The Effect of Electrical Stimulation on Nerve Regeneration Following Peripheral Nerve Injury

Luke Juckett, Tiam Mana Saffari, Benjamin Ormseth, Jenna-Lynn Senger, Amy M Moore, Luke Juckett, Tiam Mana Saffari, Benjamin Ormseth, Jenna-Lynn Senger, Amy M Moore

Abstract

Peripheral nerve injuries (PNI) are common and often result in lifelong disability. The peripheral nervous system has an inherent ability to regenerate following injury, yet complete functional recovery is rare. Despite advances in the diagnosis and repair of PNIs, many patients suffer from chronic pain, and sensory and motor dysfunction. One promising surgical adjunct is the application of intraoperative electrical stimulation (ES) to peripheral nerves. ES acts through second messenger cyclic AMP to augment the intrinsic molecular pathways of regeneration. Decades of animal studies have demonstrated that 20 Hz ES delivered post-surgically accelerates axonal outgrowth and end organ reinnervation. This work has been translated clinically in a series of randomized clinical trials, which suggest that ES can be used as an efficacious therapy to improve patient outcomes following PNIs. The aim of this review is to discuss the cellular physiology and the limitations of regeneration after peripheral nerve injuries. The proposed mechanisms of ES protocols and how they facilitate nerve regeneration depending on timing of administration are outlined. Finally, future directions of research that may provide new perspectives on the optimal delivery of ES following PNI are discussed.

Keywords: electrical stimulation; nerve regeneration; nerve repair; peripheral nerve.

Conflict of interest statement

A.M. Moore has a Research Collaboration with Checkpoint Surgical. No other conflict of interest, financial or otherwise, are declared by the authors.

Figures

Figure 1
Figure 1
Activated Schwann cells (SCs) and recruited macrophages phagocytose axonal and myelin debris following a nerve injury. Neurotrophic factors stimulate SCs to replicate and extend over arrays of extracellular matrix proteins to form the bands of Büngner, which guide the extending growth cone across the site of injury. Prolonged denervation can result in poor nerve regrowth and target scar formation. (Used with permission of Mayo Foundation for Medical Education and Research, all rights reserved.).
Figure 2
Figure 2
Electrical stimulation proximal to the injury site stimulates the upregulation of RAG through a calcium-dependent mechanism. Increased expression of BDNF and trkB drives increased expression of cAMP which activates CREB to maximize the pro-regenerative axon phenotype, stimulating axonal sprouting and neuron survival. BDNF = brain derived neurotrophic factor; cAMP = cyclic adenosine monophosphate; CREB = cAMP response element binding protein; trkB = tyrosine receptor kinase B; pKA = phosphokinase A; GAP-43 = growth-associated protein; MAPK = mitogen-activated protein kinase. Adapted from Zuo, K. J., Gordon, T., Chan, K. M., & Borschel, G. H. (2020). Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Experimental Neurology, 332, 113397.
Figure 3
Figure 3
Keane et al. investigated the interaction between perioperative lidocaine (3 mL of 2%) and 10 min of postoperative ES (20 Hz). Rats were randomized to receive (a) ES alone, (b) ES + pre-operative (PreOp) lidocaine, or (c) ES + post-operative (PostOp) lidocaine. Quantitative evaluation of histomorphometric parameters 21 days after tibial nerve transection and repair. Data was expressed as mean ± SD (n = 12/group). ** p < 0.01, * p < 0.05. Lido = lidocaine; SD = standard deviation; ES = electrical stimulation. Used with permission from SAGE publishing from Keane, G.C.; Marsh, E.B.; Hunter, D.A.; Schellhardt, L.; Walker, E.R.; Wood, M.D. Lidocaine Nerve Block Diminishes the Effects of Therapeutic Electrical Stimulation to Enhance Nerve Regeneration in Rats. Hand (NY) 2022.

References

    1. Javeed S., Faraji A., Dy C., Ray W., MacEwan M. Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. Interdiscip. Neurosurg. 2021;24:101117. doi: 10.1016/j.inat.2021.101117.
    1. Novak C.B., Anastakis D.J., Beaton D.E., Katz J. Patient-reported outcome after peripheral nerve injury. J. Hand Surg. Am. 2009;34:281–287. doi: 10.1016/j.jhsa.2008.11.017.
    1. Padovano W.M., Dengler J., Patterson M.M., Yee A., Snyder-Warwick A.K., Wood M.D., Moore A.M., Mackinnon S.E. Incidence of Nerve Injury After Extremity Trauma in the United States. Hand. 2022;17:615–623. doi: 10.1177/1558944720963895.
    1. Pestronk A., Drachman D.B., Griffin J.W. Effects of aging on nerve sprouting and regeneration. Exp. Neurol. 1980;70:65–82. doi: 10.1016/0014-4886(80)90006-0.
    1. Mietto B.S., Mostacada K., Martinez A.M. Neurotrauma and inflammation: CNS and PNS responses. Mediat. Inflamm. 2015;2015:251204. doi: 10.1155/2015/251204.
    1. Nguyen Q.T., Sanes J.R., Lichtman J.W. Pre-existing pathways promote precise projection patterns. Nat. Neurosci. 2002;5:861–867. doi: 10.1038/nn905.
    1. Bregeon F., Alliez J.R., Héry G., Marqueste T., Ravailhe S., Jammes Y. Motor and sensory re-innervation of the lung and heart after re-anastomosis of the cervical vagus nerve in rats. J. Physiol. 2007;581:1333–1340. doi: 10.1113/jphysiol.2007.131326.
    1. Ciaramitaro P., Mondelli M., Logullo F., Grimaldi S., Battiston B., Sard A., Scarinzi C., Migliaretti G., Faccani G., Cocito D., et al. Traumatic peripheral nerve injuries: Epidemiological findings, neuropathic pain and quality of life in 158 patients. J. Peripher. Nerv. Syst. 2010;15:120–127. doi: 10.1111/j.1529-8027.2010.00260.x.
    1. Ray W.Z., Mackinnon S.E. Management of nerve gaps: Autografts, allografts, nerve transfers, and end-to-side neurorrhaphy. Exp. Neurol. 2010;223:77–85. doi: 10.1016/j.expneurol.2009.03.031.
    1. Fu S.Y., Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: Prolonged axotomy. J. Neurosci. 1995;15:3876–3885. doi: 10.1523/JNEUROSCI.15-05-03876.1995.
    1. Fu S.Y., Gordon T. Contributing factors to poor functional recovery after delayed nerve repair: Prolonged denervation. J. Neurosci. 1995;15:3886–3895. doi: 10.1523/JNEUROSCI.15-05-03886.1995.
    1. Sunderland S. Rate of regeneration in human peripheral nerves; analysis of the interval between injury and onset of recovery. Arch. Neurol. Psychiatry. 1947;58:251–295. doi: 10.1001/archneurpsyc.1947.02300320002001.
    1. Gutmann E., Guttman L., Medawar P.B., Young J.Z. The rate of regeneration of nerve. J. Exp. Biol. 1942;19:14–44. doi: 10.1242/jeb.19.1.14.
    1. Seddon H.J., Medawar P.B., Smith H. Rate of regeneration of peripheral nerves in man. J. Physiol. 1943;102:191–215. doi: 10.1113/jphysiol.1943.sp004027.
    1. Huckhagel T., Nüchtern J., Regelsberger J., Lefering R., DGU T. Nerve injury in severe trauma with upper extremity involvement: Evaluation of 49,382 patients from the TraumaRegister DGU® between 2002 and 2015. Scand. J. Trauma Resusc. Emerg. Med. 2018;26:76. doi: 10.1186/s13049-018-0546-6.
    1. Zhang S., Huang M., Zhi J., Wu S., Wang Y., Pei F. Research Hotspots and Trends of Peripheral Nerve Injuries Based on Web of Science From 2017 to 2021: A Bibliometric Analysis. Front. Neurol. 2022;13:872261. doi: 10.3389/fneur.2022.872261.
    1. Al-Majed A.A., Neumann C.M., Brushart T.M., Gordon T. Brief Electrical Stimulation Promotes the Speed and Accuracy of Motor Axonal Regeneration. J. Neurosci. 2000;20:2602–2608. doi: 10.1523/JNEUROSCI.20-07-02602.2000.
    1. Geremia N.M., Gordon T., Brushart T.M., Al-Majed A.A., Verge V.M.K. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 2007;205:347–359. doi: 10.1016/j.expneurol.2007.01.040.
    1. Elzinga K., Tyreman N., Ladak A., Savaryn B., Olson J., Gordon T. Brief electrical stimulation improves nerve regeneration after delayed repair in Sprague Dawley rats. Exp. Neurol. 2015;269:142–153. doi: 10.1016/j.expneurol.2015.03.022.
    1. Brushart T.M., Hoffman P.N., Royall R.M., Murinson B.B., Witzel C., Gordon T. Electrical Stimulation Promotes Motoneuron Regeneration without Increasing Its Speed or Conditioning the Neuron. J. Neurosci. 2002;22:6631–6638. doi: 10.1523/JNEUROSCI.22-15-06631.2002.
    1. Al-Majed A.A., Brushart T.M., Gordon T. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 2000;12:4381–4390. doi: 10.1046/j.1460-9568.2000.01341.x.
    1. Wenjin W., Wenchao L., Hao Z., Feng L., Yan W., Wodong S., Xianqun F., Wenlong D. Electrical stimulation promotes BDNF expression in spinal cord neurons through Ca(2+)- and Erk-dependent signaling pathways. Cell Mol. Neurobiol. 2011;31:459–467. doi: 10.1007/s10571-010-9639-0.
    1. Ju C., Park E., Kim T., Kang M., Lee K.S., Park S.M. Effectiveness of electrical stimulation on nerve regeneration after crush injury: Comparison between invasive and non-invasive stimulation. PLoS ONE. 2020;15:e0233531. doi: 10.1371/journal.pone.0233531.
    1. Witzel C., Brushart T.M., Koulaxouzidis G., Infanger M. Electrical Nerve Stimulation Enhances Perilesional Branching after Nerve Grafting but Fails to Increase Regeneration Speed in a Murine Model. J. Reconstr. Microsurg. 2016;32:491–497. doi: 10.1055/s-0036-1579540.
    1. Keane G.C., Pan D., Roh J., Larson E.L., Schellhardt L., Hunter D.A., Snyder-Warwick A.K., Moore A.M., Mackinnon S.E., Wood M.D. The Effects of Intraoperative Electrical Stimulation on Regeneration and Recovery After Nerve Isograft Repair in a Rat Model. Hand. 2022;17:540–548. doi: 10.1177/1558944720939200.
    1. Knott E.P., Assi M., Pearse D.D. Cyclic AMP signaling: A molecular determinant of peripheral nerve regeneration. Biomed. Res. Int. 2014;2014:651625. doi: 10.1155/2014/651625.
    1. Menorca R.M., Fussell T.S., Elfar J.C. Nerve physiology: Mechanisms of injury and recovery. Hand Clin. 2013;29:317–330. doi: 10.1016/j.hcl.2013.04.002.
    1. Gumy L.F., Yeo G.S., Tung Y.C., Zivraj K.H., Willis D., Coppola G., Lam B.Y., Twiss J.L., Holt C.E., Fawcett J.W. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA. 2011;17:85–98. doi: 10.1261/rna.2386111.
    1. Bosse F., Hasenpusch-Theil K., Küry P., Müller H.W. Gene expression profiling reveals that peripheral nerve regeneration is a consequence of both novel injury-dependent and reactivated developmental processes. J. Neurochem. 2006;96:1441–1457. doi: 10.1111/j.1471-4159.2005.03635.x.
    1. Bradke F., Fawcett J.W., Spira M.E. Assembly of a new growth cone after axotomy: The precursor to axon regeneration. Nat. Rev. Neurosci. 2012;13:183–193. doi: 10.1038/nrn3176.
    1. Waller A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Philos. Trans. R. Soc. Lond. 1850;140:423–429. doi: 10.1098/rstl.1850.0021.
    1. Gaudet A.D., Popovich P.G., Ramer M.S. Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflamm. 2011;8:110. doi: 10.1186/1742-2094-8-110.
    1. Jessen K.R., Mirsky R. The repair Schwann cell and its function in regenerating nerves. J. Physiol. 2016;594:3521–3531. doi: 10.1113/JP270874.
    1. Brück W. The role of macrophages in Wallerian degeneration. Brain Pathol. 1997;7:741–752. doi: 10.1111/j.1750-3639.1997.tb01060.x.
    1. Gordon T., English A.W. Strategies to promote peripheral nerve regeneration: Electrical stimulation and/or exercise. Eur. J. Neurosci. 2016;43:336–350. doi: 10.1111/ejn.13005.
    1. Arthur-Farraj P.J., Latouche M., Wilton D.K., Quintes S., Chabrol E., Banerjee A., Woodhoo A., Jenkins B., Rahman M., Turmaine M., et al. c-Jun reprograms Schwann cells of injured nerves to generate a repair cell essential for regeneration. Neuron. 2012;75:633–647. doi: 10.1016/j.neuron.2012.06.021.
    1. Gomez-Sanchez J.A., Pilch K.S., van der Lans M., Fazal S.V., Benito C., Wagstaff L.J., Mirsky R., Jessen K.R. After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. J. Neurosci. 2017;37:9086–9099. doi: 10.1523/JNEUROSCI.1453-17.2017.
    1. Höke A., Redett R., Hameed H., Jari R., Zhou C., Li Z.B., Griffin J.W., Brushart T.M. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. J. Neurosci. 2006;26:9646–9655. doi: 10.1523/JNEUROSCI.1620-06.2006.
    1. Jessen K.R., Arthur-Farraj P. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves. Glia. 2019;67:421–437. doi: 10.1002/glia.23532.
    1. Namgung U. The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs. 2014;200:6–12. doi: 10.1159/000370324.
    1. Höke A., Gordon T., Zochodne D.W., Sulaiman O.A. A decline in glial cell-line-derived neurotrophic factor expression is associated with impaired regeneration after long-term Schwann cell denervation. Exp. Neurol. 2002;173:77–85. doi: 10.1006/exnr.2001.7826.
    1. Witzel C., Rohde C., Brushart T.M. Pathway sampling by regenerating peripheral axons. J. Comp. Neurol. 2005;485:183–190. doi: 10.1002/cne.20436.
    1. McGregor C.E., English A.W. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front. Cell Neurosci. 2018;12:522. doi: 10.3389/fncel.2018.00522.
    1. Gordon T., You S., Cassar S.L., Tetzlaff W. Reduced expression of regeneration associated genes in chronically axotomized facial motoneurons. Exp. Neurol. 2015;264:26–32. doi: 10.1016/j.expneurol.2014.10.022.
    1. Eggers R., Tannemaat M.R., Ehlert E.M., Verhaagen J. A spatio-temporal analysis of motoneuron survival, axonal regeneration and neurotrophic factor expression after lumbar ventral root avulsion and implantation. Exp. Neurol. 2010;223:207–220. doi: 10.1016/j.expneurol.2009.07.021.
    1. Brushart T.M., Aspalter M., Griffin J.W., Redett R., Hameed H., Zhou C., Wright M., Vyas A., Höke A. Schwann cell phenotype is regulated by axon modality and cent.t.tral-peripheral location, and persists in vitro. Exp. Neurol. 2013;247:272–281. doi: 10.1016/j.expneurol.2013.05.007.
    1. Batt J., Bain J., Goncalves J., Michalski B., Plant P., Fahnestock M., Woodgett J. Differential gene expression profiling of short and long term denervated muscle. FASEB J. 2006;20:115–117. doi: 10.1096/fj.04-3640fje.
    1. Liu F., Tang W., Chen D., Li M., Gao Y., Zheng H., Chen S. Expression of TGF-β1 and CTGF Is Associated with Fibrosis of Denervated Sternocleidomastoid Muscles in Mice. Tohoku J. Exp. Med. 2016;238:49–56. doi: 10.1620/tjem.238.49.
    1. Moore A.M., Wagner I.J., Fox I.K. Principles of nerve repair in complex wounds of the upper extremity. Semin Plast Surg. 2015;29:40–47. doi: 10.1055/s-0035-1544169.
    1. Lee S.K., Wolfe S.W. Peripheral nerve injury and repair. J. Am. Acad Orthop. Surg. 2000;8:243–252. doi: 10.5435/00124635-200007000-00005.
    1. de Ruiter G.C., Malessy M.J., Alaid A.O., Spinner R.J., Engelstad J.K., Sorenson E.J., Kaufman K.R., Dyck P.J., Windebank A.J. Misdirection of regenerating motor axons after nerve injury and repair in the rat sciatic nerve model. Exp. Neurol. 2008;211:339–350. doi: 10.1016/j.expneurol.2007.12.023.
    1. Ingvar S. Reaction of cells to the galvanic current in tissue cultures. Proc. Soc. Exp. Biol. Med. 1920;17:198–199. doi: 10.3181/00379727-17-105.
    1. Zuo K.J., Gordon T., Chan K.M., Borschel G.H. Electrical stimulation to enhance peripheral nerve regeneration: Update in molecular investigations and clinical translation. Exp. Neurol. 2020;332:113397. doi: 10.1016/j.expneurol.2020.113397.
    1. Hyden H. Protein metabolism in the nerve cell during growth and function. Acta Physiol. Scand. 1943;6:88–97.
    1. Barr M.L., Bertram E.G. The behaviour of nuclear structures during depletion and restoration of Nissl material in motor neurons. J. Anat. 1951;85:171–181.
    1. Hinkle L., McCaig C.D., Robinson K.R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 1981;314:121–135. doi: 10.1113/jphysiol.1981.sp013695.
    1. McCaig C.D. Nerve branching is induced and oriented by a small applied electric field. J. Cell Sci. 1990;95:605–615. doi: 10.1242/jcs.95.4.605.
    1. Jaffe L.F., Poo M.-M. Neurites grow faster towards the cathode than the anode in a steady field. J. Exp. Zool. 1979;209:115–127. doi: 10.1002/jez.1402090114.
    1. Hoffman H., Binet F.E. Acceleration and retardation of the process of axon-sprouting in partially denervated muscles. Aust. J. Exp. Biol. Med. Sci. 1952;30:541–566. doi: 10.1038/icb.1952.52.
    1. Wilson D.H., Jagadeesh P. Experimental regeneration in peripheral nerves and the spinal cord in laboratory animals exposed to a pulsed electromagnetic field. Spinal. Cord. 1976;14:12–20. doi: 10.1038/sc.1976.2.
    1. Nix W.A., Hopf H.C. Electrical stimulation of regenerating nerve and its effect on motor recovery. Brain Res. 1983;272:21–25. doi: 10.1016/0006-8993(83)90360-8.
    1. Pockett S., Gavin R.M. Acceleration of peripheral nerve regeneration after crush injury in rat. Neurosci. Lett. 1985;59:221–224. doi: 10.1016/0304-3940(85)90203-4.
    1. Wujek J.R., Lasek R.J. Correlation of axonal regeneration and slow component B in two branches of a single axon. J. Neurosci. 1983;3:243–251. doi: 10.1523/JNEUROSCI.03-02-00243.1983.
    1. Roh J., Schellhardt L., Keane G.C., Hunter D.A., Moore A.M., Snyder-Warwick A.K., Mackinnon S.E., Wood M.D. Short-Duration, Pulsatile, Electrical Stimulation Therapy Accelerates Axon Regeneration and Recovery following Tibial Nerve Injury and Repair in Rats. Plast. Reconstr. Surg. 2022;149:681e–690e. doi: 10.1097/PRS.0000000000008924.
    1. Mar F.M., Bonni A., Sousa M.M. Cell intrinsic control of axon regeneration. EMBO Rep. 2014;15:254–263. doi: 10.1002/embr.201337723.
    1. Ghosh-Roy A., Wu Z., Goncharov A., Jin Y., Chisholm A.D. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 2010;30:3175–3183. doi: 10.1523/JNEUROSCI.5464-09.2010.
    1. Al-Majed A.A., Tam S.L., Gordon T. Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol. Neurobiol. 2004;24:379–402. doi: 10.1023/B:CEMN.0000022770.66463.f7.
    1. Soppet D., Escandon E., Maragos J., Middlemas D.S., Reid S.W., Blair J., Burton L.E., Stanton B.R., Kaplan D.R., Hunter T., et al. The neurotrophic factors brain-derived neurotrophic factor and neurotrophin-3 are ligands for the trkB tyrosine kinase receptor. Cell. 1991;65:895–903. doi: 10.1016/0092-8674(91)90396-G.
    1. Yan X., Liu J., Huang J., Huang M., He F., Ye Z., Xiao W., Hu X., Luo Z. Electrical stimulation induces calcium-dependent neurite outgrowth and immediate early genes expressions of dorsal root ganglion neurons. Neurochem. Res. 2014;39:129–141. doi: 10.1007/s11064-013-1197-7.
    1. Richner M., Ulrichsen M., Elmegaard S.L., Dieu R., Pallesen L.T., Vaegter C.B. Peripheral nerve injury modulates neurotrophin signaling in the peripheral and central nervous system. Mol. Neurobiol. 2014;50:945–970. doi: 10.1007/s12035-014-8706-9.
    1. Boyd J.G., Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. Mol. Neurobiol. 2003;27:277–324. doi: 10.1385/MN:27:3:277.
    1. English A.W., Schwartz G., Meador W., Sabatier M.J., Mulligan A. Electrical stimulation promotes peripheral axon regeneration by enhanced neuronal neurotrophin signaling. Dev. Neurobiol. 2007;67:158–172. doi: 10.1002/dneu.20339.
    1. Ming G., Henley J., Tessier-Lavigne M., Song H., Poo M. Electrical activity modulates growth cone guidance by diffusible factors. Neuron. 2001;29:441–452. doi: 10.1016/S0896-6273(01)00217-3.
    1. Neumann S., Bradke F., Tessier-Lavigne M., Basbaum A.I. Regeneration of sensory axons within the injured spinal cord induced by intraganglionic cAMP elevation. Neuron. 2002;34:885–893. doi: 10.1016/S0896-6273(02)00702-X.
    1. Udina E., Furey M., Busch S., Silver J., Gordon T., Fouad K. Electrical stimulation of intact peripheral sensory axons in rats promotes outgrowth of their central projections. Exp. Neurol. 2008;210:238–247. doi: 10.1016/j.expneurol.2007.11.007.
    1. Han P.J., Shukla S., Subramanian P.S., Hoffman P.N. Cyclic AMP elevates tubulin expression without increasing intrinsic axon growth capacity. Exp. Neurol. 2004;189:293–302. doi: 10.1016/j.expneurol.2004.03.010.
    1. Kawamura K., Kano Y. Electrical stimulation induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway. Neurosci. Lett. 2019;698:81–84. doi: 10.1016/j.neulet.2019.01.015.
    1. Singh B., Krishnan A., Micu I., Koshy K., Singh V., Martinez J.A., Koshy D., Xu F., Chandrasekhar A., Dalton C., et al. Peripheral neuron plasticity is enhanced by brief electrical stimulation and overrides attenuated regrowth in experimental diabetes. Neurobiol. Dis. 2015;83:134–151. doi: 10.1016/j.nbd.2015.08.009.
    1. Christie K.J., Webber C.A., Martinez J.A., Singh B., Zochodne D.W. PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J. Neurosci. 2010;30:9306–9315. doi: 10.1523/JNEUROSCI.6271-09.2010.
    1. Huang J., Ye Z., Hu X., Lu L., Luo Z. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia. 2010;58:622–631. doi: 10.1002/glia.20951.
    1. Chang Y.J., Hsu C.M., Lin C.H., Lu M.S., Chen L. Electrical stimulation promotes nerve growth factor-induced neurite outgrowth and signaling. Biochim. Biophys. Acta. 2013;1830:4130–4136. doi: 10.1016/j.bbagen.2013.04.007.
    1. Gordon T. Neurotrophic factor expression in denervated motor and sensory Schwann cells: Relevance to specificity of peripheral nerve regeneration. Exp. Neurol. 2014;254:99–108. doi: 10.1016/j.expneurol.2014.01.012.
    1. Brushart T.M., Jari R., Verge V., Rohde C., Gordon T. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 2005;194:221–229. doi: 10.1016/j.expneurol.2005.02.007.
    1. Burnett M.G., Zager E.L. Pathophysiology of peripheral nerve injury: A brief review. Neurosurg. Focus. 2004;16:E1. doi: 10.3171/foc.2004.16.5.2.
    1. Huang J., Zhang Y., Lu L., Hu X., Luo Z. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats. Eur. J. Neurosci. 2013;38:3691–3701. doi: 10.1111/ejn.12370.
    1. Hoben G.M., Ee X., Schellhardt L., Yan Y., Hunter D.A., Moore A.M., Snyder-Warwick A.K., Stewart S., Mackinnon S.E., Wood M.D. Increasing Nerve Autograft Length Increases Senescence and Reduces Regeneration. Plast. Reconstr. Surg. 2018;142:952–961. doi: 10.1097/PRS.0000000000004759.
    1. Zuo K.J., Shafa G., Antonyshyn K., Chan K., Gordon T., Borschel G.H. A single session of brief electrical stimulation enhances axon regeneration through nerve autografts. Exp. Neurol. 2020;323:113074. doi: 10.1016/j.expneurol.2019.113074.
    1. Sayanagi J., Acevedo-Cintrón J.A., Pan D., Schellhardt L., Hunter D.A., Snyder-Warwick A.K., Mackinnon S.E., Wood M.D. Brief Electrical Stimulation Accelerates Axon Regeneration and Promotes Recovery Following Nerve Transection and Repair in Mice. J. Bone Jt. Surg. Am. 2021;103:e80. doi: 10.2106/JBJS.20.01965.
    1. Senger J.B., Verge V.M.K., Chan K.M., Webber C.A. The nerve conditioning lesion: A strategy to enhance nerve regeneration. Ann. Neurol. 2018;83:691–702. doi: 10.1002/ana.25209.
    1. Senger J.L.B., Verge V.M.K., Macandili H.S.J., Olson J.L., Chan K.M., Webber C.A. Electrical stimulation as a conditioning strategy for promoting and accelerating peripheral nerve regeneration. Exp. Neurol. 2018;302:75–84. doi: 10.1016/j.expneurol.2017.12.013.
    1. McQuarrie I.G. Effect of conditioning lesion on axonal sprout formation at nodes of Ranvier. J. Comp. Neurol. 1985;231:239–249. doi: 10.1002/cne.902310211.
    1. Richardson P.M., Verge V.M. Axonal regeneration in dorsal spinal roots is accelerated by peripheral axonal transection. Brain Res. 1987;411:406–408. doi: 10.1016/0006-8993(87)91096-1.
    1. Hoffman P.N. A conditioning lesion induces changes in gene expression and axonal transport that enhance regeneration by increasing the intrinsic growth state of axons. Exp. Neurol. 2010;223:11–18. doi: 10.1016/j.expneurol.2009.09.006.
    1. Senger J.L., Chan K.M., Macandili H., Chan A.W.M., Verge V.M.K., Jones K.E., Webber C.A. Conditioning electrical stimulation promotes functional nerve regeneration. Exp. Neurol. 2019;315:60–71. doi: 10.1016/j.expneurol.2019.02.001.
    1. Salegio E.A., Pollard A.N., Smith M., Zhou X.F. Macrophage presence is essential for the regeneration of ascending afferent fibres following a conditioning sciatic nerve lesion in adult rats. BMC Neurosci. 2011;12:11. doi: 10.1186/1471-2202-12-11.
    1. Niemi J.P., DeFrancesco-Lisowitz A., Roldán-Hernández L., Lindborg J.A., Mandell D., Zigmond R.E. A critical role for macrophages near axotomized neuronal cell bodies in stimulating nerve regeneration. J. Neurosci. 2013;33:16236–16248. doi: 10.1523/JNEUROSCI.3319-12.2013.
    1. Kwon M.J., Shin H.Y., Cui Y., Kim H., Thi A.H., Choi J.Y., Kim E.Y., Hwang D.H., Kim B.G. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury. J. Neurosci. 2015;35:15934–15947. doi: 10.1523/JNEUROSCI.1924-15.2015.
    1. Senger J.B., Rabey K.N., Morhart M.J., Chan K.M., Webber C.A. Conditioning Electrical Stimulation Accelerates Regeneration in Nerve Transfers. Ann. Neurol. 2020;88:363–374. doi: 10.1002/ana.25796.
    1. Webber C., Acton L., Chan K.M., Senger J.-L. Determining the mechanism through which conditioning electrical stimulation promotes nerve regeneration; Proceedings of the American Society of Peripheral Nerve Conference; Virtual Meeting. 15–22 January 2021.
    1. Senger J.B., Chan A.W.M., Chan K.M., Kwan-Wong T., Acton L., Olson J., Webber C.A. Conditioning Electrical Stimulation Is Superior to Postoperative Electrical Stimulation in Enhanced Regeneration and Functional Recovery Following Nerve Graft Repair. Neurorehabil. Neural Repair. 2020;34:299–308. doi: 10.1177/1545968320905801.
    1. Senger J.B., Rabey K.N., Acton L., Lin Y.S., Lingrell S., Chan K.M., Webber C.A. Recovering the regenerative potential in chronically injured nerves by using conditioning electrical stimulation. J. Neurosurg. 2021;136:1442–1454. doi: 10.3171/2021.4.JNS21398.
    1. Chan M. The Effect of Pre-Operative Electrical Stimulation on Peripheral Nerve Regeneration. [(accessed on 7 September 2022)]; Available online: .
    1. Chan M. Conditioning Electrical Stimulation to Improve Outcomes in Carpal Tunnel Syndrome. [(accessed on 23 November 2022)]; Available online: .
    1. Chan M. Conditioning Electrical Stimulation to Improve Outcomes in Cubital Tunnel Syndrome. [(accessed on 23 November 2022)]; Available online: .
    1. Keane G.C., Marsh E.B., Hunter D.A., Schellhardt L., Walker E.R., Wood M.D. Lidocaine Nerve Block Diminishes the Effects of Therapeutic Electrical Stimulation to Enhance Nerve Regeneration in Rats. Hand. 2022 doi: 10.1177/15589447221093668.
    1. Gordon T., Amirjani N., Edwards D.C., Chan K.M. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp. Neurol. 2010;223:192–202. doi: 10.1016/j.expneurol.2009.09.020.
    1. Wong J.N., Olson J.L., Morhart M.J., Chan K.M. Electrical stimulation enhances sensory recovery: A randomized controlled trial. Ann. Neurol. 2015;77:996–1006. doi: 10.1002/ana.24397.
    1. Barber B., Seikaly H., Ming Chan K., Beaudry R., Rychlik S., Olson J., Curran M., Dziegielewski P., Biron V., Harris J., et al. Intraoperative Brief Electrical Stimulation of the Spinal Accessory Nerve (BEST SPIN) for prevention of shoulder dysfunction after oncologic neck dissection: A double-blinded, randomized controlled trial. J. Otolaryngol. Head Neck. Surg. 2018;47:7. doi: 10.1186/s40463-017-0244-9.
    1. Power H.A., Morhart M.J., Olson J.L., Chan K.M. Postsurgical Electrical Stimulation Enhances Recovery Following Surgery for Severe Cubital Tunnel Syndrome: A Double-Blind Randomized Controlled Trial. Neurosurgery. 2020;86:769–777. doi: 10.1093/neuros/nyz322.
    1. Jain A., Dunlop R., Hems T., Tang J.B. Outcomes of surgical repair of a single digital nerve in adults. J. Hand Surg. Eur. Vol. 2019;44:560–565. doi: 10.1177/1753193419846761.
    1. Khedr E.M., Fawi G., Allah Abbas M.A., El-Fetoh N.A., Zaki A.F., Gamea A. Prevalence of Common Types of Compression Neuropathies in Qena Governorate/Egypt: A Population-Based Survey. Neuroepidemiology. 2016;46:253–260. doi: 10.1159/000444641.
    1. Chan M. Electrical Stimulation to Enhance Peripheral Nerve Regeneration. [(accessed on 7 September 2022)]; Available online: .
    1. Davidge K., Zucker R., Borschel G. Electrical Stimulation to Improve Recovery after Peripheral Nerve Injury. [(accessed on 7 September 2022)]; Available online: .
    1. Moore A.M. Promoting Healing of Nerves through Electrical Stimulation (PHONES) [(accessed on 7 September 2022)]; Available online: .
    1. Checkpoint Surgical Receives FDA Breakthrough Designation for Nerve Regeneration Device. [(accessed on 10 September 2022)]. Available online:
    1. Coroneos C. Feasibility Study of a Temporary Peripheral Nerve Stimulator. [(accessed on 7 September 2022)]; Available online: .
    1. Koo J., MacEwan M.R., Kang S.K., Won S.M., Stephen M., Gamble P., Xie Z., Yan Y., Chen Y.Y., Shin J., et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018;24:1830–1836. doi: 10.1038/s41591-018-0196-2.
    1. Wang L., Lu C., Yang S., Sun P., Wang Y., Guan Y., Liu S., Cheng D., Meng H., Wang Q., et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 2020;6:eabc6686. doi: 10.1126/sciadv.abc6686.

Source: PubMed

3
구독하다