Imaging of Pancreatic Neuroendocrine Neoplasms

Giuditta Chiti, Giulia Grazzini, Diletta Cozzi, Ginevra Danti, Benedetta Matteuzzi, Vincenza Granata, Silvia Pradella, Laura Recchia, Luca Brunese, Vittorio Miele, Giuditta Chiti, Giulia Grazzini, Diletta Cozzi, Ginevra Danti, Benedetta Matteuzzi, Vincenza Granata, Silvia Pradella, Laura Recchia, Luca Brunese, Vittorio Miele

Abstract

Pancreatic neuroendocrine neoplasms (panNENs) represent the second most common pancreatic tumors. They are a heterogeneous group of neoplasms with varying clinical expression and biological behavior, from indolent to aggressive ones. PanNENs can be functioning or non-functioning in accordance with their ability or not to produce metabolically active hormones. They are histopathologically classified according to the 2017 World Health Organization (WHO) classification system. Although the final diagnosis of neuroendocrine tumor relies on histologic examination of biopsy or surgical specimens, both morphologic and functional imaging are crucial for patient care. Morphologic imaging with ultrasonography (US), computed tomography (CT) and magnetic resonance imaging (MRI) is used for initial evaluation and staging of disease, as well as surveillance and therapy monitoring. Functional imaging techniques with somatostatin receptor scintigraphy (SRS) and positron emission tomography (PET) are used for functional and metabolic assessment that is helpful for therapy management and post-therapeutic re-staging. This article reviews the morphological and functional imaging modalities now available and the imaging features of panNENs. Finally, future imaging challenges, such as radiomics analysis, are illustrated.

Keywords: abdominal radiology; computed tomography (CT); gastrointestinal radiology; magnetic resonance imaging (MRI); pancreatic neuroendocrine neoplasms (panNENs); positron emission tomography (PET); somatostatin receptor scintigraphy (SRS).

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PanNET G1 according to the 2019 WHO classification. CT images in the transverse plane during the basal (a), the arterial (b), the portal venous (c) and the delay (d) phases show a small pancreatic hypervascularized tumor of the pancreatic tail with sharp margin (arrow).
Figure 2
Figure 2
Patient with liver metastases from poorly differentiated pancreatic neuroendocrine carcinoma. CT images in the transverse plane during the basal (a), the arterial (b) and portal (c) phases show a large mass developed in the pancreatic tail with atypical hypo-enhancing pattern (arrow). This lesion is associated with multiple liver metastases (arrowheads) that appear hypodense with rim enhancement during arterial phase (b). According to the poorly differentiated tumor feature, FDG PET/CT (e,f) shows high uptake in pancreatic lesion while Somatostatin Receptor Scintigraphy with 111-pentetrotide is negative (d).
Figure 3
Figure 3
CT images in the transverse plane during the basal (a), the arterial (b) and portal (c) phases show a large mass developed between the second portion of the duodenum and the pancreatic head (arrowhead). This panNEN is associated with a dilation of the intrahepatic biliary tree (d), common bile duct (e) and main pancreatic ductal (f) (arrows). Somatostatin Receptor Scintigraphy with 111-pentetrotide shows high uptake of somatostatin analogue in pancreatic lesion (gi).
Figure 4
Figure 4
Small functioning pancreatic neuroendocrine tumor. T2-weighted MR image (a) shows a small lesion with well-circumscribed margin and high signal intensity (arrow). On T1W image, the lesion appears hypo-intense within the surrounding hyperintense pancreatic parenchyma (b). On contrast enhancement sequences during the arterial (c) and portal (d) phases, the lesion shows hyper-enhancement (arrow). On DWI (e) and ADC map (f), the lesion shows a clearly restrictive pattern.
Figure 5
Figure 5
CT images (ac) show a hyper-enhancing pancreatic nodule in the body/tail of the organ (arrows) well depicted on the coronal (d) and sagittal (e) reconstruction too. The 68-Ga-DOTATOC PET/CT (f) shows focal uptake in the pancreatic lesion.

References

    1. Guilmette J.M., Nosé V. Neoplasms of the Neuroendocrine Pancreas: An Update in the Classification, Definition, and Molecular Genetic Advances. Adv. Anat Pathol. 2019;26:13–30. doi: 10.1097/PAP.0000000000000201.
    1. Bilimoria K.Y., Tomlinson J.S., Merkow R.P., Stewart A.K., Ko C.Y., Talamonti M.S., Bentrem D.J. Clinicopathologic features and treatment trends of pancreatic neuroendocrine tumors: Analysis of 9,821 patients. J. Gastrointest. Surg. 2007;11:1460–1467; discussion 1467–1469. doi: 10.1007/s11605-007-0263-3.
    1. Pea A., Hruban R.H., Wood L.D. Genetics of pancreatic neuroendocrine tumors: Implications for the clinic. Expert Rev. Gastroenterol. Hepatol. 2015;9:1407–1419. doi: 10.1586/17474124.2015.1092383.
    1. Klöppel G. Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocr. Relat. Cancer. 2011;18(Suppl. S1):S1–S16. doi: 10.1530/ERC-11-0013.
    1. Fang J.M., Shi J. A Clinicopathologic and Molecular Update of Pancreatic Neuroendocrine Neoplasms with a Focus on the New World Health Organization Classification. Arch Pathol. Lab Med. 2019;143:1317–1326. doi: 10.5858/arpa.2019-0338-RA.
    1. Wu J., Sun C., Li E., Wang J., He X., Yuan R., Yi C., Liao W., Wu L. Non-functional pancreatic neuroendocrine tumours: Emerging trends in incidence and mortality. BMC Cancer. 2019;19:334. doi: 10.1186/s12885-019-5543-2.
    1. Singhi A.D., Klimstra D.S. Well-differentiated pancreatic neuroendocrine tumours (PanNETs) and poorly differentiated pancreatic neuroendocrine carcinomas (PanNECs): Concepts, issues and a practical diagnostic approach to high-grade (G3) cases. Histopathology. 2018;72:168–177. doi: 10.1111/his.13408.
    1. Basturk O., Yang Z., Tang L.H., Hruban R.H., Adsay V., McCall C.M., Krasinskas A.M., Jang K.T., Frankel W.L., Balci S., et al. The high-grade (WHO G3) pancreatic neuroendocrine tumor category is morphologically and biologically heterogenous and includes both well differentiated and poorly differentiated neoplasms. Am. J. Surg. Pathol. 2015;39:683–690. doi: 10.1097/PAS.0000000000000408.
    1. Assarzadegan N., Montgomery E. What is New in the 2019 World Health Organization (WHO) Classification of Tumors of the Digestive System: Review of Selected Updates on Neuroendocrine Neoplasms, Appendiceal Tumors, and Molecular Testing. Arch. Pathol. Lab. Med. 2021;145:664–677. doi: 10.5858/arpa.2019-0665-RA.
    1. Li X., Gou S., Liu Z., Ye Z., Wang C. Assessment of the American Joint Commission on Cancer 8th Edition Staging System for Patients with Pancreatic Neuroendocrine Tumors: A Surveillance, Epidemiology, and End Results analysis. Cancer Med. 2018;7:626–634. doi: 10.1002/cam4.1336.
    1. Luo G., Javed A., Strosberg J.R., Jin K., Zhang Y., Liu C., Xu J., Soares K., Weiss M.J., Zheng L., et al. Modified Staging Classification for Pancreatic Neuroendocrine Tumors on the Basis of the American Joint Committee on Cancer and European Neuroendocrine Tumor Society Systems. J. Clin. Oncol. 2017;35:274–280. doi: 10.1200/JCO.2016.67.8193.
    1. Sahani D.V., Bonaffini P.A., Fernández-Del Castillo C., Blake M.A. Gastroenteropancreatic neuroendocrine tumors: Role of imaging in diagnosis and management. Radiology. 2013;266:38–61. doi: 10.1148/radiol.12112512.
    1. Choe J., Kim K.W., Kim H.J., Kim D.W., Kim K.P., Hong S.M., Ryu J.S., Tirumani S.H., Krajewski K., Ramaiya N. What Is New in the 2017 World Health Organization Classification and 8th American Joint Committee on Cancer Staging System for Pancreatic Neuroendocrine Neoplasms? Korean J. Radiol. 2019;20:5–17. doi: 10.3348/kjr.2018.0040.
    1. Dromain C., Déandréis D., Scoazec J.Y., Goere D., Ducreux M., Baudin E., Tselikas L. Imaging of neuroendocrine tumors of the pancreas. Diagn Interv. Imaging. 2016;97:1241–1257. doi: 10.1016/j.diii.2016.07.012.
    1. Graziani R., Brandalise A., Bellotti M., Manfredi R., Contro A., Falconi M., Boninsegna L., Pozzi Mucelli R. Imaging of neuroendocrine gastroenteropancreatic tumours. Radiol. Med. 2010;115:1047–1064. doi: 10.1007/s11547-010-0540-1.
    1. Foti G., Boninsegna L., Falconi M., Mucelli R.P. Preoperative assessment of nonfunctioning pancreatic endocrine tumours: Role of MDCT and MRI. Radiol. Med. 2013;118:1082–1101. doi: 10.1007/s11547-013-0956-5.
    1. Hashimoto S., Hirooka Y., Kawabe N., Nakaoka K., Yoshioka K. Role of transabdominal ultrasonography in the diagnosis of pancreatic cystic lesions. J. Med. Ultrason. 2020;47:389–399. doi: 10.1007/s10396-019-00975-x.
    1. Falconi M., Eriksson B., Kaltsas G., Bartsch D.K., Capdevila J., Caplin M., Kos-Kudla B., Kwekkeboom D., Rindi G., Klöppel G., et al. Vienna Consensus Conference participants. ENETS Consensus Guidelines Update for the Management of Patients with Functional Pancreatic Neuroendocrine Tumors and Non-Functional Pancreatic Neuroendocrine Tumors. Neuroendocrinology. 2016;103:153–171. doi: 10.1159/000443171.
    1. Puli S.R., Kalva N., Bechtold M.L., Pamulaparthy S.R., Cashman M.D., Estes N.C., Pearl R.H., Volmar F.H., Dillon S., Shekleton M.F., et al. Diagnostic accuracy of endoscopic ultrasound in pancreatic neuroendocrine tumors: A systematic review and meta analysis. World J. Gastroenterol. 2013;19:3678–3684. doi: 10.3748/wjg.v19.i23.3678.
    1. Manta R., Nardi E., Pagano N., Ricci C., Sica M., Castellani D., Bertani H., Piccoli M., Mullineris B., Tringali A., et al. Pre-operative Diagnosis of Pancreatic Neuroendocrine Tumors with Endoscopic Ultrasonography and Computed Tomography in a Large Series. J. Gastrointestin Liver Dis. 2016;25:317–321. doi: 10.15403/jgld.2014.1121.253.ned.
    1. Sundin A., Arnold R., Baudin E., Cwikla J.B., Eriksson B., Fanti S., Fazio N., Giammarile F., Hicks R.J., Kjaer A., et al. Antibes Consensus Conference participants. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. Neuroendocrinology. 2017;105:212–244. doi: 10.1159/000471879.
    1. Caglià P., Cannizzaro M.T., Tracia A., Amodeo L., Tracia L., Buffone A., Amodeo C., Cannizzaro M.A. Cystic pancreatic neuroendocrine tumors: To date a diagnostic challenge. Int. J. Surg. 2015;21(Suppl. 1):S44–S49. doi: 10.1016/j.ijsu.2015.04.087.
    1. Kitano M., Kudo M., Yamao K., Takagi T., Sakamoto H., Komaki T., Kamata K., Imai H., Chiba Y., Okada M., et al. Characterization of small solid tumors in the pancreas: The value of contrast-enhanced harmonic endoscopic ultrasonography. Am. J. Gastroenterol. 2012;107:303–310. doi: 10.1038/ajg.2011.354.
    1. James P.D., Tsolakis A.V., Zhang M., Belletrutti P.J., Mohamed R., Roberts D.J., Heitman S.J. Incremental benefit of preoperative EUS for the detection of pancreatic neuroendocrine tumors: A meta-analysis. Gastrointest Endosc. 2015;81:848–856.e1. doi: 10.1016/j.gie.2014.12.031.
    1. Weynand B., Borbath I., Bernard V., Sempoux C., Gigot J.F., Hubert C., Lannoy V., Deprez P.H., Jouret-Mourin A. Pancreatic neuroendocrine tumour grading on endoscopic ultrasound-guided fine needle aspiration: High reproducibility and inter-observer agreement of the Ki-67 labelling index. Cytopathology. 2014;25:389–395. doi: 10.1111/cyt.12111.
    1. Di Leo M., Poliani L., Rahal D., Auriemma F., Anderloni A., Ridolfi C., Spaggiari P., Capretti G., Di Tommaso L., Preatoni P., et al. Pancreatic Neuroendocrine Tumours: The Role of Endoscopic Ultrasound Biopsy in Diagnosis and Grading Based on the WHO 2017 Classification. Dig. Dis. 2019;37:325–333. doi: 10.1159/000499172.
    1. Kim J.H., Eun H.W., Kim Y.J., Lee J.M., Han J.K., Choi B.I. Pancreatic neuroendocrine tumour (PNET): Staging accuracy of MDCT and its diagnostic performance for the differentiation of PNET with uncommon CT findings from pancreatic adenocarcinoma. Eur. Radiol. 2016;26:1338–1347. doi: 10.1007/s00330-015-3941-7.
    1. Foti G., Malleo G., Faccioli N., Guerriero A., Furlani L., Carbognin G. Characterization of adrenal lesions using MDCT wash-out parameters: Diagnostic accuracy of several combinations of intermediate and delayed phases. Radiol. Med. 2018;123:833–840. doi: 10.1007/s11547-018-0911-6.
    1. Ciaravino V., De Robertis R., Tinazzi Martini P., Cardobi N., Cingarlini S., Amodio A., Landoni L., Capelli P., D’Onofrio M. Imaging presentation of pancreatic neuroendocrine neoplasms. Insights Imaging. 2018;9:943–953. doi: 10.1007/s13244-018-0658-6.
    1. Tamm E.P., Bhosale P., Lee J.H., Rohren E.M. State-of-the-art Imaging of Pancreatic Neuroendocrine Tumors. Surg. Oncol. Clin. N. Am. 2016;25:375–400. doi: 10.1016/j.soc.2015.11.007.
    1. D’Onofrio M., De Robertis R., Capelli P., Tinazzi Martini P., Crosara S., Gobbo S., Butturini G., Salvia R., Barbi E., Girelli R., et al. Uncommon presentations of common pancreatic neoplasms: A pictorial essay. Abdom. Imaging. 2015;40:1629–1644. doi: 10.1007/s00261-015-0388-x.
    1. Bicci E., Cozzi D., Ferrari R., Grazzini G., Pradella S., Miele V. Pancreatic neuroendocrine tumours: Spectrum of imaging findings. Gland Surg. 2020;9:2215–2224. doi: 10.21037/gs-20-537.
    1. Park H.J., Kim H.J., Kim K.W., Kim S.Y., Choi S.H., You M.W., Hwang H.S., Hong S.M. Comparison between neuroendocrine carcinomas and well-differentiated neuroendocrine tumors of the pancreas using dynamic enhanced CT. Eur. Radiol. 2020;30:4772–4782. doi: 10.1007/s00330-020-06867-w.
    1. Fidler J.L., Fletcher J.G., Reading C.C., Andrews J.C., Thompson G.B., Grant C.S., Service F.J. Preoperative detection of pancreatic insulinomas on multiphasic helical CT. AJR Am. J. Roentgenol. 2003;181:775–780. doi: 10.2214/ajr.181.3.1810775.
    1. Steinman J., Zaheer A., Kluger M.D., Remotti H., Hecht E.M. Rare pancreatic tumors. Abdom. Radiol. 2018;43:285–300. doi: 10.1007/s00261-017-1342-x.
    1. Addeo G., Beccani D., Cozzi D., Ferrari R., Lanzetta M.M., Paolantonio P., Pradella S., Miele V. Groove pancreatitis: A challenging imaging diagnosis. Gland Surg. 2019;8(Suppl. 3):S178–S187. doi: 10.21037/gs.2019.04.06.
    1. Dahdaleh F.S., Lorenzen A., Rajput M., Carr J.C., Liao J., Menda Y., O’Dorisio T.M., Howe J.R. The value of preoperative imaging in small bowel neuroendocrine tumors. Ann. Surg. Oncol. 2013;20:1912–1917. doi: 10.1245/s10434-012-2836-y.
    1. Bhosale P., Shah A., Wei W., Varadhachary G., Johnson V., Shah V., Kundra V. Carcinoid tumours: Predicting the location of the primary neoplasm based on the sites of metastases. Eur. Radiol. 2013;23:400–407. doi: 10.1007/s00330-012-2615-y.
    1. Ronot M., Cuccioli F., Dioguardi Burgio M., Vullierme M.P., Hentic O., Ruszniewski P., d’Assignies G., Vilgrain V. Neuroendocrine liver metastases: Vascular patterns on triple-phase MDCT are indicative of primary tumour location. Eur. J. Radiol. 2017;89:156–162. doi: 10.1016/j.ejrad.2017.02.007.
    1. Howe J.R., Merchant N.B., Conrad C., Keutgen X.M., Hallet J., Drebin J.A., Minter R.M., Lairmore T.C., Tseng J.F., Zeh H.J., et al. The North American Neuroendocrine Tumor Society Consensus Paper on the Surgical Management of Pancreatic Neuroendocrine Tumors. Pancreas. 2020;49:1–33. doi: 10.1097/MPA.0000000000001454.
    1. Farchione A., Rufini V., Brizi M.G., Iacovazzo D., Larghi A., Massara R.M., Petrone G., Poscia A., Treglia G., De Marinis L., et al. Evaluation of the Added Value of Diffusion-Weighted Imaging to Conventional Magnetic Resonance Imaging in Pancreatic Neuroendocrine Tumors and Comparison With 68Ga-DOTANOC Positron Emission Tomography/Computed Tomography. Pancreas. 2016;45:345–354. doi: 10.1097/MPA.0000000000000461.
    1. Higashi M., Tanabe M., Okada M., Furukawa M., Iida E., Ito K. Influence of fat deposition on T1 mapping of the pancreas: Evaluation by dual-flip-angle MR imaging with and without fat suppression. Radiol. Med. 2020;125:1–6. doi: 10.1007/s11547-019-01087-9.
    1. Semelka R.C., Custodio C.M., Cem Balci N., Woosley J.T. Neuroendocrine tumors of the pancreas: Spectrum of appearances on MRI. J. Magn Reson. Imaging. 2000;11:141–148. doi: 10.1002/(SICI)1522-2586(200002)11:2<141::AID-JMRI10>;2-U.
    1. Souza D., Alessandrino F., Ketwaroo G.A., Sawhney M., Mortele K.J. Accuracy of a novel noninvasive secretin-enhanced MRCP severity index scoring system for diagnosis of chronic pancreatitis: Correlation with EUS-based Rosemont criteria. Radiol. Med. 2020;125:816–826. doi: 10.1007/s11547-020-01181-3.
    1. Anaye A., Mathieu A., Closset J., Bali M.A., Metens T., Matos C. Successful preoperative localization of a small pancreatic insulinoma by diffusion-weighted MRI. JOP. 2009;10:528–531.
    1. Bakir B., Salmaslioğlu A., Poyanli A., Rozanes I., Acunas B. Diffusion weighted MR imaging of pancreatic islet cell tumors. Eur. J. Radiol. 2010;74:214–220. doi: 10.1016/j.ejrad.2009.02.003.
    1. Caramella C., Dromain C., De Baere T., Boulet B., Schlumberger M., Ducreux M., Baudin E. Endocrine pancreatic tumours: Which are the most useful MRI sequences? Eur. Radiol. 2010;20:2618–2627. doi: 10.1007/s00330-010-1840-5.
    1. Brenner R., Metens T., Bali M., Demetter P., Matos C. Pancreatic neuroendocrine tumor: Added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur. J. Radiol. 2012;81:e746–e749. doi: 10.1016/j.ejrad.2012.01.032.
    1. d’Assignies G., Fina P., Bruno O., Vullierme M.P., Tubach F., Paradis V., Sauvanet A., Ruszniewski P., Vilgrain V. High sensitivity of diffusion-weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: Comparison with T2-weighted and dynamic gadolinium-enhanced MR imaging. Radiology. 2013;268:390–399. doi: 10.1148/radiol.13121628.
    1. Lavelle L.P., O’Neill A.C., McMahon C.J., Cantwell C.P., Heffernan E.J., Malone D.E., Daly L., Skehan S.J. Is diffusion-weighted MRI sufficient for follow-up of neuroendocrine tumour liver metastases? Clin. Radiol. 2016;71:863–868. doi: 10.1016/j.crad.2016.05.016.
    1. Park H.S., Kim S.Y., Hong S.M., Park S.H., Lee S.S., Byun J.H., Kim J.H., Kim H.J., Lee M.G. Hypervascular solid-appearing serous cystic neoplasms of the pancreas: Differential diagnosis with neuroendocrine tumours. Eur. Radiol. 2016;26:1348–1358. doi: 10.1007/s00330-015-3961-3.
    1. Srisajjakul S., Prapaisilp P., Bangchokdee S. CT and MR features that can help to differentiate between focal chronic pancreatitis and pancreatic cancer. Radiol. Med. 2020;125:356–364. doi: 10.1007/s11547-019-01132-7.
    1. Sadowski S.M., Triponez F. Management of pancreatic neuroendocrine tumors in patients with MEN 1. Gland Surg. 2015;4:63–68. doi: 10.3978/j.issn.2227-684X.2014.12.01.
    1. Turaga K.K., Kvols L.K. Recent progress in the understanding, diagnosis, and treatment of gastroenteropancreatic neuroendocrine tumors. Ca Cancer J. Clin. 2011;61:113–132. doi: 10.3322/caac.20097.
    1. Hörsch D., Ezziddin S., Haug A., Gratz K.F., Dunkelmann S., Miederer M., Schreckenberger M., Krause B.J., Bengel F.M., Bartenstein P., et al. Effectiveness and side-effects of peptide receptor radionuclide therapy for neuroendocrine neoplasms in Germany: A multi-institutional registry study with prospective follow-up. Eur. J. Cancer. 2016;58:41–51. doi: 10.1016/j.ejca.2016.01.009.
    1. Yang B., Chen H.Y., Zhang X.Y., Pan Y., Lu Y.F., Yu R.S. The prognostic value of multidetector CT features in predicting overall survival outcomes in patients with pancreatic neuroendocrine tumors. Eur. J. Radiol. 2020;124:108847. doi: 10.1016/j.ejrad.2020.108847.
    1. Brabander T., Teunissen J., Kwekkeboom D. Physiological Uptake in the Pancreatic Head on Somatostatin Receptor Scintigraphy Using [111In-DTPA]Octreotide: Incidence and Mechanism. Clin. Nucl. Med. 2017;42:15–19. doi: 10.1097/RLU.0000000000001431.
    1. Van Binnebeek S., Vanbilloen B., Baete K., Terwinghe C., Koole M., Mottaghy F.M., Clement P.M., Mortelmans L., Bogaerts K., Haustermans K., et al. Comparison of diagnostic accuracy of (111)In-pentetreotide SPECT and (68)Ga-DOTATOC PET/CT: A lesion-by-lesion analysis in patients with metastatic neuroendocrine tumours. Eur. Radiol. 2016;26:900–909. doi: 10.1007/s00330-015-3882-1.
    1. Antwi K., Fani M., Heye T., Nicolas G., Rottenburger C., Kaul F., Merkle E., Zech C.J., Boll D., Vogt D.R., et al. Comparison of glucagon-like peptide-1 receptor (GLP-1R) PET/CT, SPECT/CT and 3T MRI for the localisation of occult insulinomas: Evaluation of diagnostic accuracy in a prospective crossover imaging study. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:2318–2327. doi: 10.1007/s00259-018-4101-5.
    1. Andreasi V., Partelli S., Muffatti F., Manzoni M.F., Capurso G., Falconi M. Update on gastroenteropancreatic neuroendocrine tumors. Dig. Liver Dis. 2021;53:171–182. doi: 10.1016/j.dld.2020.08.031.
    1. Sawicki L.M., Deuschl C., Beiderwellen K., Ruhlmann V., Poeppel T.D., Heusch P., Lahner H., Führer D., Bockisch A., Herrmann K., et al. Evaluation of 68Ga-DOTATOC PET/MRI for whole-body staging of neuroendocrine tumours in comparison with 68Ga-DOTATOC PET/CT. Eur. Radiol. 2017;27:4091–4099. doi: 10.1007/s00330-017-4803-2.
    1. Pavel M., Baudin E., Couvelard A., Krenning E., Öberg K., Steinmüller T., Anlauf M., Wiedenmann B., Salazar R. Barcelona Consensus Conference participants. ENETS Consensus Guidelines for the management of patients with liver and other distant metastases from neuroendocrine neoplasms of foregut, midgut, hindgut, and unknown primary. Neuroendocrinology. 2012;95:157–176. doi: 10.1159/000335597.
    1. Chougnet C.N., Leboulleux S., Caramella C., Lumbroso J., Borget I., Déandreis D., Duvillard P., Elias D., de Baere T., Vélayoudom-Céphise F.L., et al. Frequency and characterization of gastro-entero-pancreatic neuroendocrine tumor patients with high-grade of uptake at somatostatin receptor scintigraphy. Endocr. Relat. Cancer. 2013;20:229–239. doi: 10.1530/ERC-12-0169.
    1. Alexander H.R., Fraker D.L., Norton J.A., Bartlett D.L., Tio L., Benjamin S.B., Doppman J.L., Goebel S.U., Serrano J., Gibril F., et al. Prospective study of somatostatin receptor scintigraphy and its effect on operative outcome in patients with Zollinger-Ellison syndrome. Ann. Surg. 1998;228:228–238. doi: 10.1097/00000658-199808000-00013.
    1. Squires M.H., 3rd, Volkan Adsay N., Schuster D.M., Russell M.C., Cardona K., Delman K.A., Winer J.H., Altinel D., Sarmiento J.M., El-Rayes B., et al. Octreoscan Versus FDG-PET for Neuroendocrine Tumor Staging: A Biological Approach. Ann. Surg. Oncol. 2015;22:2295–2301. doi: 10.1245/s10434-015-4471-x.
    1. Deppen S.A., Liu E., Blume J.D., Clanton J., Shi C., Jones-Jackson L.B., Lakhani V., Baum R.P., Berlin J., Smith G.T., et al. Safety and Efficacy of 68Ga-DOTATATE PET/CT for Diagnosis, Staging, and Treatment Management of Neuroendocrine Tumors. J. Nucl. Med. 2016;57:708–714. doi: 10.2967/jnumed.115.163865.
    1. Versari A., Camellini L., Carlinfante G., Frasoldati A., Nicoli F., Grassi E., Gallo C., Giunta F.P., Fraternali A., Salvo D., et al. Ga-68 DOTATOC PET, endoscopic ultrasonography, and multidetector CT in the diagnosis of duodenopancreatic neuroendocrine tumors: A single-centre retrospective study. Clin. Nucl. Med. 2010;35:321–328. doi: 10.1097/RLU.0b013e3181d6677c.
    1. Castellucci P., Pou Ucha J., Fuccio C., Rubello D., Ambrosini V., Montini G.C., Pettinato V., Malizia C., Lodi F., Fanti S. Incidence of increased 68Ga-DOTANOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J. Nucl. Med. 2011;52:886–890. doi: 10.2967/jnumed.111.088328.
    1. Partelli S., Rinzivillo M., Maurizi A., Panzuto F., Salgarello M., Polenta V., Delle Fave G., Falconi M. The role of combined Ga-DOTANOC and (18)FDG PET/CT in the management of patients with pancreatic neuroendocrine tumors. Neuroendocrinology. 2014;100:293–299. doi: 10.1159/000368609.
    1. Zhang P., Yu J., Li J., Shen L., Li N., Zhu H., Zhai S., Zhang Y., Yang Z., Lu M. Clinical and Prognostic Value of PET/CT Imaging with Combination of 68Ga-DOTATATE and 18F-FDG in Gastroenteropancreatic Neuroendocrine Neoplasms. Contrast Media Mol. Imaging. 2018;2018:2340389. doi: 10.1155/2018/2340389.
    1. Matsumoto T., Okabe H., Yamashita Y.I., Yusa T., Itoyama R., Nakao Y., Yamao T., Umzaki N., Tsukamoto M., Kitano Y., et al. Clinical role of fludeoxyglucose (18F) positron emission tomography/computed tomography (18F-FDG PET/CT) in patients with pancreatic neuroendocrine tumors. Surg. Today. 2019;49:21–26. doi: 10.1007/s00595-018-1703-2.
    1. Prasad V., Ambrosini V., Hommann M., Hoersch D., Fanti S., Baum R.P. Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur. J. Nucl. Med. Mol. Imaging. 2010;37:67–77. doi: 10.1007/s00259-009-1205-y.
    1. Basu S., Adnan A. Well-differentiated grade 3 neuroendocrine tumours and poorly differentiated grade 3 neuroendocrine carcinomas: Will dual tracer PET-computed tomography (68Ga-DOTATATE and FDG) play a pivotal role in differentiation and guiding management strategies? Nucl. Med. Commun. 2019;40:1086–1087. doi: 10.1097/MNM.0000000000001072.
    1. Grazzini G., Danti G., Cozzi D., Lanzetta M.M., Addeo G., Falchini M., Masserelli A., Pradella S., Miele V. Diagnostic imaging of gastrointestinal neuroendocrine tumours (GI-NETs): Relationship between MDCT features and 2010 WHO classification. Radiol. Med. 2019;124:94–102. doi: 10.1007/s11547-018-0946-8.
    1. Danti G., Addeo G., Cozzi D., Maggialetti N., Lanzetta M.M., Frezzetti G., Masserelli A., Pradella S., Giovagnoni A., Miele V. Relationship between diagnostic imaging features and prognostic outcomes in gastrointestinal stromal tumors (GIST) Acta Biomed. 2019;90:9–19. doi: 10.23750/abm.v90i5-S.8343.
    1. Grazzini G., Guerri S., Cozzi D., Danti G., Gasperoni S., Pradella S., Miele V. Gastrointestinal stromal tumors: Relationship between preoperative CT features and pathologic risk stratification. Tumori. 2021;23:300891621996447. doi: 10.1177/0300891621996447.
    1. Zamboni G.A., Ambrosetti M.C., Zivelonghi C., Lombardo F., Butturini G., Cingarlini S., Capelli P., Pozzi Mucelli R. Solid non-functioning endocrine tumors of the pancreas: Correlating computed tomography and pathology. HPB. 2017;19:986–991. doi: 10.1016/j.hpb.2017.06.013.
    1. Takumi K., Fukukura Y., Higashi M., Ideue J., Umanodan T., Hakamada H., Kanetsuki I., Yoshiura T. Pancreatic neuroendocrine tumors: Correlation between the contrast-enhanced computed tomography features and the pathological tumor grade. Eur. J. Radiol. 2015;84:1436–1443. doi: 10.1016/j.ejrad.2015.05.005.
    1. Gu D., Hu Y., Ding H., Wei J., Chen K., Liu H., Zeng M., Tian J. CT radiomics may predict the grade of pancreatic neuroendocrine tumors: A multicenter study. Eur. Radiol. 2019;29:6880–6890. doi: 10.1007/s00330-019-06176-x.
    1. Guo C.G., Ren S., Chen X., Wang Q.D., Xiao W.B., Zhang J.F., Duan S.F., Wang Z.Q. Pancreatic neuroendocrine tumor: Prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance. Cancer Manag. Res. 2019;11:1933–1944. doi: 10.2147/CMAR.S195376.
    1. Lotfalizadeh E., Ronot M., Wagner M., Cros J., Couvelard A., Vullierme M.P., Allaham W., Hentic O., Ruzniewski P., Vilgrain V. Prediction of pancreatic neuroendocrine tumour grade with MR imaging features: Added value of diffusion-weighted imaging. Eur. Radiol. 2017;27:1748–1759. doi: 10.1007/s00330-016-4539-4.
    1. De Robertis R., Maris B., Cardobi N., Tinazzi Martini P., Gobbo S., Capelli P., Ortolani S., Cingarlini S., Paiella S., Landoni L., et al. Can histogram analysis of MR images predict aggressiveness in pancreatic neuroendocrine tumors? Eur. Radiol. 2018;28:2582–2591. doi: 10.1007/s00330-017-5236-7.
    1. Zong R.L., Geng L., Wang X., Xie D. Diagnostic Performance of Apparent Diffusion Coefficient for Prediction of Grading of Pancreatic Neuroendocrine Tumors: A Systematic Review and Meta-analysis. Pancreas. 2019;48:151–160. doi: 10.1097/MPA.0000000000001212.
    1. Sun H.T., Zhang S.L., Liu K., Zhou J.J., Wang X.X., Shen T.T., Song X.H., Guo Y.L., Wang X.L. MRI-based nomogram estimates the risk of recurrence of primary nonmetastatic pancreatic neuroendocrine tumors after curative resection. J. Magn. Reson. Imaging. 2019;50:397–409. doi: 10.1002/jmri.26603.
    1. Ambrosini V., Campana D., Polverari G., Peterle C., Diodato S., Ricci C., Allegri V., Casadei R., Tomassetti P., Fanti S. Prognostic Value of 68Ga-DOTANOC PET/CT SUVmax in Patients with Neuroendocrine Tumors of the Pancreas. J. Nucl. Med. 2015;56:1843–1848. doi: 10.2967/jnumed.115.162719.
    1. Neri E., Miele V., Coppola F., Grassi R. Use of CT and artificial intelligence in suspected or COVID-19 positive patients: Statement of the Italian Society of Medical and Interventional Radiology. Radiol. Med. 2020;125:505–508. doi: 10.1007/s11547-020-01197-9.
    1. Coppola F., Faggioni L., Regge D., Giovagnoni A., Golfieri R., Bibbolino C., Miele V., Neri E., Grassi R. Artificial intelligence: Radiologists’ expectations and opinions gleaned from a nationwide online survey. Radiol. Med. 2021;126:63–71. doi: 10.1007/s11547-020-01205-y.
    1. Neri E., Coppola F., Miele V., Bibbolino C., Grassi R. Artificial intelligence: Who is responsible for the diagnosis? Radiol. Med. 2020;125:517–521. doi: 10.1007/s11547-020-01135-9.
    1. Grassi R., Miele V., Giovagnoni A. Artificial intelligence: A challenge for third millennium radiologist. Radiol. Med. 2019;124:241–242. doi: 10.1007/s11547-019-00990-5.
    1. Santone A., Brunese M.C., Donnarumma F., Guerriero P., Mercaldo F., Reginelli A., Miele V., Giovagnoni A., Brunese L. Radiomic features for prostate cancer grade detection through formal verification. Radiol. Med. 2021;126:688–697. doi: 10.1007/s11547-020-01314-8.
    1. Cusumano D., Meijer G., Lenkowicz J., Chiloiro G., Boldrini L., Masciocchi C., Dinapoli N., Gatta R., Casà C., Damiani A., et al. A field strength independent MR radiomics model to predict pathological complete response in locally advanced rectal cancer. Radiol. Med. 2021;126:421–429. doi: 10.1007/s11547-020-01266-z.
    1. Nazari M., Shiri I., Hajianfar G., Oveisi N., Abdollahi H., Deevband M.R., Oveisi M., Zaidi H. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Radiol. Med. 2020;125:754–762. doi: 10.1007/s11547-020-01169-z.
    1. Hu H.T., Shan Q.Y., Chen S.L., Li B., Feng S.T., Xu E.J., Li X., Long J.Y., Xie X.Y., Lu M.D., et al. CT-based radiomics for preoperative prediction of early recurrent hepatocellular carcinoma: Technical reproducibility of acquisition and scanners. Radiol. Med. 2020;125:697–705. doi: 10.1007/s11547-020-01174-2.
    1. Ding J., Xing Z., Jiang Z., Chen J., Pan L., Qiu J., Xing W. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Eur. J. Radiol. 2018;103:51–56. doi: 10.1016/j.ejrad.2018.04.013.
    1. Huang X., Cheng Z., Huang Y., Liang C., He L., Ma Z., Chen X., Wu X., Li Y., Liang C., et al. CT-based Radiomics Signature to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma. Acad. Radiol. 2018;25:1285–1297. doi: 10.1016/j.acra.2018.01.020.
    1. Tian Q., Yan L.F., Zhang X., Zhang X., Hu Y.C., Han Y., Liu Z.C., Nan H.Y., Sun Q., Sun Y.Z., et al. Radiomics strategy for glioma grading using texture features from multiparametric MRI. J. Magn. Reson. Imaging. 2018;48:1518–1528. doi: 10.1002/jmri.26010.
    1. Benedetti G., Mori M., Panzeri M.M., Barbera M., Palumbo D., Sini C., Muffatti F., Andreasi V., Steidler S., Doglioni C., et al. CT-derived radiomic features to discriminate histologic characteristics of pancreatic neuroendocrine tumors. Radiol. Med. 2021;126:745–760. doi: 10.1007/s11547-021-01333-z.
    1. Guo C., Zhuge X., Wang Z., Wang Q., Sun K., Feng Z., Chen X. Textural analysis on contrast-enhanced CT in pancreatic neuroendocrine neoplasms: Association with WHO grade. Abdom. Radiol. 2019;44:576–585. doi: 10.1007/s00261-018-1763-1.
    1. Liang W., Yang P., Huang R., Xu L., Wang J., Liu W., Zhang L., Wan D., Huang Q., Lu Y., et al. A Combined Nomogram Model to Preoperatively Predict Histologic Grade in Pancreatic Neuroendocrine Tumors. Clin. Cancer Res. 2019;25:584–594. doi: 10.1158/1078-0432.CCR-18-1305.
    1. Pereira J.A., Rosado E., Bali M., Metens T., Chao S.L. Pancreatic neuroendocrine tumors: Correlation between histogram analysis of apparent diffusion coefficient maps and tumor grade. Abdom. Imaging. 2015;40:3122–3128. doi: 10.1007/s00261-015-0524-7.

Source: PubMed

3
구독하다