Mutation in a SARS-CoV-2 Haplotype from Sub-Antarctic Chile Reveals New Insights into the Spike's Dynamics

Jorge González-Puelma, Jacqueline Aldridge, Marco Montes de Oca, Mónica Pinto, Roberto Uribe-Paredes, José Fernández-Goycoolea, Diego Alvarez-Saravia, Hermy Álvarez, Gonzalo Encina, Thomas Weitzel, Rodrigo Muñoz, Álvaro Olivera-Nappa, Sergio Pantano, Marcelo A Navarrete, Jorge González-Puelma, Jacqueline Aldridge, Marco Montes de Oca, Mónica Pinto, Roberto Uribe-Paredes, José Fernández-Goycoolea, Diego Alvarez-Saravia, Hermy Álvarez, Gonzalo Encina, Thomas Weitzel, Rodrigo Muñoz, Álvaro Olivera-Nappa, Sergio Pantano, Marcelo A Navarrete

Abstract

The emergence of SARS-CoV-2 variants, as observed with the D614G spike protein mutant and, more recently, with B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) and B.1.1.28.1 (P.1) lineages, represent a continuous threat and might lead to strains of higher infectivity and/or virulence. We report on the occurrence of a SARS-CoV-2 haplotype with nine mutations including D614G/T307I double-mutation of the spike. This variant expanded and completely replaced previous lineages within a short period in the subantarctic Magallanes Region, southern Chile. The rapid lineage shift was accompanied by a significant increase of cases, resulting in one of the highest incidence rates worldwide. Comparative coarse-grained molecular dynamic simulations indicated that T307I and D614G belong to a previously unrecognized dynamic domain, interfering with the mobility of the receptor binding domain of the spike. The T307I mutation showed a synergistic effect with the D614G. Continuous surveillance of new mutations and molecular analyses of such variations are important tools to understand the molecular mechanisms defining infectivity and virulence of current and future SARS-CoV-2 strains.

Keywords: Covid19; SARS-CoV2; variant.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Phylodynamic evolution and new daily cases incidence in the Magallanes Region. The phylodynamic tree depicts the number of mutations of isolated genomes during the study period in the Magellanes Region; colors refer to Nextstrain clade classification (upper left corner) of analyzed strains. Clade defining mutations: 19A Wuhan Strain; 19B: ORF8 251S; 20A: Spike 614G; 20B: derived from 20A bearing Nuclocapsid 203K, N204R and ORF14 50N; 20C: derived from 20A bearing ORF3a 57H and ORF1a 265I. Histogram chart showing daily incidence rates of confirmed COVID-19 cases in the Magallanes Region.
Figure 2
Figure 2
Geodynamic evolution of clades and spike 307 mutation. (a) Shows the geolocation of study sites in the Magallanes Region in Chile’s extreme south (N, Puerto Natales; A, Punta Arenas; R, Porvenir; W, Puerto Williams). (b) Demonstrates the distribution of mutations of spike protein at genomic position 22,482 and clades (Nextstrain classification) at the four study sites. Colored dots represent individual cases analyzed by targeted sequencing and whole genome sequencing (WGS). (c) Shows the relative frequency of spike protein mutations at position 307.
Figure 3
Figure 3
Mutational effect and frequency across epidemic phases. (a) Shows the frequency of amino acid changes induced by non-synonymous mutations. (b) Depicts the genomic position and relative frequency of both synonymous and non-synonymous mutations during the three epidemic phases the world’s global relative frequency included as a reference.
Figure 4
Figure 4
Structure and dynamics of the soluble part of SARS-CoV-2 spike. (a) Global architecture of the homotrimer. The foremost protomer is shown in cartoon representation, while the other two are shown by solvent accessible surface. The S1 segment is colored by structural domains discussed in the main text (green: N-terminal domain, NTD; red: receptor binding domain, RBD; blue: gear-like domain, GLD). The two amino acids mutated are shown in space-filling representation and the amino acids in the furin loop are shown as sticks. (b) Extreme projections of the main component of the motion in the S1 segment. The black tube corresponds to the average position of the protein backbone. The direction of the motion is indicated by lines changing from red to blue color. (c) Upper left panel: close up on the amino acids surrounding T307 and F306 in the cryo–electron microscopy structure used as the starting configuration. Upper right panel: Final conformation of the molecular dynamics simulation with the side chains of I307 and F306 in close contact. Lower panel: spike protein alignment around the conserved hydrophobic cluster (L48, L276, V289) interacting with F306 in different β-coronaviruses.
Figure 5
Figure 5
Proposed molecular dynamic of spike protein. (a) Schematic representation depicts a proposed gear-like mechanism for the molecular dynamic of the S1 subunit in which the rotation of gear-like domain (GLD) is accompanied by the solidary movement of the N-terminal and receptor binding domains (NTD and RBD respectively). (b) Superposition of spike experimental structures in the all-RBD-down state captured with different rotations of the GLD, depicting a counter-clockwise rotation of the gear-like domain. The GLD is shown in cartoon representation and NTD and RBD from the wild type protein are shown in solvent accessible surface. In blue: SARS-CoV-2 S wild type (WT) (pdb: 6XR8), yellow: SARS-CoV-2 S D614G (pdb: 6XS6), red: infectious bronchitis coronavirus (pdb: 6CV0). (c) Superposition of spike experimental structures in the all-RBD-down, depicting domain movements between pH 5.5 and 4.0. In purple: spike at pH 4.0 (pdb: 6XLU), calypso: spike at pH 5.5 (pdb: 6XM5). F306 are shown as sticks. NTD: N-terminal domain, RBD: receptor binding domain, GLD: gear-like domain.

References

    1. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7.
    1. Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., et al. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020;5:536–544. doi: 10.1038/s41564-020-0695-z.
    1. John Hopkins University COVID-19 Map. [(accessed on 25 March 2021)]; Available online: .
    1. Hodcroft E.B., Zuber M., Nadeau S., Comas I., Candelas F.G., Consortium S.S., Stadler T., Neher R.A. Emergence and spread of a SARS-CoV-2 variant through Europe in the summer of 2020. medRxiv. 2020 doi: 10.1101/2020.10.25.20219063.
    1. Young B.E., Fong S.W., Chan Y.H., Mak T.M., Ang L.W., Anderson D.E., Lee C.Y.P., Amrun S.N., Lee B., Goh Y.S., et al. Effects of a major deletion in the SARS-CoV-2 genome on the severity of infection and the inflammatory response: An observational cohort study. Lancet. 2020;396:603–611. doi: 10.1016/S0140-6736(20)31757-8.
    1. Plante J.A., Liu Y., Liu J., Xia H., Johnson B.A., Lokugamage K.G., Zhang X., Muruato A.E., Zou J., Fontes-Garfias C.R., et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020;592:116–121. doi: 10.1038/s41586-020-2895-3.
    1. Rambaut A., Loman N., Pybus O., amd Jeff Barrett W.B., Carabelli A., Connor T., Peacock T., Robertson D.L., Volz E. Preliminary Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in the UK Defined by a Novel Set of Spike Mutations. [(accessed on 25 March 2021)]; Available online: .
    1. Robson F., Khan K.S., Le T.K., Paris C., Demirbag S., Barfuss P., Rocchi P., Ng W.L. Coronavirus RNA Proofreading: Molecular Basis and Therapeutic Targeting. Mol. Cell. 2020;79:710–727. doi: 10.1016/j.molcel.2020.07.027.
    1. Li W., Zhang C., Sui J., Kuhn J.H., Moore M.J., Luo S., Wong S.K., Huang I.C., Xu K., Vasilieva N., et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J. 2005;24:1634–1643. doi: 10.1038/sj.emboj.7600640.
    1. Song H.D., Tu C.C., Zhang G.W., Wang S.Y., Zheng K., Lei L.C., Chen Q.X., Gao Y.W., Zhou H.Q., Xiang H., et al. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA. 2005;102:2430–2435. doi: 10.1073/pnas.0409608102.
    1. Singh J., Samal J., Kumar V., Sharma J., Agrawal U., Ehtesham N.Z., Sundar D., Rahman S.A., Hira S., Hasnain S.E. Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7, B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications. Viruses. 2021;13:439. doi: 10.3390/v13030439.
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020;182:812–827. doi: 10.1016/j.cell.2020.06.043.
    1. Volz E., Hill V., McCrone J.T., Price A., Jorgensen D., O’Toole Á., Southgate J., Johnson R., Jackson B., Nascimento F.F., et al. Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell. 2021;184:64–75.e11. doi: 10.1016/j.cell.2020.11.020.
    1. Zhang L., Jackson C.B., Mou H., Ojha A., Peng H., Quinlan B.D., Rangarajan E.S., Pan A., Vanderheiden A., Suthar M.S., et al. SARS-CoV-2 spike-protein D614G mutation increases virion spike density and infectivity. Nat. Commun. 2020;11:6013. doi: 10.1038/s41467-020-19808-4.
    1. Isabel S., Graña-Miraglia L., Gutierrez J.M., Bundalovic-Torma C., Groves H.E., Isabel M.R., Eshaghi A., Patel S.N., Gubbay J.B., Poutanen T., et al. Evolutionary and structural analyses of SARS-CoV-2 D614G spike protein mutation now documented worldwide. Sci. Rep. 2020;10:14031. doi: 10.1038/s41598-020-70827-z.
    1. Deng X., Gu W., Federman S., Plessis L.D., Pybus O.G., Faria N.R., Wang C., Yu G., Bushnell B., Pan C.Y., et al. Genomic surveillance reveals multiple introductions of SARS-CoV-2 into Northern California. Science. 2020;369:582–587. doi: 10.1126/science.abb9263.
    1. Cai Y., Zhang J., Xiao T., Peng H., Sterling S.M., Walsh R.M., Rawson S., Rits-Volloch S., Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020;369:1586–1592. doi: 10.1126/science.abd4251.
    1. Rozzi R., Armesto J.J., Gutiérrez J.R., Massardo F., Likens G.E., Anderson C.B., Poole A., Moses K.P., Hargrove E., Mansilla A.O., et al. Integrating Ecology and Environmental Ethics: Earth Stewardship in the Southern End of the Americas. BioScience. 2012;62:226–236. doi: 10.1525/bio.2012.62.3.4.
    1. Castillo A.E., Parra B., Tapia P., Acevedo A., Lagos J., Andrade W., Arata L., Leal G., Barra G., Tambley C., et al. Phylogenetic analysis of the first four SARS-CoV-2 cases in Chile. J. Med. Virol. 2020;92:1562–1566. doi: 10.1002/jmv.25797.
    1. Artic Network. [(accessed on 25 March 2021)]; Available online:
    1. Hadfield J., Megill C., Bell S.M., Huddleston J., Potter B., Callender C., Sagulenko P., Bedford T., Neher R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics. 2018;34:4121–4123. doi: 10.1093/bioinformatics/bty407.
    1. Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010.
    1. Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300.
    1. Sagulenko P., Puller V., Neher R.A. TreeTime: Maximum-likelihood phylodynamic analysis. Virus Evol. 2018;4:vex042. doi: 10.1093/ve/vex042.
    1. Liu B., Liu K., Zhang H., Zhang L., Bian Y., Huang L. CoV-Seq, a New Tool for SARS-CoV-2 Genome Analysis and Visualization: Development and Usability Study. J. Med. Internet Res. 2020;22:e22299. doi: 10.2196/22299.
    1. Elbe S., Buckland-Merrett G. Data, disease and diplomacy: GISAID’s innovative contribution to global health. Glob. Chall. 2017;1:33–46. doi: 10.1002/gch2.1018.
    1. Machado M.R., Pantano S. SIRAH tools: Mapping, backmapping and visualization of coarse-grained models. Bioinformatics. 2016;32:1568–1570. doi: 10.1093/bioinformatics/btw020.
    1. Páll S., Abraham M.J., Kutzner C., Hess B., Lindahl E. Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS. In: Markidis S., Laure E., editors. Solving Software Challenges for Exascale. Lecture Notes in Computer Science; Springer International Publishing; Cham, Switzerland: 2015. pp. 3–27.
    1. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A., Rempfer C., Bordoli L., et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–W303. doi: 10.1093/nar/gky427.
    1. Darré L., Machado M.R., Dans P.D., Herrera F.E., Pantano S. Another coarse grain model for aqueous solvation: WAT FOUR? J. Chem. Theory Comput. 2010;6:3793–3807. doi: 10.1021/ct100379f.
    1. Machado M.R., Pantano S. Split the charge difference in two! A rule of thumb for adding proper amounts of ions in MD simulations. J. Chem. Theory Comput. 2020;16:1367–1372. doi: 10.1021/acs.jctc.9b00953.
    1. Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505.
    1. Schrödinger L., DeLano W. PyMOL. [(accessed on 25 March 2021)];2020 Available online: .
    1. Community B.O. Blender-a 3D Modelling and Rendering Package. [(accessed on 25 March 2021)];2021 Available online: .
    1. González-Puelma J., Aldridge J., Montes de Oca M., Pinto M., Uribe-Paredes R., Fernández-Goycoolea J., Alvarez Saravia D., Álvarez H., Encina G., Weitzel T., et al. SIRAH-CoV2 Initiative: T307I Mutation in a SARS-CoV-2 Spike from Sub-Antarctic Chile. [(accessed on 28 April 2021)];2021 doi: 10.5281/zenodo.4730896. Available online: .
    1. Garay P.G., Barrera E.E., Klein F., Machado M.R., Soñora M., Pantano S. The SIRAH-CoV-2 Initiative: A coarse-grained simulations’ dataset of the sars-cov-2 proteome. Front. Med. Technol. 2021;3:4. doi: 10.3389/fmedt.2021.644039.
    1. Wu F., Zhao S., Yu B., Chen Y.M., Wang W., Song Z.G., Hu Y., Tao Z.W., Tian J.H., Pei Y.Y., et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3.
    1. Wrapp D., Wang N., Corbett K.S., Goldsmith J.A., Hsieh C.L., Abiona O., Graham B.S., McLellan J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–1263. doi: 10.1126/science.abb2507.
    1. Johnson B.A., Xie X., Kalveram B., Lokugamage K.G., Muruato A., Zou J., Zhang X., Juelich T., Smith J.K., Zhang L., et al. Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis. bioRxiv. 2020 doi: 10.1101/2020.08.26.268854.
    1. Gobeil S.M.C., Janowska K., McDowell S., Mansouri K., Manne K., Stalls V., Kopp M., Henderson R., Edwards R.J., Haynes B.F., et al. D614G mutation alters SARS-CoV-2 spike conformational dynamics and protease cleavage susceptibility at the S1/S2 junction. bioRxiv. 2020:34. doi: 10.1016/j.celrep.2020.108630.
    1. Yurkovetskiy L., Wang X., Pascal K.E., Tomkins-Tinch C., Nyalile T.P., Wang Y., Baum A., Diehl W.E., Dauphin A., Carbone C., et al. Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell. 2020;183:739–751.e8. doi: 10.1016/j.cell.2020.09.032.
    1. Ke Z., Oton J., Qu K., Cortese M., Zila V., McKeane L., Nakane T., Zivanov J., Neufeldt C.J., Cerikan B., et al. Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature. 2020;588:498–502. doi: 10.1038/s41586-020-2665-2.
    1. Moreira R.A., Chwastyk M., Baker J.L., Guzman H.V., Poma A.B. Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale. 2020;12:16409–16413. doi: 10.1039/D0NR03969A.
    1. Moreira R.A., Guzman H.V., Boopathi S., Baker J.L., Poma A.B. Characterization of structural and energetic differences between conformations of the SARS-CoV-2 spike protein. Materials. 2020;13:5362. doi: 10.3390/ma13235362.
    1. Barros E.P., Casalino L., Gaieb Z., Dommer A.C., Wang Y., Fallon L., Raguette L., Belfon K., Simmerling C., Amaro R.E. The flexibility of ACE2 in the context of SARS-CoV-2 infection. Biophys. J. 2021;120:1072–1084. doi: 10.1016/j.bpj.2020.10.036.
    1. Zhang J., Cai Y., Xiao T., Lu J., Peng H., Sterling S.M., Walsh R.M., Rits-Volloch S., Zhu H., Woosley A.N., et al. Structural impact on SARS-CoV-2 spike protein by D614G substitution. Science. 2021;372:525–530. doi: 10.1126/science.abf2303.
    1. Shang J., Zheng Y., Yang Y., Liu C., Geng Q., Luo C., Zhang W., Li F. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog. 2018;14:e1007009. doi: 10.1371/journal.ppat.1007009.
    1. Zhou T., Tsybovsky Y., Gorman J., Rapp M., Cerutti G., Chuang G.Y., Katsamba P.S., Sampson J.M., Schön A., Bimela J., et al. Cryo-EM structures of SARS-CoV-2 spike without and with ACE2 reveal a pH-dependent switch to mediate endosomal positioning of receptor-binding domains. Cell Host Microbe. 2020;28:867–879. doi: 10.1016/j.chom.2020.11.004.
    1. Grubaugh N.D., Hanage W.P., Rasmussen A.L. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear. Cell. 2020;182:794–795. doi: 10.1016/j.cell.2020.06.040.
    1. Altman M.O., Angeletti D., Yewdell J.W. Antibody Immunodominance: The Key to Understanding Influenza Virus Antigenic Drift. Viral Immunol. 2018;31:142–149. doi: 10.1089/vim.2017.0129.
    1. Diehl W.E., Lin A.E., Grubaugh N.D., Carvalho L.M., Kim K., Kyawe P.P., McCauley S.M., Donnard E., Kucukural A., McDonel P., et al. Ebola Virus Glycoprotein with Increased Infectivity Dominated the 2013–2016 Epidemic. Cell. 2016;167:1088–1098.e6. doi: 10.1016/j.cell.2016.10.014.
    1. Zehender G., Lai A., Bergna A., Meroni L., Riva A., Balotta C., Tarkowski M., Gabrieli A., Bernacchia D., Rusconi S., et al. Genomic characterization and phylogenetic analysis of SARS-COV-2 in Italy. J. Med Virol. 2020;92:1637–1640. doi: 10.1002/jmv.25794.
    1. Disease Prevention E.C. Rapid increase of a SARS-CoV-2 variant with multiple spike protein mutations observed in the United Kingdom—20 December 2020. ECDC Stockh. 2020
    1. Shin D., Mukherjee R., Grewe D., Bojkova D., Baek K., Bhattacharya A., Schulz L., Widera M., Mehdipour A.R., Tascher G., et al. Papain-like protease regulates SARS-CoV-2 viral spread and innate immunity. Nature. 2020;587:657–662. doi: 10.1038/s41586-020-2601-5.
    1. Vuong W., Khan M.B., Fischer C., Arutyunova E., Lamer T., Shields J., Saffran H.A., McKay R.T., van Belkum M.J., Joyce M.A., et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. Nat. Commun. 2020;11:4282. doi: 10.1038/s41467-020-18096-2.
    1. Leary S., Gaudieri S., Chopra A., Pakala S., Alves E., John M., Das S., Mallal S., Phillips E. Three adjacent nucleotide changes spanning two residues in SARS-CoV-2 nucleoprotein: Possible homologous recombination from the transcription-regulating sequence. bioRxiv. 2020 doi: 10.1101/2020.04.10.029454.
    1. Berger I., Schaffitzel C. The SARS-CoV-2 spike protein: Balancing stability and infectivity. Cell Res. 2020;30:1059–1060. doi: 10.1038/s41422-020-00430-4.
    1. Benton D.J., Wrobel A.G., Xu P., Roustan C., Martin S.R., Rosenthal P.B., Skehel J.J., Gamblin S.J. Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 2020;588:327–330. doi: 10.1038/s41586-020-2772-0.
    1. Henderson R., Edwards R.J., Mansouri K., Janowska K., Stalls V., Gobeil S.M., Kopp M., Li D., Parks R., Hsu A.L., et al. Controlling the SARS-CoV-2 spike glycoprotein conformation. Nat. Struct. Mol. Biol. 2020;27:925–933. doi: 10.1038/s41594-020-0479-4.
    1. Ozer E.A., Simons L.M., Adewumi O.M., Fowotade A.A., Omoruyi E.C., Adeniji J.A., Dean T.J., Taiwo B.O., Hultquist J.F., Lorenzo-Redondo R. High prevalence of SARS-CoV-2 B. 1.1. 7 (UK variant) and the novel B. 1.5. 2.5 lineage in Oyo State, Nigeria. medRxiv. doi: 10.1101/2021.04.09.21255206.
    1. Kemp S.A., Meng B., Ferriera I.A., Datir R., Harvey W.T., Papa G., Lytras S., Collier D.A., Mohamed A., Gallo G., et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. bioRxiv. 2021 doi: 10.1101/2020.12.14.422555.
    1. Maggi F., Novazzi F., Genoni A., Baj A., Spezia P.G., Focosi D., Zago C., Colombo A., Cassani G., Pasciuta R., et al. 1 in Traveler Returning from Brazil to Italy. Emerg. Infect. Dis. 2021;27:1249. doi: 10.3201/eid2704.210183.
    1. Yadav P.D., Sapkal G.N., Abraham P., Ella R., Deshpande G., Patil D.Y., Nyayanit D.A., Gupta N., Sahay R.R., Shete A.M., et al. 1.617 with sera of BBV152 vaccinees. bioRxiv. 2021 doi: 10.1101/2021.04.23.441101.
    1. Peacock T.P., Penrice-Randal R., Hiscox J.A., Barclay W.S. SARS-CoV-2 one year on: Evidence for ongoing viral adaptation. J. Gen. Virol. 2021;102:001584. doi: 10.1099/jgv.0.001584.

Source: PubMed

3
구독하다