Frontiers in Immunology. 2012;3:p. 385. doi: 10.3389/fimmu.2012.00385.
    1. Quinn K., Henriques M., Parker T., Slutsky A. S., Zhang H. Human neutrophil peptides: a novel potential mediator of inflammatory cardiovascular diseases. American Journal of Physiology. Heart and Circulatory Physiology. 2008;295(5):H1817–H1824. doi: 10.1152/ajpheart.00472.2008.
    1. Pillai V. G., Bao J., Zander C. B., et al. Human neutrophil peptides inhibit cleavage of von Willebrand factor by ADAMTS13: a potential link of inflammation to TTP. Blood. 2016;128(1):110–119. doi: 10.1182/blood-2015-12-688747.
    1. Martinod K., Wagner D. D. Thrombosis: tangled up in NETs. Blood. 2014;123(18):2768–2776. doi: 10.1182/blood-2013-10-463646.
    1. Fuchs T. A., Brill A., Duerschmied D., et al. Extracellular DNA traps promote thrombosis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(36):15880–15885. doi: 10.1073/pnas.1005743107.
    1. Riegger J., Byrne R. A., Joner M., et al. Histopathological evaluation of thrombus in patients presenting with stent thrombosis. A multicenter European study: a report of the prevention of late stent thrombosis by an interdisciplinary global European effort consortium. European Heart Journal. 2016;37(19):1538–1549. doi: 10.1093/eurheartj/ehv419.
    1. Grässle S., Huck V., Pappelbaum K. I., et al. von Willebrand factor directly interacts with DNA from neutrophil extracellular traps. Arteriosclerosis, Thrombosis, and Vascular Biology. 2014;34(7):1382–1389. doi: 10.1161/ATVBAHA.113.303016.
    1. Oklu R., Albadawi H., Watkins M. T., Monestier M., Sillesen M., Wicky S. Detection of extracellular genomic DNA scaffold in human thrombus: implications for the use of deoxyribonuclease enzymes in thrombolysis. Journal of Vascular and Interventional Radiology. 2012;23(5):712–718. doi: 10.1016/j.jvir.2012.01.072.
    1. Trillo A. A., Prichard R. W. Early endothelial changes in experimental primate atherosclerosis. Laboratory Investigation. 1979;41(4):294–302.
    1. Vora D. K., Fang Z. T., Liva S. M., et al. Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circulation Research. 1997;80(6):810–818.
    1. Galbusera M., Zoja C., Donadelli R., et al. Fluid shear stress modulates von Willebrand factor release from human vascular endothelium. Blood. 1997;90(4):1558–1564.
    1. Fuster V., Bowie E. J. W., Lewis J. C., Fass D. N., Owen C. A., Jr., Brown A. L. Resistance to arteriosclerosis in pigs with von Willebrand’s disease. The Journal of Clinical Investigation. 1978;61(3):722–730. doi: 10.1172/JCI108985.
    1. Methia N., André P., Denis C. V., Economopoulos M., Wagner D. D. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood. 2001;98(5):1424–1428.
    1. Qin F., Impeduglia T., Schaffer P., Dardik H. Overexpression of von Willebrand factor is an independent risk factor for pathogenesis of intimal hyperplasia: preliminary studies. Journal of Vascular Surgery. 2003;37(2):433–439. doi: 10.1067/mva.2003.63.
    1. Gandhi C., Ahmad A., Wilson K. M., Chauhan A. K. ADAMTS13 modulates atherosclerotic plaque progression in mice via a VWF-dependent mechanism. Journal of Thrombosis and Haemostasis. 2014;12(2):255–260. doi: 10.1111/jth.12456.
    1. Kageyama S., Yamamoto H., Yoshimoto R. Anti-human von Willebrand factor monoclonal antibody AJvW-2 prevents thrombus deposition and neointima formation after balloon injury in guinea pigs. Arteriosclerosis, Thrombosis, and Vascular Biology. 2000;20(10):2303–2308.
    1. Yamashita A., Asada Y., Sugimura H., et al. Contribution of von Willebrand factor to thrombus formation on neointima of rabbit stenotic iliac artery under high blood-flow velocity. Arteriosclerosis, Thrombosis, and Vascular Biology. 2003;23(6):1105–1110. doi: 10.1161/01.ATV.0000077206.35631.B2.
    1. Zahger D., Fishbein M. C., Garfinkel L. I., et al. VCL, an antagonist of the platelet GP1b receptor, markedly inhibits platelet adhesion and intimal thickening after balloon injury in the rat. Circulation. 1995;92(5):1269–1273.
    1. Matsuno H., Kozawa O., Niwa M., Uematsu T. Inhibition of von Willebrand factor binding to platelet GP Ib by a fractionated aurintricarboxylic acid prevents restenosis after vascular injury in hamster carotid artery. Circulation. 1997;96(4):1299–1304.
    1. Chung D. W., Chen J., Ling M., et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood. 2016;127(5):637–645. doi: 10.1182/blood-2014-09-599530.
    1. Federici A. B., Mannucci P. M., Fogato E., Ghidoni P., Matturri L. Autopsy findings in three patients with von Willebrand disease type IIB and type III: presence of atherosclerotic lesions without occlusive arterial thrombi. Thrombosis and Haemostasis. 1993;70(5):758–761.
    1. Zhao B. Q., Chauhan A. K., Canault M., et al. von Willebrand factor–cleaving protease ADAMTS13 reduces ischemic brain injury in experimental stroke. Blood. 2009;114(15):3329–3334. doi: 10.1182/blood-2009-03-213264.
    1. Kleinschnitz C., De Meyer S. F., Schwarz T., et al. Deficiency of von Willebrand factor protects mice from ischemic stroke. Blood. 2009;113(15):3600–3603. doi: 10.1182/blood-2008-09-180695.
    1. Khan M. M., Motto D. G., Lentz S. R., Chauhan A. K. ADAMTS13 reduces VWF-mediated acute inflammation following focal cerebral ischemia in mice. Journal of Thrombosis and Haemostasis. 2012;10(8):1665–1671. doi: 10.1111/j.1538-7836.2012.04822.x.
    1. Gandhi C., Motto D. G., Jensen M., Lentz S. R., Chauhan A. K. ADAMTS13 deficiency exacerbates VWF-dependent acute myocardial ischemia/reperfusion injury in mice. Blood. 2012;120(26):5224–5230. doi: 10.1182/blood-2012-06-440255.
    1. De Meyer S. F., Savchenko A. S., Haas M. S., et al. Protective anti-inflammatory effect of ADAMTS13 on myocardial ischemia/reperfusion injury in mice. Blood. 2012;120(26):5217–5223. doi: 10.1182/blood-2012-06-439935.
    1. Elvington A., Atkinson C., Zhu H., et al. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. Journal of Immunology. 2012;189(9):4640–4647. doi: 10.4049/jimmunol.1201904.
    1. Mocco J., Mack W. J., Ducruet A. F., et al. Complement component C3 mediates inflammatory injury following focal cerebral ischemia. Circulation Research. 2006;99(2):209–217. doi: 10.1161/01.RES.0000232544.90675.42.
    1. Gragnano F., Golia E., Natale F., et al. The role of von Willebrand factor in cardiovascular disease: from a biochemical marker to an attractive therapeutic target. Current Vascular Pharmacology. 2017;15:1–12. doi: 10.2174/1570161115666170201114835.
    1. Rurali E., Noris M., Chianca A., et al. BENEDICT Study Group ADAMTS13 predicts renal and cardiovascular events in type 2 diabetic patients and response to therapy. Diabetes. 2013;62(10):3599–3609. doi: 10.2337/db13-0530.
    1. Wieberdink R. G., van Schie M. C., Koudstaal P. J., et al. High von Willebrand factor levels increase the risk of stroke: the Rotterdam study. Stroke. 2010;41(10):2151–2156. doi: 10.1161/STROKEAHA.110.586289.
    1. Sanders Y. V., Eikenboom J., de Wee E. M., et al. Reduced prevalence of arterial thrombosis in von Willebrand disease. Journal of Thrombosis and Haemostasis. 2013;11(5):845–854. doi: 10.1111/jth.12194.
    1. Kraft P., Drechsler C., Gunreben I., et al. Von Willebrand factor regulation in patients with acute and chronic cerebrovascular disease: a pilot, case-control study. PloS One. 2014;9(6 article e99851) doi: 10.1371/journal.pone.0099851.
    1. Thompson S. G., Kienast J., Pyke S. D., Haverkate F., van de Loo J. C. Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. The New England Journal of Medicine. 1995;332(10):635–641. doi: 10.1056/NEJM199503093321003.
    1. Sonneveld M. A., Cheng J. M., Oemrawsingh R. M., et al. Von Willebrand factor in relation to coronary plaque characteristics and cardiovascular outcome. Results of the ATHEROREMO-IVUS study. Thrombosis and Haemostasis. 2015;113(3):577–584. doi: 10.1160/TH14-07-0589.
    1. Rutten B., Maseri A., Cianflone D., et al. Plasma levels of active von Willebrand factor are increased in patients with first ST-segment elevation myocardial infarction: a multicenter and multiethnic study. European Heart Journal. Acute Cardiovascular Care. 2015;4(1):64–74. doi: 10.1177/2048872614534388.
    1. Marcucci R., Cesari F., Cinotti S., et al. ADAMTS-13 activity in the presence of elevated von Willebrand factor levels as a novel mechanism of residual platelet reactivity in high risk coronary patients on antiplatelet treatment. Thrombosis Research. 2008;123(1):130–136. doi: 10.1016/j.thromres.2008.05.017.
    1. Cataland S. R., Wu H. M. Acquired thrombotic thrombocytopenic purpura: new therapeutic options and their optimal use. Journal of Thrombosis and Haemostasis. 2015;13(Supplement 1):S223–S229. doi: 10.1111/jth.12934.
    1. Ono T., Mimuro J., Madoiwa S., et al. Severe secondary deficiency of von Willebrand factor-cleaving protease (ADAMTS13) in patients with sepsis-induced disseminated intravascular coagulation: its correlation with development of renal failure. Blood. 2006;107(2):528–534. doi: 10.1182/blood-2005-03-1087.
    1. Martin K., Borgel D., Lerolle N., et al. Decreased ADAMTS-13 (a disintegrin-like and metalloprotease with thrombospondin type 1 repeats) is associated with a poor prognosis in sepsis-induced organ failure. Critical Care Medicine. 2007;35(10):2375–2382.
    1. Peigne V., Azoulay E., Coquet I., et al. The prognostic value of ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats, member 13) deficiency in septic shock patients involves interleukin-6 and is not dependent on disseminated intravascular coagulation. Critical Care. 2013;17(6):p. R273. doi: 10.1186/cc13115.
    1. Hyseni A., Kemperman H., de Lange D. W., Kesecioglu J., de Groot P. G., Roest M. Active von Willebrand factor predicts 28-day mortality in patients with systemic inflammatory response syndrome. Blood. 2014;123(14):2153–2156. doi: 10.1182/blood-2013-08-508093.
    1. Aibar J., Castro P., Espinosa G., et al. ADAMTS-13 in critically ill patients with septic syndromes and noninfectious systemic inflammatory response syndrome. Shock. 2015;43(6):556–562. doi: 10.1097/SHK.0000000000000341.
    1. Hillgruber C., Steingräber A. K., Pöppelmann B., et al. Blocking von Willebrand factor for treatment of cutaneous inflammation. The Journal of Investigative Dermatology. 2014;134(1):77–86. doi: 10.1038/jid.2013.292.
    1. Huang J., Roth R., Heuser J. E., Sadler J. E. Integrin alpha(v)beta(3) on human endothelial cells binds von Willebrand factor strings under fluid shear stress. Blood. 2009;113(7):1589–1597. doi: 10.1182/blood-2008-05-158584.
    1. de Kruif M. D., Lemaire L. C., Giebelen I. A., et al. Prednisolone dose-dependently influences inflammation and coagulation during human endotoxemia. Journal of Immunology. 2007;178(3):1845–1851.
    1. DeLa Cadena R. A., Majluf-Cruz A., Stadnicki A., et al. Recombinant tumor necrosis factor receptor p75 fusion protein (TNFR:Fc) alters endotoxin-induced activation of the kinin, fibrinolytic, and coagulation systems in normal humans. Thrombosis and Haemostasis. 1998;80(1):114–118.
    1. Sahebkar A., Serban C., Ursoniu S., et al. The impact of statin therapy on plasma levels of von Willebrand factor antigen. Systematic review and meta-analysis of randomised placebo-controlled trials. Thrombosis and Haemostasis. 2016;115(3):520–532. doi: 10.1160/TH15-08-0620.
    1. Montalescot G., Collet J. P., Lison L., et al. Effects of various anticoagulant treatments on von Willebrand factor release in unstable angina. Journal of the American College of Cardiology. 2000;36(1):110–114.
    1. Mousavi S., Moradi M., Khorshidahmad T., Motamedi M. Anti-inflammatory effects of heparin and its derivatives: a systematic review. Advances in Pharmacological Sciences. 2015;2015:p. 507151. doi: 10.1155/2015/507151.
    1. Montalescot G., Bal-dit-Sollier C., Chibedi D., et al. Comparison of effects on markers of blood cell activation of enoxaparin, dalteparin, and unfractionated heparin in patients with unstable angina pectoris or non-ST-segment elevation acute myocardial infarction (the ARMADA study) The American Journal of Cardiology. 2003;91(8):925–930. doi: 10.1016/S0002-9149(03)00105-X.
    1. Elbini Dhouib I., Jallouli M., Annabi A., Gharbi N., Elfazaa S., Lasram M. M. A minireview on N-acetylcysteine: an old drug with new approaches. Life Sciences. 2016;151:359–363. doi: 10.1016/j.lfs.2016.03.003.
    1. Chen J., Reheman A., Gushiken F. C., et al. N-Acetylcysteine reduces the size and activity of von Willebrand factor in human plasma and mice. The Journal of Clinical Investigation. 2011;121(2):593–603. doi: 10.1172/JCI41062.
    1. Sayani F. A., Abrams C. S. How I treat refractory thrombotic thrombocytopenic purpura. Blood. 2015;125(25):3860–3867. doi: 10.1182/blood-2014-11-551580.
    1. Denorme F., De Meyer S. F. The VWF-GPIb axis in ischaemic stroke: lessons from animal models. Thrombosis and Haemostasis. 2016;116(4):597–604. doi: 10.1160/TH16-01-0036.
    1. Lapchak P. A., Doyan S., Fan X., Woods C. M. Synergistic effect of AJW200, a von Willebrand factor neutralizing antibody with low dose (0.9 mg/mg) thrombolytic therapy following embolic stroke in rabbits. Journal of Neurology & Neurophysiology. 2013;4(2):p. 146. doi: 10.4172/2155-9562.1000146.
    1. Fontayne A., Meiring M., Lamprecht S., et al. The humanized anti-glycoprotein Ib monoclonal antibody h6B4-Fab is a potent and safe antithrombotic in a high shear arterial thrombosis model in baboons. Thrombosis and Haemostasis. 2008;100(4):670–677.
    1. Wadanoli M., Sako D., Shaw G. D., et al. The von Willebrand factor antagonist (GPG-290) prevents coronary thrombosis without prolongation of bleeding time. Thrombosis and Haemostasis. 2007;98(2):397–405.
    1. Kageyama S., Yamamoto H., Nakazawa H., et al. Pharmacokinetics and pharmacodynamics of AJW200, a humanized monoclonal antibody to von Willebrand factor, in monkeys. Arteriosclerosis, Thrombosis, and Vascular Biology. 2002;22(1):187–192. doi: 10.1161/hq0102.101520.
    1. Yamamoto H., Vreys I., Stassen J. M., Yoshimoto R., Vermylen J., Hoylaerts M. F. Antagonism of vWF inhibits both injury induced arterial and venous thrombosis in the hamster. Journal of Thrombosis and Haemostasis. 1998;79(1):202–210.
    1. Staelens S., Hadders M. A., Vauterin S., et al. Paratope determination of the antithrombotic antibody 82D6A3 based on the crystal structure of its complex with the von Willebrand factor A3-domain. The Journal of Biological Chemistry. 2006;281(4):2225–2231. doi: 10.1074/jbc.M508191200.
    1. De Meyer S. F., Staelens S., Badenhorst P. N., et al. Coronary artery in-stent stenosis persists despite inhibition of the von Willebrand factor—collagen interaction in baboons. Thrombosis and Haemostasis. 2007;98(6):1343–1349.
    1. Zhao Y. M., Jiang M., Ji S. D., et al. Anti-human VWF monoclonal antibody SZ-123 prevents arterial thrombus formation by inhibiting VWF-collagen and VWF-platelet interactions in Rhesus monkeys. Biochemical Pharmacology. 2013;85(7):945–953. doi: 10.1016/j.bcp.2012.12.022.
    1. Ni X., Castanares M., Mukherjee A., Lupold S. E. Nucleic acid aptamers: clinical applications and promising new horizons. Current Medicinal Chemistry. 2011;18(27):4206–4214. doi: 10.2174/092986711797189600.
    1. Spiel A. O., Mayr F. B., Ladani N., et al. The aptamer ARC1779 is a potent and specific inhibitor of von Willebrand factor mediated ex vivo platelet function in acute myocardial infarction. Platelets. 2009;20(5):334–340. doi: 10.1080/09537100903085927.
    1. Markus H. S., McCollum C., Imray C., Goulder M. A., Gilbert J., King A. The von Willebrand inhibitor ARC1779 reduces cerebral embolization after carotid endarterectomy: a randomized trial. Stroke. 2011;42(8):2149–2153. doi: 10.1161/STROKEAHA.111.616649.
    1. Knöbl P., Jilma B., Gilbert J. C., Hutabarat R. M., Wagner P. G., Jilma-Stohlawetz P. Anti-von Willebrand factor aptamer ARC1779 for refractory thrombotic thrombocytopenic purpura. Transfusion. 2009;49(10):2181–2185. doi: 10.1111/j.1537-2995.2009.02232.x.
    1. Siller-Matula J. M., Merhi Y., Tanguay J. F., et al. ARC15105 is a potent antagonist of von Willebrand factor mediated platelet activation and adhesion. Arteriosclerosis, Thrombosis, and Vascular Biology. 2012;32(4):902–909. doi: 10.1161/ATVBAHA.111.237529.
    1. Diaz J. A., Wrobleski S. K., Alvarado C. M., et al. P-selectin inhibition therapeutically promotes thrombus resolution and prevents vein wall fibrosis better than enoxaparin and an inhibitor to von Willebrand factor. Arteriosclerosis, Thrombosis, and Vascular Biology. 2015;35(4):829–837. doi: 10.1161/ATVBAHA.114.304457.
    1. Dmitriev O. Y., Lutsenko S., Muyldermans S. Nanobodies as probes for protein dynamics in vitro and in cells. The Journal of Biological Chemistry. 2016;291(8):3767–3775. doi: 10.1074/jbc.R115.679811.
    1. Peyvandi F., Scully M., Kremer Hovinga J. A., et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. The New England Journal of Medicine. 2016;374(6):511–522. doi: 10.1056/NEJMoa1505533.
    1. Chauhan A. K., Motto D. G., Lamb C. B., et al. Systemic antithrombotic effects of ADAMTS13. The Journal of Experimental Medicine. 2006;203(3):767–776. doi: 10.1084/jem.20051732.
    1. Nakano T., Irie K., Hayakawa K., et al. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication. Brain Research. 2015;1624:330–335. doi: 10.1016/j.brainres.2015.07.027.
    1. Wang L., Fan W., Cai P., et al. Recombinant ADAMTS13 reduces tissue plasminogen activator-induced hemorrhage after stroke in mice. Annals of Neurology. 2013;73(2):189–198. doi: 10.1002/ana.23762.
    1. Cai P., Luo H., Xu H., et al. Recombinant ADAMTS 13 attenuates brain injury after intracerebral hemorrhage. Stroke. 2015;46(9):2647–2653. doi: 10.1161/STROKEAHA.115.009526.
    1. Muroi C., Fujioka M., Mishima K., et al. Effect of ADAMTS-13 on cerebrovascular microthrombosis and neuronal injury after experimental subarachnoid hemorrhage. Journal of Thrombosis and Haemostasis. 2014;12(4):505–514. doi: 10.1111/jth.12511.
    1. Kopić A., Benamara K., Piskernik C., et al. Preclinical assessment of a new recombinant ADAMTS-13 drug product (BAX930) for the treatment of thrombotic thrombocytopenic purpura. Journal of Thrombosis and Haemostasis. 2016;14(7):1410–1419. doi: 10.1111/jth.13341.

Source: PubMed

3
구독하다