The evolving cardiac lymphatic vasculature in development, repair and regeneration

Konstantinos Klaourakis, Joaquim M Vieira, Paul R Riley, Konstantinos Klaourakis, Joaquim M Vieira, Paul R Riley

Abstract

The lymphatic vasculature has an essential role in maintaining normal fluid balance in tissues and modulating the inflammatory response to injury or pathogens. Disruption of normal development or function of lymphatic vessels can have severe consequences. In the heart, reduced lymphatic function can lead to myocardial oedema and persistent inflammation. Macrophages, which are phagocytic cells of the innate immune system, contribute to cardiac development and to fibrotic repair and regeneration of cardiac tissue after myocardial infarction. In this Review, we discuss the cardiac lymphatic vasculature with a focus on developments over the past 5 years arising from the study of mammalian and zebrafish model organisms. In addition, we examine the interplay between the cardiac lymphatics and macrophages during fibrotic repair and regeneration after myocardial infarction. Finally, we discuss the therapeutic potential of targeting the cardiac lymphatic network to regulate immune cell content and alleviate inflammation in patients with ischaemic heart disease.

Conflict of interest statement

P.R.R. is co-founder and equity holder in OxStem Cardio, an Oxford University spin-out that seeks to exploit therapeutic strategies stimulating endogenous repair in cardiovascular regenerative medicine. The other authors declare no competing interests.

Figures

Fig. 1. Structure and function of cardiac…
Fig. 1. Structure and function of cardiac lymphatic vessels.
a | Schematic illustration of the mediastinal lymph nodes, where the cardiac lymphatics drain the lymph. b | Dorsal and ventral aspects of the adult mouse cardiac lymphatic network. c | The path of the lymph begins at the initial lymphatics, where lymphatic endothelial cells (LECs) connected by permeable button-like junctions drain immune cells, fluids, macromolecules and pathogens from the interstitial space, making up the lymph. The lymph is transported through the pre-collector and collector that are connected by impermeable zipper junctions to the mediastinal lymph nodes.
Fig. 2. Origin and development of the…
Fig. 2. Origin and development of the mouse cardiac lymphatic vasculature.
a | The cardiac lymphatic vasculature is visible at the dorsal and ventral side of the forming mouse heart from embryonic day (E) 14.5. bd | Different cell lineages contribute to the generation of cardiac lymphatic endothelial cells. A subpopulation of paraxial mesoderm-derived venous endothelial cells bud from the cardinal vein to give rise to lymphatic endothelium (panel b). Other non-venous populations contribute to the cardiac lymphatics, such as the yolk sac-derived haemogenic endothelium (panel c) and an Isl1+ second heart field population that is found specifically on the ventral cardiac lymphatics (panel d). L, left; R, right.
Fig. 3. Endogenous and VEGFC-C156S-augmented cardiac lymphatic…
Fig. 3. Endogenous and VEGFC-C156S-augmented cardiac lymphatic response to myocardial infarction.
Schematic illustration of the endogenous response of the lymphatic vessels to myocardial infarction and the augmented response induced by administration of vascular endothelial growth factor C (VEGFC)-C156S. a | After induction of myocardial infarction through surgical ligation of the left anterior descending coronary artery, accumulation of fluids leads to oedema and infiltration of immune cells, such as macrophages, dendritic cells and T cells, into the myocardium. b | In response to myocardial infarction, cardiac lymphatic vessels undergo lymphangiogenesis in an attempt to clear the excessive tissue fluid and the inflammatory cells. However, this response is insufficient and the heart is repaired through fibrotic scar formation. c | Augmentation of the lymphangiogenic response through administration of VEGFC-C156S leads to decreased oedema and increased immune cell clearance and subsequently to improved cardiac healing and function.

References

    1. Morfoisse F, Noel A. Lymphatic and blood systems: identical or fraternal twins? Int. J. Biochem. Cell Biol. 2019;114:105562. doi: 10.1016/j.biocel.2019.105562.
    1. Potente M, Mäkinen T. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 2017;18:477–494. doi: 10.1038/nrm.2017.36.
    1. Petrova TV, Koh GY. Organ-specific lymphatic vasculature: from development to pathophysiology. J. Exp. Med. 2018;215:35–49. doi: 10.1084/jem.20171868.
    1. Gancz D, Perlmoter G, Yaniv K. Formation and growth of cardiac lymphatics during embryonic development, heart regeneration, and disease. Cold Spring Harb. Perspect. Biol. 2020;12:a037176. doi: 10.1101/cshperspect.a037176.
    1. Klotz L, et al. Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature. 2015;522:62–67. doi: 10.1038/nature14483.
    1. Houssari M, et al. Lymphatic and immune cell cross-talk regulates cardiac recovery after experimental myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 2020;40:1722–1737. doi: 10.1161/ATVBAHA.120.314370.
    1. Henri O, et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation. 2016;133:1484–1497. doi: 10.1161/CIRCULATIONAHA.115.020143.
    1. Lioux G, et al. A second heart field-derived vasculogenic niche contributes to cardiac lymphatics. Dev. Cell. 2020;52:350–363.e6. doi: 10.1016/j.devcel.2019.12.006.
    1. Maruyama K, Miyagawa-Tomita S, Mizukami K, Matsuzaki F, Kurihara H. Isl1-expressing non-venous cell lineage contributes to cardiac lymphatic vessel development. Dev. Biol. 2019;452:134–143. doi: 10.1016/j.ydbio.2019.05.002.
    1. Nicenboim J, et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature. 2015;522:56–61. doi: 10.1038/nature14425.
    1. Vivien CJ, et al. Vegfc/d-dependent regulation of the lymphatic vasculature during cardiac regeneration is influenced by injury context. NPJ Regen. Med. 2019;4:18. doi: 10.1038/s41536-019-0079-2.
    1. Gancz D, et al. Distinct origins and molecular mechanisms contribute to lymphatic formation during cardiac growth and regeneration. eLife. 2019;8:e44153. doi: 10.7554/eLife.44153.
    1. Harrison MR, et al. Late developing cardiac lymphatic vasculature supports adult zebrafish heart function and regeneration. eLife. 2019;8:e42762. doi: 10.7554/eLife.42762.
    1. Moore JE, Bertram CD. Lymphatic system flows. Annu. Rev. Fluid Mech. 2018;50:459–482. doi: 10.1146/annurev-fluid-122316-045259.
    1. Scallan JP, Zawieja SD, Castorena-Gonzalez JA, Davis MJ. Lymphatic pumping: mechanics, mechanisms and malfunction. J. Physiol. 2016;594:5749–5768. doi: 10.1113/JP272088.
    1. Jackson DG. Leucocyte trafficking via the lymphatic vasculature — mechanisms and consequences. Front. Immunol. 2019;10:471. doi: 10.3389/fimmu.2019.00471.
    1. Dongaonkar RM, Stewart RH, Geissler HJ, Laine GA. Myocardial microvascular permeability, interstitial oedema, and compromised cardiac function. Cardiovasc. Res. 2010;87:331–339. doi: 10.1093/cvr/cvq145.
    1. Laine GA, Allen SJ. Left ventricular myocardial edema. Lymph flow, interstitial fibrosis, and cardiac function. Circ. Res. 1991;68:1713–1721. doi: 10.1161/01.RES.68.6.1713.
    1. Ryan TJ. Structure and function of lymphatics. J. Invest. Dermatol. 1989;93:18S–24S. doi: 10.1038/jid.1989.4.
    1. Ratajska A, et al. Comparative and developmental anatomy of cardiac lymphatics. Sci. World J. 2014;2014:183170. doi: 10.1155/2014/183170.
    1. Johnson RA, Blake TM. Lymphatics of the heart. Circulation. 1966;33:137–142. doi: 10.1161/01.CIR.33.1.137.
    1. Sacchi G, Weber E, Aglianò M, Cavina N, Comparini L. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J. Submicrosc. Cytol. Pathol. 1999;31:515–525.
    1. Böger A, Hort W. Distribution of the lymph vessels in the mouse heart. A light and electron microscopic study [German] Basic Res. Cardiol. 1977;72:510–529. doi: 10.1007/BF01910414.
    1. Marchetti C, Poggi P, Calligaro A, Casasco A. Lymph vessels of the rabbit heart: distribution and fine structure in atria. Lymphology. 1986;19:33–37.
    1. Schmid-Schönbein GW. The second valve system in lymphatics. Lymphat. Res. Biol. 2003;1:25–31. doi: 10.1089/15396850360495664.
    1. Bazigou E, Wilson JT, Moore JE. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc. Res. 2014;96:38–45. doi: 10.1016/j.mvr.2014.07.008.
    1. Trzewik J, et al. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J. 2001;15:1711–1717. doi: 10.1096/fj.01-0067com.
    1. Zhang F, et al. Lacteal junction zippering protects against diet-induced obesity. Science. 2018;361:599–603. doi: 10.1126/science.aap9331.
    1. Baluk P, et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med. 2007;204:2349–2362. doi: 10.1084/jem.20062596.
    1. Leak LV, Burke JF. Ultrastructural studies on the lymphatic anchoring filaments. J. Cell Biol. 1968;36:129–149. doi: 10.1083/jcb.36.1.129.
    1. Sacchi G, Weber E, Aglianò M, Raffaelli N, Comparini L. The structure of superficial lymphatics in the human thigh: precollectors. Anat. Rec. 1997;247:53–62. doi: 10.1002/(SICI)1097-0185(199701)247:1<53::AID-AR8>;2-G.
    1. Juszyński M, Ciszek B, Stachurska E, Jabłońska A, Ratajska A. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev. Dyn. 2008;237:2973–2986. doi: 10.1002/dvdy.21693.
    1. Flaht-Zabost A, et al. Cardiac mouse lymphatics: developmental and anatomical update. Anat. Rec. 2014;297:1115–1130. doi: 10.1002/ar.22912.
    1. Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006;39:76–83.
    1. Shimada T, Morita T, Oya M, Kitamura H. Morphological studies of the cardiac lymphatic system. Arch. Histol. Cytol. 1990;53:115–126. doi: 10.1679/aohc.53.Suppl_115.
    1. Schineis P, Runge P, Halin C. Cellular traffic through afferent lymphatic vessels. Vascul. Pharmacol. 2019;112:31–41. doi: 10.1016/j.vph.2018.08.001.
    1. Jalkanen S, Salmi M. Lymphatic endothelial cells of the lymph node. Nat. Rev. Immunol. 2020;20:566–578. doi: 10.1038/s41577-020-0281-x.
    1. Liao S, von der Weid PY. Lymphatic system: an active pathway for immune protection. Semin. Cell Dev. Biol. 2015;38:83–89. doi: 10.1016/j.semcdb.2014.11.012.
    1. Hunter MC, Teijeira A, Halin C. T cell trafficking through lymphatic vessels. Front. Immunol. 2016;7:613. doi: 10.3389/fimmu.2016.00613.
    1. Mandl JN, et al. Quantification of lymph node transit times reveals differences in antigen surveillance strategies of naïve CD4+ and CD8+ T cells. Proc. Natl Acad. Sci. USA. 2012;109:18036–18041. doi: 10.1073/pnas.1211717109.
    1. Srinivasan RS, Oliver G. Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves. Genes Dev. 2011;25:2187–2197. doi: 10.1101/gad.16974811.
    1. Hess PR, et al. Platelets mediate lymphovenous hemostasis to maintain blood-lymphatic separation throughout life. J. Clin. Invest. 2014;124:273–284. doi: 10.1172/JCI70422.
    1. Turner CJ, Badu-Nkansah K, Crowley D, van der Flier A, Hynes RO. Integrin-α5β1 is not required for mural cell functions during development of blood vessels but is required for lymphatic-blood vessel separation and lymphovenous valve formation. Dev. Biol. 2014;392:381–392. doi: 10.1016/j.ydbio.2014.05.006.
    1. Geng X, et al. Multiple mouse models of primary lymphedema exhibit distinct defects in lymphovenous valve development. Dev. Biol. 2016;409:218–233. doi: 10.1016/j.ydbio.2015.10.022.
    1. Martinez-Corral I, et al. Nonvenous origin of dermal lymphatic vasculature. Circ. Res. 2015;116:1649–1654. doi: 10.1161/CIRCRESAHA.116.306170.
    1. Stanczuk L, et al. CKit lineage hemogenic endothelium-derived cells contribute to mesenteric lymphatic vessels. Cell Rep. 2015;10:1708–1721. doi: 10.1016/j.celrep.2015.02.026.
    1. Veikkola T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001;20:1223–1231. doi: 10.1093/emboj/20.6.1223.
    1. Karkkainen MJ, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat. Immunol. 2004;5:74–80. doi: 10.1038/ni1013.
    1. Srinivasan RS, et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 2007;21:2422–2432. doi: 10.1101/gad.1588407.
    1. Rutkowski JM, Boardman KC, Swartz MA. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am. J. Physiol. Heart Circ. Physiol. 2006;291:H1402–H1410. doi: 10.1152/ajpheart.00038.2006.
    1. Sabin FR. On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1902;1:367–389. doi: 10.1002/aja.1000010310.
    1. Huntington GS, McClure CFW. The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica) Am. J. Anat. 1910;10:177–312. doi: 10.1002/aja.1000100108.
    1. Stone OA, Stainier DYR. Paraxial mesoderm is the major source of lymphatic endothelium. Dev. Cell. 2019;50:247–255.e3. doi: 10.1016/j.devcel.2019.04.034.
    1. Hong YK, Detmar M. Prox1, master regulator of the lymphatic vasculature phenotype. Cell Tissue Res. 2003;314:85–92. doi: 10.1007/s00441-003-0747-8.
    1. Wigle JT, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 2002;21:1505–1513. doi: 10.1093/emboj/21.7.1505.
    1. François M, et al. Sox18 induces development of the lymphatic vasculature in mice. Nature. 2008;456:643–647. doi: 10.1038/nature07391.
    1. Srinivasan RS, et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 2010;24:696–707. doi: 10.1101/gad.1859310.
    1. Murtomaki A, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2012;140:2365–2376. doi: 10.1242/dev.083865.
    1. Srinivasan RS, et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes Dev. 2014;28:2175–2187. doi: 10.1101/gad.216226.113.
    1. Vieira JM, et al. The cardiac lymphatic system stimulates resolution of inflammation following myocardial infarction. J. Clin. Invest. 2018;128:3402–3412. doi: 10.1172/JCI97192.
    1. Banerji S, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999;144:789–801. doi: 10.1083/jcb.144.4.789.
    1. Gale NW, et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor LYVE-1. Mol. Cell. Biol. 2007;27:595–604. doi: 10.1128/MCB.01503-06.
    1. Luong MX, et al. Lack of lymphatic vessel phenotype in LYVE-1/CD44 double knockout mice. J. Cell. Physiol. 2009;219:430–437. doi: 10.1002/jcp.21686.
    1. Yang Y, et al. Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood. 2012;120:2340–2348. doi: 10.1182/blood-2012-05-428607.
    1. Yao LC, Baluk P, Srinivasan RS, Oliver G, McDonald DM. Plasticity of button-like junctions in the endothelium of airway lymphatics in development and inflammation. Am. J. Pathol. 2012;180:2561–2575. doi: 10.1016/j.ajpath.2012.02.019.
    1. Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic endothelial cell junctions: molecular regulation in physiology and diseases. Front. Physiol. 2020;11:509. doi: 10.3389/fphys.2020.00509.
    1. Janardhan HP, Trivedi CM. Establishment and maintenance of blood–lymph separation. Cell. Mol. Life Sci. 2019;76:1865–1876. doi: 10.1007/s00018-019-03042-3.
    1. Welsh JD, Kahn ML, Sweet DT. Lymphovenous hemostasis and the role of platelets in regulating lymphatic flow and lymphatic vessel maturation. Blood. 2016;128:1169–1173. doi: 10.1182/blood-2016-04-636415.
    1. Oliver G, Kipnis J, Randolph GJ, Harvey NL. The lymphatic vasculature in the 21st century: novel functional roles in homeostasis and disease. Cell. 2020;182:270–296. doi: 10.1016/j.cell.2020.06.039.
    1. Petrova TV, Koh GY. Biological functions of lymphatic vessels. Science. 2020;369:eaax4063. doi: 10.1126/science.aax4063.
    1. Chen HI, et al. The sinus venosus contributes to coronary vasculature through VEGFC-stimulated angiogenesis. Development. 2014;141:4500–4512. doi: 10.1242/dev.113639.
    1. Jafree DJ, et al. Spatiotemporal dynamics and heterogeneity of renal lymphatics in mammalian development and cystic kidney disease. eLife. 2019;8:e48183. doi: 10.7554/eLife.48183.
    1. Merz SF, et al. Contemporaneous 3D characterization of acute and chronic myocardial I/R injury and response. Nat. Commun. 2019;10:2312. doi: 10.1038/s41467-019-10338-2.
    1. Ulvmar MH, Martinez-Corral I, Stanczuk L, Mäkinen T. Pdgfrb-Cre targets lymphatic endothelial cells of both venous and non-venous origins. Genesis. 2016;54:350–358. doi: 10.1002/dvg.22939.
    1. Buckingham ME, Meilhac SM. Tracing cells for tracking cell lineage and clonal behavior. Dev. Cell. 2011;21:394–409. doi: 10.1016/j.devcel.2011.07.019.
    1. Eng TC, et al. Zebrafish facial lymphatics develop through sequential addition of venous and non-venous progenitors. EMBO Rep. 2019;20:e47079. doi: 10.15252/embr.201847079.
    1. Okuda KS, et al. Lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development. 2012;139:2381–2391. doi: 10.1242/dev.077701.
    1. Frangogiannis NG. Pathophysiology of myocardial infarction. Compr. Physiol. 2015;5:1841–1875. doi: 10.1002/cphy.c150006.
    1. Weis S, et al. Src blockade stabilizes a Flk/cadherin complex, reducing edema and tissue injury following myocardial infarction. J. Clin. Invest. 2004;113:885–894. doi: 10.1172/JCI200420702.
    1. Price EL, Vieira JM, Riley PR. Model organisms at the heart of regeneration. Dis. Model. Mech. 2019;12:dmm040691. doi: 10.1242/dmm.040691.
    1. Sam F, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H422–H428. doi: 10.1152/ajpheart.2000.279.1.H422.
    1. Van Amerongen MJ, Harmsen MC, Van Rooijen N, Petersen AH, Van Luyn MJA. Macrophage depletion impairs wound healing and increases left ventricular remodeling after myocardial injury in mice. Am. J. Pathol. 2007;170:818–829. doi: 10.2353/ajpath.2007.060547.
    1. Frantz S, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27:871–881. doi: 10.1096/fj.12-214049.
    1. Nahrendorf M, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 2007;204:3037–3047. doi: 10.1084/jem.20070885.
    1. Taira A, et al. Flow velocity of cardiac lymph and contractility of the heart: an experimental study. Ann. Thorac. Surg. 1977;23:230–234. doi: 10.1016/S0003-4975(10)64114-8.
    1. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ. Myocardial fluid balance. Eur. J. Cardiothorac. Surg. 2001;20:1220–1230. doi: 10.1016/S1010-7940(01)01031-4.
    1. Geissler H, et al. Impact of cardiopulmonary bypass and cardioplegic arrest on myocardial efficiency. Crit. Care. 1999;3:P21. doi: 10.1186/cc332.
    1. Lugrin J, Parapanov R, Krueger T, Liaudet L. Murine myocardial infarction model using permanent ligation of left anterior descending coronary artery. J. Vis. Exp. 2019;150:e59591.
    1. Adamo L, Rocha-Resende C, Prabhu SD, Mann DL. Reappraising the role of inflammation in heart failure. Nat. Rev. Cardiol. 2020;17:269–285. doi: 10.1038/s41569-019-0315-x.
    1. DeBerge M, et al. Efferocytosis and outside-in signaling by cardiac phagocytes. Links to repair, cellular programming, and intercellular crosstalk in heart. Front. Immunol. 2017;8:1428. doi: 10.3389/fimmu.2017.01428.
    1. Yan X, et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. 2013;62:24–35. doi: 10.1016/j.yjmcc.2013.04.023.
    1. Bajpai G, et al. Tissue resident CCR2− and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 2019;124:263–278. doi: 10.1161/CIRCRESAHA.118.314028.
    1. Lavine KJ, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA. 2014;111:16029–16034. doi: 10.1073/pnas.1406508111.
    1. Dick SA, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 2019;20:29–39. doi: 10.1038/s41590-018-0272-2.
    1. Simões FC, et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 2020;11:600. doi: 10.1038/s41467-019-14263-2.
    1. Bajpai G, et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 2018;24:1234–1245. doi: 10.1038/s41591-018-0059-x.
    1. Tang TT, et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 2012;107:232. doi: 10.1007/s00395-011-0232-6.
    1. Matsumoto K, et al. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int. Heart J. 2011;52:382–387. doi: 10.1536/ihj.52.382.
    1. Hofmann U, et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125:1652–1663. doi: 10.1161/CIRCULATIONAHA.111.044164.
    1. Tae Yu,H, et al. Characterization of CD8+ CD57+ T cells in patients with acute myocardial infarction. Cell. Mol. Immunol. 2015;12:466–473. doi: 10.1038/cmi.2014.74.
    1. Jackson DG. Hyaluronan in the lymphatics: the key role of the hyaluronan receptor LYVE-1 in leucocyte trafficking. Matrix Biol. 2019;78–79:219–235. doi: 10.1016/j.matbio.2018.02.001.
    1. Lawrance W, Banerji S, Day AJ, Bhattacharjee S, Jackson DG. Binding of hyaluronan to the native lymphatic vessel endothelial receptor LYVE-1 is critically dependent on receptor clustering and hyaluronan organization. J. Biol. Chem. 2016;291:8014–8030. doi: 10.1074/jbc.M115.708305.
    1. Johnson LA, et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat. Immunol. 2017;18:762–770. doi: 10.1038/ni.3750.
    1. Vuorio T, et al. Downregulation of VEGFR3 signaling alters cardiac lymphatic vessel organization and leads to a higher mortality after acute myocardial infarction. Sci. Rep. 2018;8:16709. doi: 10.1038/s41598-018-34770-4.
    1. Zhao T, et al. VEGF-C/VEGFR-3 pathway promotes myocyte hypertrophy and survival in the infarcted myocardium. Am. J. Transl. Res. 2015;7:697–709.
    1. Zhao T, et al. Differential expression of vascular endothelial growth factor isoforms and receptor subtypes in the infarcted heart. Int. J. Cardiol. 2013;167:2638–2645. doi: 10.1016/j.ijcard.2012.06.127.
    1. Trincot CE, et al. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43. Circ. Res. 2019;124:101–113. doi: 10.1161/CIRCRESAHA.118.313835.
    1. Lam NT, Sadek HA. Neonatal heart regeneration comprehensive literature review. Circulation. 2018;138:421–423. doi: 10.1161/CIRCULATIONAHA.118.033648.
    1. Porrello ER, et al. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331:1078–1080. doi: 10.1126/science.1200708.
    1. Wang H, et al. Natural heart regeneration in a neonatal rat myocardial infarction model. Cells. 2020;9:229. doi: 10.3390/cells9010229.
    1. Ye L, et al. Early regenerative capacity in the porcine heart. Circulation. 2018;138:2798–2808. doi: 10.1161/CIRCULATIONAHA.117.031542.
    1. Sereti KI, et al. Analysis of cardiomyocyte clonal expansion during mouse heart development and injury. Nat. Commun. 2018;9:754. doi: 10.1038/s41467-018-02891-z.
    1. Gunadasa-Rohling M, et al. Magnetic resonance imaging of the regenerating neonatal mouse heart. Circulation. 2018;138:2439–2441. doi: 10.1161/CIRCULATIONAHA.118.036086.
    1. Porrello ER, et al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA. 2013;110:187–192. doi: 10.1073/pnas.1208863110.
    1. Saker DM, Walsh-Sukys M, Spector M, Zahka KG. Cardiac recovery and survival after neonatal myocardial infarction. Pediatr. Cardiol. 1997;18:139–142. doi: 10.1007/s002469900133.
    1. Haubner BJ, et al. Functional recovery of a human neonatal heart after severe myocardial infarction. Circ. Res. 2016;118:216–221. doi: 10.1161/CIRCRESAHA.115.307017.
    1. Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863:1813–1821. doi: 10.1016/j.bbamcr.2016.01.011.
    1. Dittrich A, Lauridsen H. Myocardial infarction and the immune response – scarring or regeneration? A comparative look at mammals and popular regenerating animal models. J. Immunol. Regen. Med. 2019;4:100016. doi: 10.1016/j.regen.2019.100016.
    1. Wang Z, et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA. 2019;116:18455–18465. doi: 10.1073/pnas.1905824116.
    1. Molawi K, et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 2014;211:2151–2158. doi: 10.1084/jem.20140639.
    1. Aurora AB, et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 2014;124:1382–1392. doi: 10.1172/JCI72181.
    1. Du Cheyne C, Tay H, De Spiegelaere W. The complex TIE between macrophages and angiogenesis. Anat. Histol. Embryol. 2020;49:585–596.
    1. van Rooijen N, Hendrikx E. Liposomes for specific depletion of macrophages from organs and tissues. Methods Mol. Biol. 2010;605:189–203. doi: 10.1007/978-1-60327-360-2_13.
    1. Ferenbach DA, et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int. 2012;82:928–933. doi: 10.1038/ki.2012.207.
    1. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188–2190. doi: 10.1126/science.1077857.
    1. González-Rosa JM, Martín V, Peralta M, Torres M, Mercader N. Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish. Development. 2011;138:1663–1674. doi: 10.1242/dev.060897.
    1. Ito K, et al. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Dev. Dyn. 2014;243:1106–1115. doi: 10.1002/dvdy.24154.
    1. Lai SL, et al. Reciprocal analyses in zebrafish and medaka reveal that harnessing the immune response promotes cardiac regeneration. eLife. 2017;6:e25605. doi: 10.7554/eLife.25605.
    1. Stockdale WT, et al. Heart regeneration in the Mexican cavefish. Cell Rep. 2018;25:1997–2007.e7. doi: 10.1016/j.celrep.2018.10.072.
    1. Reddy K. Recent advances in the diagnosis and treatment of acute myocardial infarction. World J. Cardiol. 2015;7:243–276. doi: 10.4330/wjc.v7.i5.243.
    1. Orlic D, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701–705. doi: 10.1038/35070587.
    1. Beltrami AP, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763–776. doi: 10.1016/S0092-8674(03)00687-1.
    1. Eschenhagen T, et al. Cardiomyocyte regeneration: a consensus statement. Circulation. 2017;136:680–686. doi: 10.1161/CIRCULATIONAHA.117.029343.
    1. Quyyumi AA, et al. PreSERVE-AMI: a randomized, double-blind, placebo-controlled clinical trial of intracoronary administration of autologous CD34+ cells in patients with left ventricular dysfunction post STEMI. Circ. Res. 2017;120:324–331. doi: 10.1161/CIRCRESAHA.115.308165.
    1. Tompkins BA, et al. Preclinical studies of stem cell therapy for heart disease. Circ. Res. 2018;122:1006–1020. doi: 10.1161/CIRCRESAHA.117.312486.
    1. Vagnozzi RJ, et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature. 2020;577:405–409. doi: 10.1038/s41586-019-1802-2.
    1. Chung ES, Packer M, Lo KH, Fasanmade AA, Willerson JT. Randomized, double-blind, placebo-controlled, pilot trial of infliximab, a chimeric monoclonal antibody to tumor necrosis factor-α, in patients with moderate-to-severe heart failure: results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) trial. Circulation. 2003;107:3133–3140. doi: 10.1161/01.CIR.0000077913.60364.D2.
    1. Roberts R, DeMello V, Sobel BE. Deleterious effects of methylprednisolone in patients with myocardial infarction. Circulation. 1976;53:I204–I206. doi: 10.1161/01.CIR.53.1.204.
    1. Hartikainen J, et al. Adenoviral intramyocardial VEGF-DDNDC gene transfer increasesmyocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur. Heart J. 2017;38:2547–2555. doi: 10.1093/eurheartj/ehx352.
    1. Kataoka Y, et al. The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J. Cardiovasc. Pharmacol. 2010;56:413–419. doi: 10.1097/FJC.0b013e3181f15b45.
    1. Tatin F, et al. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight. 2017;2:e93887. doi: 10.1172/jci.insight.93887.
    1. Maisel K, Sasso MS, Potin L, Swartz MA. Exploiting lymphatic vessels for immunomodulation: RATIONALE, opportunities, and challenges. Adv. Drug Deliv. Rev. 2017;114:43–59. doi: 10.1016/j.addr.2017.07.005.
    1. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 2020;20:355–362. doi: 10.1038/s41577-020-0331-4.
    1. Madjid M, Safavi-Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020;5:831–840. doi: 10.1001/jamacardio.2020.1286.
    1. Wang L, Zhang Y, Zhang S. Cardiovascular impairment in COVID-19: learning from current options for cardiovascular anti-inflammatory therapy. Front. Cardiovasc. Med. 2020;7:78. doi: 10.3389/fcvm.2020.00078.
    1. Nishiga M, et al. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat. Rev. Cardiol. 2020;17:543–558. doi: 10.1038/s41569-020-0413-9.
    1. Xu H, et al. Acute myocardial injury of patients with coronavirus disease 2019. medRxiv. 2020 doi: 10.1101/2020.03.05.20031591.
    1. Carsetti R, et al. The immune system of children: the key to understanding SARS-CoV-2 susceptibility? Lancet Child. Adolesc. Health. 2020;4:414–416. doi: 10.1016/S2352-4642(20)30135-8.
    1. Ahn JH, et al. Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature. 2019;572:62–66. doi: 10.1038/s41586-019-1419-5.
    1. Antila S, et al. Development and plasticity of meningeal lymphatic vessels. J. Exp. Med. 2017;214:3645–3667. doi: 10.1084/jem.20170391.
    1. Hsu M, et al. Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat. Commun. 2019;10:229. doi: 10.1038/s41467-018-08163-0.
    1. Izen RM, Yamazaki T, Nishinaka-Arai Y, Hong YK, Mukouyama YS. Postnatal development of lymphatic vasculature in the brain meninges. Dev. Dyn. 2018;247:741–753. doi: 10.1002/dvdy.24624.
    1. Nurmi H, et al. VEGF-C is required for intestinal lymphatic vessel maintenance and lipid absorption. EMBO Mol. Med. 2015;7:1418–1425. doi: 10.15252/emmm.201505731.
    1. Bernier-Latmani J, et al. DLL4 promotes continuous adult intestinal lacteal regeneration and dietary fat transport. J. Clin. Invest. 2015;125:4572–4586. doi: 10.1172/JCI82045.
    1. Mahadevan A, et al. The left-right Pitx2 pathway drives organ-specific arterial and lymphatic development in the intestine. Dev. Cell. 2014;31:690–706. doi: 10.1016/j.devcel.2014.11.002.
    1. Lee HW, et al. Expression of lymphatic endothelium-specific hyaluronan receptor LYVE-1 in the developing mouse kidney. Cell Tissue Res. 2011;343:429–444. doi: 10.1007/s00441-010-1098-x.
    1. Russell PS, Hong J, Windsor JA, Itkin M, Phillips ARJ. Renal lymphatics: anatomy, physiology, and clinical implications. Front. Physiol. 2019;10:251. doi: 10.3389/fphys.2019.00251.
    1. Monroy M, McCarter AL, Hominick D, Cassidy N, Dellinger MT. Lymphatics in bone arise from pre-existing lymphatics. Development. 2020;147:dev184291. doi: 10.1242/dev.184291.
    1. Gur-Cohen S, et al. Stem cell-driven lymphatic remodeling coordinates tissue regeneration. Science. 2019;366:1218–1225. doi: 10.1126/science.aay4509.
    1. Pichol-Thievend C, et al. A blood capillary plexus-derived population of progenitor cells contributes to genesis of the dermal lymphatic vasculature during embryonic development. Development. 2018;145:dev160184. doi: 10.1242/dev.160184.
    1. Gordon EJ, et al. Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development. 2010;137:3899–3910. doi: 10.1242/dev.050021.
    1. Sun M, et al. Hyaluronan derived from the limbus is a key regulator of corneal lymphangiogenesis. Investig. Ophthalmol. Vis. Sci. 2019;60:1050–1062. doi: 10.1167/iovs.18-25920.
    1. Maruyama K, et al. The maintenance of lymphatic vessels in the cornea is dependent on the presence of macrophages. Invest. Ophthalmol. Vis. Sci. 2012;53:3145–3153. doi: 10.1167/iovs.11-8010.
    1. Maruyama K, et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 2005;115:2363–2372. doi: 10.1172/JCI23874.
    1. Diamond MA, et al. Lymphatic vessels identified in failed corneal transplants with neovascularisation. Br. J. Ophthalmol. 2019;103:421–427. doi: 10.1136/bjophthalmol-2018-312630.
    1. Kelley PM, Steele MM, Tempero RM. Regressed lymphatic vessels develop during corneal repair. Lab. Investig. 2011;91:1643–1651. doi: 10.1038/labinvest.2011.121.
    1. Hos D, et al. Transient ingrowth of lymphatic vessels into the physiologically avascular cornea regulates corneal edema and transparency. Sci. Rep. 2017;7:7227. doi: 10.1038/s41598-017-07806-4.
    1. Lee HS, et al. Involvement of corneal lymphangiogenesis in a mouse model of allergic eye disease. Investig. Ophthalmol. Vis. Sci. 2015;56:3140–3148. doi: 10.1167/iovs.14-16186.
    1. Kiesewetter A, Cursiefen C, Eming SA, Hos D. Phase-specific functions of macrophages determine injury-mediated corneal hem- and lymphangiogenesis. Sci. Rep. 2019;9:308. doi: 10.1038/s41598-018-36526-6.

Source: PubMed

3
구독하다