Diarrhea Predominant-Irritable Bowel Syndrome (IBS-D): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms

Annamaria Altomare, Claudia Di Rosa, Elena Imperia, Sara Emerenziani, Michele Cicala, Michele Pier Luca Guarino, Annamaria Altomare, Claudia Di Rosa, Elena Imperia, Sara Emerenziani, Michele Cicala, Michele Pier Luca Guarino

Abstract

Irritable Bowel Syndrome (IBS) is a chronic functional gastrointestinal disorder characterized by abdominal pain associated with defecation or a change in bowel habits. Gut microbiota, which acts as a real organ with well-defined functions, is in a mutualistic relationship with the host, harvesting additional energy and nutrients from the diet and protecting the host from pathogens; specific alterations in its composition seem to play a crucial role in IBS pathophysiology. It is well known that diet can significantly modulate the intestinal microbiota profile but it is less known how different nutritional approach effective in IBS patients, such as the low-FODMAP diet, could be responsible of intestinal microbiota changes, thus influencing the presence of gastrointestinal (GI) symptoms. The aim of this review was to explore the effects of different nutritional protocols (e.g., traditional nutritional advice, low-FODMAP diet, gluten-free diet, etc.) on IBS-D symptoms and on intestinal microbiota variations in both IBS-D patients and healthy subjects. To date, an ideal nutritional protocol does not exist for IBS-D patients but it seems crucial to consider the effect of the different nutritional approaches on the intestinal microbiota composition to better define an efficient strategy to manage this functional disorder.

Keywords: IBS; IBS-D; Irritable Bowel Syndrome; diarrhea predominant IBS; diet and IBS; gluten—free diet and IBS; gluten—free diet and microbiota; low—FODMAP and IBS; low—FODMAP and microbiota; microbiota and IBS.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Lacy B.E., Mearin F., Chang L., Chey W.D., Lembo A.J., Simren M., Spiller R. Bowel Disorders. Gastroenterology. 2016;150:1393–1407.e5. doi: 10.1053/j.gastro.2016.02.031.
    1. Lacy B.E., Moreau J.C. Diarrhea—Predominant irritable bowel syndrome: Diagnosis, etiology, and new treatment con-siderations. J. Am. Assoc. Nurse Pract. 2016;28:393–404. doi: 10.1002/2327-6924.12387.
    1. Alammar N., Stein E. Irritable Bowel Syndrome. What treatments really work. Med. Clin. N. Am. 2019;103:137–152. doi: 10.1016/j.mcna.2018.08.006.
    1. Cangemi D.J., Lacy B.E. Management of irritable bowel syndrome with diarrhea: A review of nonpharmacological and pharmacological interventions. Adv. Gastroenterol. 2019;12:1–19. doi: 10.1177/1756284819878950.
    1. Zahedi M.J., Behrouz V., Azimi M. Low fermentable oligo-di-Mono-Saccharides and poliols diet versus general dietary advice in patients with diarrhea-predominant irritable bowel syndrome: A randomized controlled trial. Gastroenterol. Hepatol. 2018;33:1192–1199. doi: 10.1111/jgh.14051.
    1. Zheng T., Eswaran S., Photenhauer A.L., Merchant J.L., Chey W.D., D’Amato M. Reduced efficacy of low FODMAPs diet in patients with IBS-D carrying sucrase-isomaltase (SI) hypomorphic variants. Gut. 2020;69:397–398. doi: 10.1136/gutjnl-2018-318036.
    1. Kim S.B., Calmet F.H., Garrido J., Garcia-Buitrago M.T., Moshiree B. Sucrase-Isomaltase deficiency as a potential mas-querader in irritable bowel syndrome. Dig. Dis. Sci. 2020;65:534–540. doi: 10.1007/s10620-019-05780-7.
    1. Simren M., Palsson O.S., Whitehead W.E. Update on Rome IV Criteria for Colorectal Disorders: Implications for Clinical Practice. Curr. Gastroenterol. Rep. 2017;19:1–8. doi: 10.1007/s11894-017-0554-0.
    1. Lacy B.E., Pimentel M., Brenner D.M., Chey W.D., Keefer L.A., Long M.D., Moshiree B. ACG Clinical Guideline: Management of Irritable Bowel Syndrome. Am. J. Gastroenterol. 2021;116:17–44. doi: 10.14309/ajg.0000000000001036.
    1. Lovell R.M., Ford A.C. Global Prevalence of and Risk Factors for Irritable Bowel Syndrome: A Meta-Analysis. Clin. Gastroenterol. Hepatol. 2012;10:712–721. doi: 10.1016/j.cgh.2012.02.029.
    1. Drossman D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features, and Rome IV. Gastroenterology. 2016;150:1262–1279. doi: 10.1053/j.gastro.2016.02.032.
    1. Davies J. In a Map for Human Life, Count the Microbes, Too. Science. 2001;291:2316b. doi: 10.1126/science.291.5512.2316b.
    1. The NIH HMP Working Group. Peterson J., Garges S., Giovanni M., McInnes P., Wang L., Schloss J.A., Bonazzi V., McEwen J.E., Wetterstrand K.A., et al. The NIH Human Microbiome Project. Genome Res. 2009;19:2317–2323. doi: 10.1101/gr.096651.109.
    1. Relman D. The meaning and impact of the human genome sequence for microbiology. Trends Microbiol. 2001;9:206–208. doi: 10.1016/S0966-842X(01)02041-8.
    1. Qin J., Li R., Raes J., Arumugam M., Burgdorf K.S., Manichanh C., Nielsen T., Pons N., Levenez F., Yamada T., et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821.
    1. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H., Kovatcheva-Datchary P., Li Y., Xia Y., Xie H., Zhong H., et al. Dy-namics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. doi: 10.1016/j.chom.2015.04.004.
    1. Montalto M., D’Onofrio F., Gallo A., Cazzato A., Gasbarrini G. Intestinal microbiota and its functions. Dig. Liver Dis. Suppl. 2009;3:30–34. doi: 10.1016/S1594-5804(09)60016-4.
    1. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106.
    1. Zhang Y.-J., Li S., Gan R.-Y., Zhou T., Xu D.-P., Li H.-B. Impacts of Gut Bacteria on Human Health and Diseases. Int. J. Mol. Sci. 2015;16:7493–7519. doi: 10.3390/ijms16047493.
    1. Possemiers S., Bolca S., Verstraete W., Heyerick A. The intestinal microbiome: A separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 2011;82:53–66. doi: 10.1016/j.fitote.2010.07.012.
    1. Rajilić-Stojanović M. Function of the microbiota. Best Pr. Res. Clin. Gastroenterol. 2013;27:5–16. doi: 10.1016/j.bpg.2013.03.006.
    1. Arumugam M., Raes J., Pelletier E., Le Paslier D., Yamada T., Mende D.R., Fernandes G.R., Tap J., Bruls T., Batto J.-M., et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944.
    1. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular analysis of commensal host-Microbial relationships in the intestine. Science. 2001;291:881–884. doi: 10.1126/science.291.5505.881.
    1. Kamada N., Seo S.-U., Chen G.Y., Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013;13:321–335. doi: 10.1038/nri3430.
    1. Belkaid Y., Hand T.W. Role of the Microbiota in Immunity and Inflammation. Cell. 2014;157:121–141. doi: 10.1016/j.cell.2014.03.011.
    1. Zoetendal E.G., Von Wright A., Vilpponen-Salmela T., Ben-Amor K., Akkermans A.D.L., de Vos W.M. Muco-sa-Associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 2002;68:3401–3407. doi: 10.1128/AEM.68.7.3401-3407.2002.
    1. Carroll I.M., Chang Y.-H., Park J., Sartor R.B., Ringel Y. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome. Gut Pathog. 2010;2:1–9. doi: 10.1186/1757-4749-2-19.
    1. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the Human Intestinal Microbial Flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591.
    1. Rangel I., Sundin J., Fuentes S., Repsilber D., De Vos W.M., Brummer R.J. The relationship between faecal-associated and mucosal-associated microbiota in irritable bowel syndrome patients and healthy subjects. Aliment. Pharm. 2015;42:1211–1221. doi: 10.1111/apt.13399.
    1. Adak A., Khan M.R. An insight into gut microbiota and its functionalities. Cell. Mol. Life Sci. 2018;76:473–493. doi: 10.1007/s00018-018-2943-4.
    1. Nardone G., Compare D. The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur. Gastroenterol. J. 2015;3:255–260. doi: 10.1177/2050640614566846.
    1. El Aidy S., Bogert B.V.D., Kleerebezem M. The small intestine microbiota, nutritional modulation and relevance for health. Curr. Opin. Biotechnol. 2015;32:14–20. doi: 10.1016/j.copbio.2014.09.005.
    1. Barcenilla A., Pryde S.E., Martin J.C., Duncan S.H., Stewart C.S., Henderson C., Flint H.J. Phylogenetic Relationships of Butyrate-Producing Bacteria from the Human Gut. Appl. Environ. Microbiol. 2000;66:1654–1661. doi: 10.1128/AEM.66.4.1654-1661.2000.
    1. Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S., Flint H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002;217:133. doi: 10.1111/j.1574-6968.2002.tb11467.x.
    1. Mariat D., Firmesse O., Levenez F., Guimarăes V.D., Sokol H., Doré J., Corthier G., Furet J.-P. The Firmicu-tes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. doi: 10.1186/1471-2180-9-123.
    1. Pflughoeft K.J., Versalovic J. Human Microbiome in Health and Disease. Annu. Rev. Pathol. Mech. Dis. 2012;7:99–122. doi: 10.1146/annurev-pathol-011811-132421.
    1. Ruan W., Engevik M.A., Spinler J.K., Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig. Dis. Sci. 2020;65:695–705. doi: 10.1007/s10620-020-06118-4.
    1. Tropini C., Earle K.A., Huang K.C., Sonnenburg J.L. The Gut Microbiome: Connecting Spatial Organization to Function. Cell Host Microbe. 2017;21:433–442. doi: 10.1016/j.chom.2017.03.010.
    1. Hollister E.B., Gao C., Versalovic J. Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology. 2014;146:1449–1458. doi: 10.1053/j.gastro.2014.01.052.
    1. Huttenhower C., Gevers D., Knight R., Abubucker S., Badger J.H., Chinwalla A.T., Creasy H.H., Earl A.M., Fitzgerald M.G., Fulton R.S., et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214.
    1. Kay E., Hawramee S., Pollani S., Mandel E.D. Nonpharmacologic options for treating irritable bowel syndrome. J. Am. Acad. Physician Assist. 2019;32:38–42. doi: 10.1097/01.JAA.0000553384.82884.b8.
    1. Krogius-Kurikka L., Lyra A., Malinen E., Aarnikunnas J., Tuimala J., Paulin L., Mäkivuokko H., Kajander K., Palva A. Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diar-rhea-predominant irritable bowel syndrome suffers. BMC Gastroenterol. 2009;9:95. doi: 10.1186/1471-230X-9-95.
    1. Shukla R., Ghoshal U., Dhole T.N., Ghoshal U.C. Fecal microbiota in patients with irritable bowel syndrome compared with healthy controls using real time polymerase chain reaction: An evidence of dysbiosis. Dig. Dis Sci. 2015;60:2953–2962. doi: 10.1007/s10620-015-3607-y.
    1. Liu H.-N., Wu H., Chen Y.-Z., Chen Y.-J., Shen X.-Z., Liu T.-T. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis. Dig. Liver Dis. 2017;49:331–337. doi: 10.1016/j.dld.2017.01.142.
    1. Duboc H., Rainteau D., Rajca S., Humbert L., Farabos D., Maubert M., Grondin V., Jouet P., Bouhassira D., Seksik P., et al. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 2012;24:513.e247. doi: 10.1111/j.1365-2982.2012.01893.x.
    1. Tap J., Derrien M., Törnblom H., Brazeilles R., Cools-Portier S., Doré J., Störsrud S., La Nevé B., Öhman L., Simrén M. Identification of an intestinal microbiota signature associated with severity of irritable bowel syndrome. Gastroenterology. 2017;152:111–123. doi: 10.1053/j.gastro.2016.09.049.
    1. Zhong W., Lu X., Shi H., Zhao G., Song Y., Wang Y., Zhang J., Jin Y., Wang S. Distinct Microbial Populations Exist in the Mucosa-associated Microbiota of Diarrhea Predominant Irritable Bowel Syndrome and Ulcerative Colitis. J. Clin. Gastroenterol. 2019;53:660–672. doi: 10.1097/MCG.0000000000000961.
    1. Rajilić-Stojanović M., Jonkers D.M., Salonen A., Hanevik K., Raes J., Jalanka J., de Vos W.M., Manichanh C., Golic N., Enck P., et al. Intestinal microbiota and diet in IBS: Causes, consequences or epiphenomena? Am. J. Gastroenterol. 2015;110:278–287. doi: 10.1038/ajg.2014.427.
    1. Ringel Y., Ringel-Kulka T. The intestinal microbiota and irritable bowel syndrome. J. Clin. Gastroenterol. 2015;49(Suppl. 1):S56–S59. doi: 10.1097/MCG.0000000000000418.
    1. Maccaferri S., Candela M., Turroni S., Centanni M., Severgnini M., Consolandi C., Cavina P., Brigidi P. IBS-associated phylogenetic unbalances of the intestinal microbiota are not reverted by probiotic supplementation. Gut Microbes. 2012;3:406–413. doi: 10.4161/gmic.21009.
    1. Maharshak N., Ringel Y., Katibian D., Lundqvist A., Sartor R.B., Carroll I.M., Ringel-Kulka T. Fecal and Mucosa-Associated Intestinal Microbiota in Patients with Diarrhea-Predominant Irritable Bowel Syndrome. Dig. Dis. Sci. 2018;63:1890–1899. doi: 10.1007/s10620-018-5086-4.
    1. Lo Presti A., Zorzi F., Del Chierico F., Altomare A., Cocca S., Avola A., De Biasio F., Russo A., Cella E., Reddel S., et al. Fecal and mucosal microbiota profiling in irritable bowel syndrome and inflammatory bowel disease. Front. Microbiol. 2019;10:1655. doi: 10.3389/fmicb.2019.01655.
    1. Li B., Liang L., Deng H., Guo J., Shu H., Zhang L. Efficacy and safety of probiotics in irritable bowel syndrome: A systematic review and meta-analysis. Front. Pharm. 2020;11:332. doi: 10.3389/fphar.2020.00332.
    1. Spiller R. Review article: Probiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2008;28:385–396. doi: 10.1111/j.1365-2036.2008.03750.x.
    1. Jeffery I.B., Quigley E.M.M., Öhman L., Simrén M., O’Toole P.W. The microbiota link to irritable bowel syndrome: An emerging story. Gut Microbes. 2012;61:997–1006. doi: 10.1136/gutjnl-2011-301501.
    1. Ghoshal U.C., Shukla R., Ghoshal U., Gwee K.A., Ng S.C., Quigley E.M. The gut microbiota and irritable bowel syndrome: Friend or foe? Int. J. Inflamm. 2012;2012:151085. doi: 10.1155/2012/151085.
    1. Caplan M.S., Miller-Catchpole R., Kaup S., Russell T., Lickerman M., Amer M., Xiao Y., Thomson R.J. Bifidobacterial supplementation reduces the incidence of necrotizing enterocolitis in a neonatal rat model. Gastroenterology. 1999;117:577–583. doi: 10.1016/S0016-5085(99)70450-6.
    1. O’Mahony L., Feeney M., O’Halloran S., Murphy L., Kiely B., Fitzgibbon J., Lee G., O’Sullivan G., Shanahan F., Collins J.K. Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout Mice. Aliment. Pharm. Ther. 2001;15:1219–1225. doi: 10.1046/j.1365-2036.2001.01027.x.
    1. Surawicz C.M. Mechanisms of Diarrhea. Curr. Gastroenterol. Rep. 2010;12:236–241. doi: 10.1007/s11894-010-0113-4.
    1. Slattery S.A., Niaz O., Aziz Q., Ford A.C., Farmer A.D. Systematic review with meta-analysis: The prevalence of bile acid malabsorption in the irritable bowel syndrome with diarrhea. Aliment. Pharmacol. Ther. 2015;42:3–11. doi: 10.1111/apt.13227.
    1. Dior M., Delagrèverie H., Duboc H., Jouet P., Coffin B., Brot L., Humbert L., Trugnan G., Seksik P., Sokol H., et al. Interplay between bile acid metabolism and microbiota in irritable bowel syndrome. Neurogastroenterol. Motil. 2016;28:1330–1340. doi: 10.1111/nmo.12829.
    1. Bajor A., Törnblom H., Rudling M., Ung K.A., Simrén M. Increased colonic bile acid exposure: A relevant factor for symptoms and treatment in IBS. Gut. 2015;64:84–92. doi: 10.1136/gutjnl-2013-305965.
    1. Collins S.M. Is the irritable gut an inflamed gut? Scand. J. Gastroenterol. 1992;27(Suppl. 192):102–105. doi: 10.3109/00365529209095988.
    1. Hermsen J.L., Schurr M., Kudsk K.A., Faucher L.D. Phenotyping Clostridium septicum infection: A surgeon’s infectious disease. J. Surg Res. 2008;148:67–76. doi: 10.1016/j.jss.2008.02.027.
    1. Arthur J.C., Perez-Chanona E., Mühlbauer M., Tomkovic S., Uronis J.M., Fan T.-J., Campbell B.J., Abujamel T., Dogan B., Rogers A.B., et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2012;338:120–123. doi: 10.1126/science.1224820.
    1. Round J., Lee S., Li J., Tran G., Jabri B., Chatila T.A., Mazmanian S.K. The toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–977. doi: 10.1126/science.1206095.
    1. Rivière A., Selak M., Lantin D., Leroy F., De Vuyst L. Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Front. Microbiol. 2016;7:979. doi: 10.3389/fmicb.2016.00979.
    1. Ley R.E. Gut microbiota in 2015, Prevotella in the gut: Choose carefully. Nat. Rev. Gastroenterol. Hepatol. 2016;13:69. doi: 10.1038/nrgastro.2016.4.
    1. Pandiyan P., Bhaskaran N., Zou M., Schneider E., Jayaraman S., Huehn J. Microbiome dependent regulation of Tregs and Th17 cells in mucosa. Front. Immunol. 2019;10:426. doi: 10.3389/fimmu.2019.00426.
    1. Palareti G., Legnani C., Cosmi B., Antonucci E., Erba N., Poli D., Testa S., Tosetto A., DULCIS (D-dimer Ultrasonography in Combination Italian Study) Investigators Comparison between different D-dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Int. J. Lab. Hematol. 2016;38:42–49. doi: 10.1111/ijlh.12426.
    1. Ringel-Kulka T., Palsson O.S., Maier D., Carroll I., Galanko J.A., Leyer G., Ringel Y. Probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium lactis Bi-07 versus placebo for the symptoms of bloating in patients with functional bowel disorders: A double-blind study. J. Clin. Gastroenterol. 2011;45:518–525. doi: 10.1097/MCG.0b013e31820ca4d6.
    1. Leclercq S., Matamoros S., Cani P.D., Neyrinck A.M., Jamar F., Stärkel P., Windey K., Tremaroli V., Bäckhed F., Verbeke K., et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity. Proc. Natl. Acad. Sci. USA. 2014;111:E4485–E4493. doi: 10.1073/pnas.1415174111.
    1. Salonen A., De Vos W.M., Palva A. Gastrointestinal microbiota in irritable bowel syndrome: Present state and perspectives. Microbiology. 2010;156:3205–3215. doi: 10.1099/mic.0.043257-0.
    1. Martens E.C., Koropatkin N.M., Smith T.J., Gordon J.I. Complex glycan catabolism by the human gut microbiota: The bacteroidetes sus-Like paradigm. J. Biol. Chem. 2009;284:24673–24677. doi: 10.1074/jbc.R109.022848.
    1. Rios-Covian D., Arboleya S., Hernandez-Barranco A.M., Alvarez-Buylla J.R., Ruas-Madiedo P., Gueimonde M., de los Reyes-Gavilan C.G. Interaction between Bifidobacterium and Bacteroides species in cofermentations are affected by carbon sources, including exopolysaccharides produced by bifidobacteria. Appl. Environ. Microbiol. 2013;79:7518–7524. doi: 10.1128/AEM.02545-13.
    1. Alkhalaf L.M., Ryan K.S. Biosynthetic Manipulation of Tryptophan in Bacteria: Pathways and Mechanisms. Chem. Biol. 2015;22:317–328. doi: 10.1016/j.chembiol.2015.02.005.
    1. Alexeev E.E., Lanis J.M., Kao D.J., Campbell E.L., Kelly C.J., Battista K.D., Gerich M.E., Jenkins B.R., Walk S.T., Kominsky D.J., et al. Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. Am. J. Pathol. 2018;188:1183–1194. doi: 10.1016/j.ajpath.2018.01.011.
    1. Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hsiao E.Y. Indigenous Bacteria from the Gut Microbiota Regulate Host Serotonin Biosynthesis. Cell. 2015;161:264–276. doi: 10.1016/j.cell.2015.02.047.
    1. Lamas B., Natividad J.M., Sokol H. Aryl hydrocarbon receptor and intestinal immunity. Mucosal. Immunol. 2018;11:1024–1038. doi: 10.1038/s41385-018-0019-2.
    1. Lamas B., Richard M.L., Leducq V., Pham H.P., Michel M.L., Da Costa G., Bridonneau C., Jegou S., Hoffmann T.W., Natividad J.M., et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 2016;22:598–605. doi: 10.1038/nm.4102.
    1. Agus A., Planchais J., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003.
    1. Manocha M., Khan W. Serotonin and GI Disorders: An Update on Clinical and Experimental Studies. Clin. Transl. Gastroenterol. 2012;3:e13. doi: 10.1038/ctg.2012.8.
    1. Sitkin S.I., Tkachenko E.I., Vakhitov T.Y. Metabolic Dysbiosis of the Gut Microbiota and Its Biomarkers. Klin. Gastroenterol. 2016;12:6–29.
    1. Simrén M., Månsson A., Langkilde A.M., Svedlund J., Abrahamsson H., Bengtsson U., Björnsson E.S. Food-Related gastrointestinal symptoms in the irritable bowel syndrome. Digestion. 2001;63:108–115. doi: 10.1159/000051878.
    1. Monsbakken K.W., Vandvik P.O., Farup P.G. Perceived food intolerance in subjects with irritable syndrome-Etiology, prevalence and consequences. Eur. J. Clin. Nutr. 2006;60:667–672. doi: 10.1038/sj.ejcn.1602367.
    1. Böhn L., Störsrud S., Tornblom H., Bengtsson U., Simrén M. Self-Reported food-Related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 2013;108:634–641. doi: 10.1038/ajg.2013.105.
    1. Halpert A., Dalton C.B., Palsson O., Morris C., Hu Y., Bangdiwala S., Hankins J., Norton N., Drossman D. What patients know about irritable bowel syndrome (IBS) and what they would like to know. National Survey on Patient Educational Needs in IBS and development and validation of the Patient Educational Needs Questionnaire (PEQ) Am. J. Gastroenterol. 2007;102:1972–1982. doi: 10.1111/j.1572-0241.2007.01254.x.
    1. Dapoigny M., Stockbrügger R.W., Azpiroz F., Collins S., Coremans G., Müller-Lissner S., Oberndorff A., Pace F., Smout A., Vatn M., et al. Role of alimentation in irritable bowel syndrome. Digestion. 2003;67:225–233. doi: 10.1159/000072061.
    1. Spencer M., Chey W.D., Eswaran S. Dietary renaissance in IBS: Has food replaced medications as a primary treatment strategy? Curr. Treat. Options Gastroenterol. 2014;12:424–440. doi: 10.1007/s11938-014-0031-x.
    1. Cartabellotta A., Patti A.L., Berti F. Linee guida per la gestione della sindrome dell’intestino irritabile negli adulti. Evidence. 2016;8:e1000130.
    1. [(accessed on 10 December 2020)]; Available online: .
    1. McKenzie Y.A., Bowyer R.K., Leach H., Gulia P., Horobin J., O’Sullivan N.A., Pettitt C., Reeves L.B., Seamark L., Williams M., et al. British Dietetic Association systematic review and evidence-based practice guidelines for the dietary management of irritable bowel syndrome in adults. J. Hum. Nutr. Diet. 2016;29:549–575. doi: 10.1111/jhn.12385.
    1. Rej A., Aziz I., Tornblom H., Sanders D.S., Simrén M. The role of the diet in irritable bowel syndrome: Indications for dietary advice. J. Intern. Med. 2019;286:490–502. doi: 10.1111/joim.12966.
    1. Moayyedi P., Andrews C.N., MacQueen G., Korownyk C., Marsiglio M., Graff L., Kvern B., Lazarescu A., Liu L., Paterson W.G., et al. Canadian Association of Gastroenterology Clinical Practice Guideline for the Management of Irritable Bowel Syndrome (IBS) J. Can. Assoc. Gastroenterol. 2019;2:6–29. doi: 10.1093/jcag/gwy071.
    1. Sanchez-Villegas A., Sanchez-Tainta A. The Prevention of Cardiovascular Disease through the Mediterranean Diet. Elsevier; London, UK: 2018. Healthy-Eating Model Called Mediterranean Diet; pp. 1–24.
    1. Cuomo R., Andreozzi P., Zito F.P., Passananti V., De Carlo G., Sarnelli G. Irritable bowel syndrome and food interaction. World J. Gastroenterol. 2014;20:8837–8845.
    1. Eswaran S.L., Chey W.D., Han-Markey T., Ball S., Jackson K. A Randomized Controlled Trial Comparing the Low-FODMAP diet vs. Modified NICE Guidelines in US Adults with IBS-D. Am. J. Gastroenterol. 2016;111:1824–1832. doi: 10.1038/ajg.2016.434.
    1. Eswaran S., Chey W., Jackson K., Pillai S., Chey S.W., Han-Markey T. A diet low in fermentable oligo-, di-, and mono-saccharides and polyols improves quality of life and reduces activity impairment in patients with irritable bowel syndrome and diarrhea. Clin. Gastroenterol. Hepatol. 2017;15:1890–1899. doi: 10.1016/j.cgh.2017.06.044.
    1. Goyal O., Batta S., Nohria S., Kishore H., Goyal P., Sehgal R., Sood A. Low fermentable oligosaccharide, disaccharide, monosaccharide, and polyol diet in patients with diarrhea-predominant irritable bowel syndrome: A prospective, randomized trial. J. Gastroenterol. Hepatol. 2021 doi: 10.1111/jgh.15410.
    1. Orlando A., Tutino V., Notarnicola M., Riezzo G., Linsalata M., Clemente C., Prospero L., Martulli M., D’Attoma B., De Nunzi V., et al. Improved Symptom profiles and minimal inflammation in IBS-D patients undergoing a long-term low FODMAP diet: A lipidomic perspective. Nutrients. 2020;12:1652. doi: 10.3390/nu12061652.
    1. Usai-Satta P., Bassotti G., Bellini M., Oppia F., Lai M., Cabras F. Irritable bowel syndrome and gluten-related disorder. Nutrients. 2020;12:1117. doi: 10.3390/nu12041117.
    1. Makharia A., Catassi C., Makharia G.K. The overlap between irritable bowel syndrome and non-celiac gluten sensitivity: A clinical dilemma. Nutrients. 2015;7:10417–10426. doi: 10.3390/nu7125541.
    1. Chey W.D. Food: The main course to wellness and illness in patients with irritable bowel syndrome. Am. J. Gastroenterol. 2016;111:366–371. doi: 10.1038/ajg.2016.12.
    1. Volta U., Pinto-Sanchez M.I., Boschetti E., Caio G., De Giorgio R., Verdu E.F. Dietary triggers in irritable bowel syndrome: Is there a role for gluten? J. Neurogastroenterol. Motil. 2016;22:547–557. doi: 10.5056/jnm16069.
    1. De Giorgio R., Volta U., Gibson P.R. Sensitivity to wheat, gluten and FODMAPs in IBS: Fact or fiction? Gut. 2016;65:169–178. doi: 10.1136/gutjnl-2015-309757.
    1. Zanwar V.G., Pawar S.V., Gambhire P.A., Jain S.S., Surude R.G., Shah V.B., Contractor Q.Q., Rathi P.M. Symptomatic improvement with gluten restriction in irritable bowel syndrome: A prospective, randomized, double blinded placebo controlled trial. Intest. Res. 2016;14:343–350. doi: 10.5217/ir.2016.14.4.343.
    1. Barmeyer C., Schumann M., Meyer T., Zielinski C., Zuberbier T., Siegmund B., Schulzke J.-D., Daum S., Ullrich R. Long-term response to gluten-free diet as evidence for non-celiac wheat sensitivity in one third of patients with diarrhea-dominant and mixed-type irritable bowel syndrome. Int. J. Colorectal Dis. 2017;32:29–39. doi: 10.1007/s00384-016-2663-x.
    1. Aziz I., Trott N., Briggs R., North J.R., Hadjivassiliou M., Sanders D.S. Efficacy of a gluten-Free diet in subjects with irritable bowel syndrome-Diarrhea unaware of their HLA-DQ2/8 genotype. Clin. Gastroenterol. Hepatol. 2016;14:696–703. doi: 10.1016/j.cgh.2015.12.031.
    1. Vasquez-Roque M.I., Camilleri M., Smyrk T., Murray J.A., Marietta E., O’Neill J., Carlson P., Lamsam J., Janzow D., Eckert D., et al. A Controlled trial of gluten-free diet in patients with irritable bowel syndrome-diarrhea: Effects on bowel frequency and intestinal function. Gastroenterology. 2013;144:903–911. doi: 10.1053/j.gastro.2013.01.049.
    1. Wu R.L., Vasquez-Roque M.I., Carlson P., Burton D., Grover M., Camilleri M., Turner J.R. Gluten-induced symptoms in diarrhea-predominant irritable bowel syndrome are associated with increased myosin light chain kinase activity and claudin-15 expression. Lab. Investig. A J. Tech. Methods Pathol. 2017;97:14–23. doi: 10.1038/labinvest.2016.118.
    1. Austin G.L., Dalton C.V., Hu Y., Morris C.B., Hankins J., Weinland S.R., Westman E.C., Yancy W.S.J., Drossman A. A very low—Carbohydrate diet improves symptoms and quality of life in diarrhea-Predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2009;7:706–708. doi: 10.1016/j.cgh.2009.02.023.
    1. Savaiano D.A., Levitt M.D. Milk intolerance and microbe-containing dairy foods. J. Dairy Sci. 1987;70:397–406. doi: 10.3168/jds.S0022-0302(87)80023-1.
    1. Lomer M.C., Parkes G.C., Sanderson J.D. Review article: Lactose intolerance in clinical-Practice-Myths and realities. Aliment. Pharmacol. Ther. 2008;27:93–103. doi: 10.1111/j.1365-2036.2007.03557.x.
    1. Fassio F., Facioni M.S., Guagnini F. Lactose Maldigestion, Malabsorption, and Intolerance: A Comprehensive Review with a Focus on Current Management and Future Perspectives. Nutrients. 2018;10:1599. doi: 10.3390/nu10111599.
    1. Xiong L., Wang Y., Gong X., Chen M. Prevalence of lactose intolerance in patients with diarrhea-predominant irritable bowel syndrome: Data from a tertiary center in southern China. J. Health Popul. Nutr. 2017;36:38. doi: 10.1186/s41043-017-0113-1.
    1. Yang J., Fox M., Cong Y., Chu H., Zheng X., Long Y., Fried M., Dai N. Lactose intolerance in irritable bowel syndrome patients with diarrhoea: The roles of anxiety, activation of the innate mucosal immune system and visceral sensitivity. Aliment. Pharmacol. Ther. 2014;39:302–311. doi: 10.1111/apt.12582.
    1. Varjú P., Gede N., Szakács Z., Hegyi P., Cazacu I.M., Pécsi D., Fábián A., Szepes Z., Vincze A., Tenk J., et al. Lactose intolerance but not lactose maldigestion is more frequent in patients with irritable bowel syndrome than in healthy controls: A meta-analysis. Neurogastroenterol. Motil. 2019;31:13527. doi: 10.1111/nmo.13527.
    1. Yang J., Deng Y., Chu H., Cong Y., Zhao J., Pohl D., Misselwitz B., Fried M., Dai N., Fox M. Prevalence and presentation of lactose intolerance and effects on dairy products intake in healthy subjects and patients with irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2013;11:262–268. doi: 10.1016/j.cgh.2012.11.034.
    1. Deng Y., Misselwitz B., Dai N., Fox M. Lactose Intolerance in Adults: Biological Mechanism and Dietary Management. Nutrients. 2015;7:8020–8035. doi: 10.3390/nu7095380.
    1. Lisker R., Solomons N.W., Briceño R.P., Mata M.R. Lactase and placebo in the management of the irritable bowel syndrome: A double-Blind, cross-Over study. Am. J. Gastroenterol. 1989;84:756–762.
    1. Cancarevic I., Rehman M., Iskander B., Lalani S., Malik B.H. Is there a correlation between irritable bowel syndrome and lactose intolerance? Cureus. 2020;12:e6710. doi: 10.7759/cureus.6710.
    1. Shepherd S.J., Gibson P.R. Fructose malabsorption and symptoms of irritable bowel syndrome: Guidelines for effective dietary management. J. Am. Diet. Assoc. 2006;106:1631–1639. doi: 10.1016/j.jada.2006.07.010.
    1. Choi Y.K., Kraft N., Zimmerman B., Jackson M., Rao S.S.C. Fructose intolerance in IBS and utility of fructose-Restricted diet. J. Clin. Gastroenterol. 2008;42:233–238. doi: 10.1097/MCG.0b013e31802cbc2f.
    1. Yang Q., Liang Q., Balakrishnan B., Belobrajdic D.P., Feng Q.-J., Zhang W. Role of dietary nutrients in the modulation of gut microbiota: A narrative review. Nutrients. 2020;12:381. doi: 10.3390/nu12020381.
    1. Poole R., Kennedy O.J., Roderick P., Fallowfield J.A., Hayes P.C., Parkes J. Coffee consumption and health: Umbrella review of meta-Analyses of multiple health outcomes. BMJ. 2017;359:j5024. doi: 10.1136/bmj.j5024.
    1. Brown S.R., Cann P.A., Read N.W. Effect of coffee on distal colon function. Gut. 1990;31:450–453. doi: 10.1136/gut.31.4.450.
    1. Jaquet M., Rochat I., Moulin J., Cavin C., Bibloni R. Impact of coffee consumption on the gut microbiota: A human volunteer study. Int. J. Food Microbiol. 2009;130:117–121. doi: 10.1016/j.ijfoodmicro.2009.01.011.
    1. Mills C.E., Tzounis X., Oruna-Concha M.J., Mottram D.S., Gibson G.R., Spencer J.P.E. In vitro colonic metabolism of coffee and chlorogenic acid results in selective changes in human faecal microbiota growth. Br. J. Nutr. 2015;113:1220–1227. doi: 10.1017/S0007114514003948.
    1. González S., Salazar N., Ruiz-Saavedra S., Gómez-Martín M., De Los Reyes-Gavilán C.G., Gueimonde M. Long-Term Coffee Consumption is Associated with Fecal Microbial Composition in Humans. Nutrients. 2020;12:1287. doi: 10.3390/nu12051287.
    1. Ruiz-Ojeda F.J., Plaza Díaz J., Sáez-Lara M.J., Gil A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019;10:S31–S48. doi: 10.1093/advances/nmy037.
    1. Bello-Perez L.A., Flores-Silva P.C., Agama-Acevedo E., Tovar J. Starch digestibility: Past, present, and future. J. Sci. Food Agric. 2018;100:5009–5016. doi: 10.1002/jsfa.8955.
    1. Wang F., Huang X., Chen Y., Zhang D., Chen D., Chen L., Lin J. Study on the Effect of Capsaicin on the Intestinal Flora through High-Throughput Sequencing. ACS Omega. 2020;5:1246–1253. doi: 10.1021/acsomega.9b03798.
    1. Marini E., Magi G., Mingoia M., Pugnaloni A., Facinelli B. Antimicrobial and Anti-Virulence Activity of Capsaicin Against Erythromycin-Resistant, Cell-Invasive Group A Streptococci. Front. Microbiol. 2015;6:1281. doi: 10.3389/fmicb.2015.01281.
    1. Kang C., Zhang Y., Zhu X., Liu K., Wang X., Chen M., Wang J., Chen H., Hui S., Huang L., et al. Healthy Subjects Differentially Respond to Dietary Capsaicin Correlating with Specific Gut Enterotypes. J. Clin. Endocrinol. Metab. 2016;101:4681–4689. doi: 10.1210/jc.2016-2786.
    1. Rosca A.E., Iesanu M.J., Zahiu C.D.M., Voiculescu S.E., Paslaru A.C., Zagrean A.M. Capsaicin and Gut Microbiota in Health and Disease. Molecules. 2020;25:5681. doi: 10.3390/molecules25235681.
    1. Dreher M.L. Whole Fruits and Fruit Fiber Emerging Health Effects. Nutrients. 2018;10:1833. doi: 10.3390/nu10121833.
    1. Gibson G.R., Probert H.M., Van Loo J., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479.
    1. Sonnenburg E.D., Smits S.A., Tikhonov M., Higginbottom S.K., Wingreen N.S., Sonnenburg J.L. Diet-Induced extinction in the gut microbiota compounds over generations. Nature. 2016;529:212–215. doi: 10.1038/nature16504.
    1. Cozma-Petrut A., Loghin F., Miere D., Dumitraşcu D.L. Diet in irritable bowel syndrome: What to recommend, not what to forbid to patients! World J. Gastroenterol. 2017;23:3771–3783. doi: 10.3748/wjg.v23.i21.3771.
    1. Bijikerk C.J., Muris J.M.K., Knottnerus J.A., Hoes A.W., De Wit N.J. Systemic review: The role of different types of fibre in the treatment of irritable bowel syndrome. Aliment. Pharmacol. Ther. 2004;19:245–251. doi: 10.1111/j.0269-2813.2004.01862.x.
    1. Gibson P.R., Shepherd S.J. Evidence-Based dietary management of functional gastrointestinal symptoms: The FODMAP approach. J. Gastroenterol. Hepatol. 2010;25:252–258. doi: 10.1111/j.1440-1746.2009.06149.x.
    1. Moding M., Ohlsson B. The role of fermentable carbohydrates and beverages in the symptomatology of functional gastrointestinal disease. Scand. J. Gastroenterol. 2017;52:1224–1234. doi: 10.1080/00365521.2017.1365931.
    1. Müller M., Canfora E.E., Blaak E.E. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers. Nutrients. 2018;10:275. doi: 10.3390/nu10030275.
    1. Bijkerk C.J., Muris J.W.M., Whorwell P.J., Knottnerus J.A., Hoes A.W. Soluble or insoluble fibre in irritable bowel syndrome in primary care? Randomised placebo-Controlled trial. BMJ. 2009;339:613–615. doi: 10.1136/bmj.b3154.
    1. Moayyedi P., Quigley E.M., Lacy B.E., Lembo A.J., Saito Y.A., Schiller L.R., Soffer E.E., Spiegel B.M.R., Ford A.C. The effect of fiber supplementation on irritable bowel syndrome: A systematic review and meta-analysis. Am. J. Gastroenterol. 2004;109:1367–1374. doi: 10.1038/ajg.2014.195.
    1. Simpson H.L., Campbell B.J. Review article: Dietary fibre-Microbiota interactions. Aliment. Pharmacol. Ther. 2015;42:158–179. doi: 10.1111/apt.13248.
    1. Su H., Li Y.T., Heitkemper M.M., Zia J. Effects of Low-FODMAPS diet on irritable bowel syndrome symptoms and gut microbiome. Gastroenterol. Nurs. 2019;42:150–158. doi: 10.1097/SGA.0000000000000428.
    1. Sloan T.J., Jalanka J., Major G.A.D., Krishnasamy S., Pritchard S., Abdelrazig S., Korpel K., Singh G., Mulvenna C., Hoad C.L., et al. A low FODMAP diet is associated with changes in the microbiota and reduction in breath hydrogen but not colonic volume in healthy subjects. PLoS ONE. 2018;13:e0201410. doi: 10.1371/journal.pone.0201410.
    1. McIntosh K., Reed D.E., Schneider T., Dang F., Keshteli A.H., De Palma G., Madsen K., Bercik P., Vanner S. FODMAPs alter symptoms and the metabolome of patients with IBS: A randomized controlled trial. Gut. 2017;66:1241–1251. doi: 10.1136/gutjnl-2015-311339.
    1. Dietrich W., Schuppan D., Schink M., Schwappacher R., Wirtz S., Agaimy A., Neurath M., Zopf Y. Influence of low FODMAP and gluten-Free diets on disease activity and intestinal microbiota in patients with non-Celiac gluten sensitivity. Clin. Nutr. 2018;38:697–707. doi: 10.1016/j.clnu.2018.03.017.
    1. Valeur J., Cvancarova Småstuen M., Knudsen T., Lied G.A., Røseth A.G. Exploring gut microbiota composition as an indicator of clinical response to dietary FODMAP restriction in patients with irritable bowel syndrome. Dig. Dis. Sci. 2018;63:429–436. doi: 10.1007/s10620-017-4893-3.
    1. Hustoft T.N., Hausken T., Ystad S.O., Valeur J., Brokstad K., Hatlebakk J.G., Lied G.A. Effects of varying dietary content of fermentable short-chain carbohydrates on symptoms, fecal microenvironment, and cytokine profiles in patients with irritable bowel syndrome. Neurogastroenterol. Motil. 2017;29:e12969. doi: 10.1111/nmo.12969.
    1. De Palma G., Immaculada N., Collado M.C., Sanz Y. Effects of a gluten-Free diet on gut microbiota and immune function in healthy adult humans. Br. J. Nutr. 2009;102:1154–1160. doi: 10.1017/S0007114509371767.
    1. Zopf Y., Reljic D., Dieterich W. Dietary effects on microbiota-new trends with Gluten-Free or Paleo diet. Med. Sci. 2018;6:92. doi: 10.3390/medsci6040092.
    1. Sanz Y. Effects of a gluten-free diet on gut microbiota and immune function in healthy adult humans. Gut Microbes. 2010;1:135–137. doi: 10.4161/gmic.1.3.11868.
    1. Schell M.A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M.C., Desiere F., Bork P., Delley M., et al. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc. Natl. Acad. Sci. USA. 2002;99:14422–14427. doi: 10.1073/pnas.212527599.
    1. Bonder M.J., Tigchelaar E.F., Cai X., Trynka G., Cenit M.C., Hrdlickova B., Zhong H., Vatanen T., Gevers D., Wijmenga C., et al. The influence of a short-term gluten-free diet on the human gut microbiome. Genome Med. 2016;8:45. doi: 10.1186/s13073-016-0295-y.
    1. Reddel S., Putignani L., Del Chierico F. The impact of low-fodmaps, gluten-free, and ketogenic diets on gut microbiota modulation in pathological conditions. Nutrients. 2019;11:373. doi: 10.3390/nu11020373.
    1. Hansen L., Roager H.M., Søndertoft N.B., Gøbel R.J., Kristensen M., Vallès-Colomer M., Vieira-Silva S., Ibrügger S., Lind M.V., Mærkedahl R.B., et al. A low-Gluten diet induces changes in the intestinal microbiome of healthy Danish adults. Nat. Commun. 2018;9:4630. doi: 10.1038/s41467-018-07019-x.
    1. Staudacher H.M., Lomer M.C.E., Anderson J.L., Barrett J.S., Muir J.G., Irving P.M., Whelan K. Fermentable carbohydrate restriction reduces luminal bifidobacteria and gastrointestinal symptoms in patients with irritable bowel syndrome. J. Nutr. 2012;142:1510–1518. doi: 10.3945/jn.112.159285.
    1. Ma D., Wang A.C., Parikh I., Green S.J., Hoffman J.D., Chlipala G., Murphy M.P., Sokola B.S., Bauer B., Hartz A.M.S., et al. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 2018;8:1–10.
    1. Gutiérrez-Díaz I., Fernández-Navarro T., Sánchez B., Margolles A., González S. Mediterranean diet and faecal microbiota: A transversal study. Food Funct. 2016;7:2347–2356. doi: 10.1039/C6FO00105J.
    1. Wright D.P., Rosendale D.I., Robertson A.M. Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol. Lett. 2000;190:73–79. doi: 10.1111/j.1574-6968.2000.tb09265.x.
    1. Pilis W., Stec K., Zych M., Pilis A. Health benefits and risk associated with adopting a vegetarian diet. Rocz. Panstw. Zakl. Hig. 2014;659:14.
    1. Chandra-Hioe M.V., Lee C., Arcot J. What is the cobalamin status among vegetarians and vegans in Australia? Int. J. Food Sci. Nutr. 2019;70:875–886. doi: 10.1080/09637486.2019.1580681.
    1. Singh R.K., Chang H.W., Yan D., Lee K.M., Ucmak D., Wong K., Abrouk M., Farahnik B., Nakamura M., Zhu T.H., et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017;15:73. doi: 10.1186/s12967-017-1175-y.
    1. Glick-Bauer M., Yen M.C. The health advantage of a vegan diet: Exploring the gut microbiota connection. Nutrients. 2014;6:4822–4838. doi: 10.3390/nu6114822.
    1. Matijašić B.B., Obermajer T., Lipoglavšek L., Grabnar I., Avguštin G., Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur. J. Nutr. 2014;53:1051–1064. doi: 10.1007/s00394-013-0607-6.
    1. Rinninella E., Cintoni M., Raoul P., Lopetuso L.R., Scaldaferri F., Pulcini G., Miggiano G.A.D., Gasbarrini A., Mele M.C. Food Components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients. 2019;11:2393. doi: 10.3390/nu11102393.
    1. Allison G., Vega C. Diet Appears to Influence Colon Cancer Outcomes. Medscape. 2007;298:754–764.
    1. Halton Thomas L., Willett Walter C., Liu S., Manson J.E., Stampfer M.J., Hu F.B. Potato and french fry consumption and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2006;83:284–290. doi: 10.1093/ajcn/83.2.284.
    1. Nazni P. Association of western diet & lifestyle with decreased fertility. Indian J. Med. Res. 2014;140(Suppl. 1):S78–S81.
    1. Wolters M., Ahrens J., Romaní-Pérez M., Watkins C., Sanz Y., Benítez-Páez A., Stanton C., Günther K. Dietary fat, the gut microbiota, and metabolic health-a systematic review conducted within the MyNewGut project. Clin. Nutr. 2018;38:2504–2520. doi: 10.1016/j.clnu.2018.12.024.
    1. Wan Y., Wang F., Yuan J., Li J., Jiang D., Zhang J., Li H., Wang R., Tang J., Huang T., et al. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-Month randomized controlled-feeding trial. Gut. 2019;68:1417–1429. doi: 10.1136/gutjnl-2018-317609.
    1. Wu G.D., Chen J., Hoffmann C., Bittinger K., Chen Y.Y., Keilbaugh S.A., Bewtra M., Knights D., Walters W.A., Knight R., et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334:105–108. doi: 10.1126/science.1208344.
    1. David L.A., Maurice C.F., Carmody R.N., Gootenberg D.B., Button J.E., Wolfe B.E., Ling A.V., Devlin A.S., Varma Y., Fischbach M.A., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–564. doi: 10.1038/nature12820.
    1. Chai Y.-N., Qin J., Li Y.I., Tong Y.L., Liu G.H., Wang X.R., Liu C.Y., Peng M.H., Qin C.Z., Xing Y.R. TMT proteomics analysis of intestinal tissue from patients of irritable bowel syndrome with diarrhea: Implications for multiple nutrient ingestion abnormality. J. Proteom. 2021;231:103995. doi: 10.1016/j.jprot.2020.103995.
    1. Sims I.M., Ryan J.L., Kim S.H. In vitro fermentation of prebiotic oligosaccharides by Bifidobacterium lactis HN019 and Lactobacillus spp. Anaerobe. 2014;25:11–17. doi: 10.1016/j.anaerobe.2013.11.001.
    1. Thangaraju M., Cresci G.A., Liu K., Ananth S., Gnanaprakasam J.P., Browning D.D., Mellinger J.D., Smith S.B., Digby G.J., Lambert N.A., et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–2832. doi: 10.1158/0008-5472.CAN-08-4466.
    1. Suzuki T., Yoshida S., Hara H. Physiological concentration of short-Chain fatty acids immediately suppress colonic epithelial permeability. Br. J. Nutr. 2008;100:297. doi: 10.1017/S0007114508888733.
    1. Lloyd D.A., Powell-Tuck J. Artificial nutrition: Principles and practice of enteral feeding. Clin. Colon. Rectal. Surg. 2004;17:107–118.
    1. Romick-Rosendale L.E., Haslam D.B., Lane A., Denson L., Lake K., Wilkey A., Watanabe M., Bauer S., Litts B., Luebbering N., et al. Antibiotic exposure and reduced short chain fatty acid production after hematopoietic stem cell transplant. Biol. Blood Marrow Transp. 2018;24:2418–2424. doi: 10.1016/j.bbmt.2018.07.030.
    1. Cabré E. Irritable bowel syndrome: Can nutrient manipulation help? Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:581–587. doi: 10.1097/MCO.0b013e32833b6471.
    1. Jalanka-Tuovinen J., Salonen A., Nikkilä J., Immonen O., Kekkonen R., Lahti L., Palva A., De Vos W.M. Intestinal Microbiota in Healthy Adults: Temporal Analysis Reveals Individual and Common Core and Relation to Intestinal Symptoms. PLoS ONE. 2011;6:e23035. doi: 10.1371/journal.pone.0023035.
    1. Pratt C., Campbell M.D. The Effect of Bifidobacterium on Reducing Symptomatic Abdominal Pain in Patients with Irritable Bowel Syndrome: A Systematic Review. Probiotics Antimicrob. Proteins. 2020;12:834–839. doi: 10.1007/s12602-019-09609-7.
    1. Lacy B.E. The Science, evidence, and practice of dietary interventions in irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 2015;13:1899–1906. doi: 10.1016/j.cgh.2015.02.043.

Source: PubMed

3
구독하다