Effects of Botulinum Toxin Type A on the Nociceptive and Lemniscal Somatosensory Systems in Chronic Migraine: An Electrophysiological Study

Gabriele Sebastianelli, Francesco Casillo, Antonio Di Renzo, Chiara Abagnale, Ettore Cioffi, Vincenzo Parisi, Cherubino Di Lorenzo, Mariano Serrao, Francesco Pierelli, Jean Schoenen, Gianluca Coppola, Gabriele Sebastianelli, Francesco Casillo, Antonio Di Renzo, Chiara Abagnale, Ettore Cioffi, Vincenzo Parisi, Cherubino Di Lorenzo, Mariano Serrao, Francesco Pierelli, Jean Schoenen, Gianluca Coppola

Abstract

(1) Background: OnabotulinumtoxinA (BoNT-A) is a commonly used prophylactic treatment for chronic migraine (CM). Although randomized placebo studies have shown its clinical efficacy, the mechanisms by which it exerts its therapeutic effect are still incompletely understood and debated. (2) Methods: We studied in 15 CM patients the cephalic and extracephalic nociceptive and lemniscal sensory systems using electrophysiological techniques before and 1 and 3 months after one session of pericranial BoNT-A injections according to the PREEMPT protocol. We recorded the nociceptive blink reflex (nBR), the trigemino-cervical reflex (nTCR), the pain-related cortical evoked potential (PREP), and the upper limb somatosensory evoked potential (SSEP). (3) Results: Three months after a single session of prophylactic therapy with BoNT-A in CM patients, we found (a) an increase in the homolateral and contralateral nBR AUC, (b) an enhancement of the contralateral nBR AUC habituation slope and the nTCR habituation slope, (c) a decrease in PREP N-P 1st and 2nd amplitude block, and (d) no effect on SSEPs. (4) Conclusions: Our study provides electrophysiological evidence for the ability of a single session of BoNT-A injections to exert a neuromodulatory effect at the level of trigeminal system through a reduction in input from meningeal and other trigeminovascular nociceptors. Moreover, by reducing activity in cortical pain processing areas, BoNT-A restores normal functioning of the descending pain modulation systems.

Keywords: botulinum toxin type A; central sensitization; lemniscal system; migraine; pain; peripheral sensitization; trigemino-cervical complex.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
1st block amplitudes and habituation slopes of the ipsi- and contralateral nociceptive blink reflex (nBR) and of the nociceptive trigemino-cervical reflex (nTCR) before (T0), 1 month (T1) and 3 months (T3) after the BoNTA injections. Means ± standard error of means. * = p < 0.05 vs. T0.
Figure 2
Figure 2
1st block amplitudes and habituation slopes of the trigeminal pain-related cortical evoked potential (PREP) and the upper limb somatosensory evoked cortical potential (SSEP) before (T0), 1 month (T1) and 3 months (T3) after the BoNTA injections. Means ± standard error of means. * = p < 0.05 vs. T0.
Figure 3
Figure 3
Flow chart of the study’s visits and recording sessions. Chronic migraine patients were recorded just before (T0), 1 month (T1) and 3 months (T3) after one session of BoNT-A injections. The nociceptive trigeminal system was tested through the recording of nociceptive blink reflex (1), trigemino-cervical reflex (2), and pain-related evoked potentials (3), during the percutaneous electrical stimulation of the innervation territory of the supraorbital nerve at the forehead. The non-painful lemniscal sensory systems were investigated through somatosensory evoked potentials (4) elicited by electrically stimulating the right median nerve at the wrist (Created with BioRender.com, accessed on 23 December 2022).

References

    1. D’amico D., Usai S., Grazzi L., Rigamonti A., Solari A., Leone M., Bussone G. Quality of life and disability in primary chronic daily headaches. Neurol. Sci. 2003;24((Suppl. 2)):S97–S100. doi: 10.1007/s100720300052.
    1. Blumenfeld A.M., Varon S.F., Wilcox T.K., Buse D.C., Kawata A.K., Manack A., Goadsby P., Lipton R.B. Disability, HRQoL and resource use among chronic and episodic migraineurs: Results from the International Burden of Migraine Study (IBMS) Cephalalgia. 2010;31:301–315. doi: 10.1177/0333102410381145.
    1. Buse D.C., Manack A.N., Fanning K.M., Serrano D., Reed M.L., Turkel C.C., Lipton R.B. Chronic Migraine Prevalence, Disability, and Sociodemographic Factors: Results From the American Migraine Prevalence and Prevention Study. Headache. 2012;52:1456–1470. doi: 10.1111/j.1526-4610.2012.02223.x.
    1. Munakata J., Hazard E., Serrano D., Klingman D., Rupnow M.F., Tierce J., Reed M., Lipton R.B. Economic Burden of Transformed Migraine: Results From the American Migraine Prevalence and Prevention (AMPP) Study. Headache. 2009;49:498–508. doi: 10.1111/j.1526-4610.2009.01369.x.
    1. Berra E., Sances G., De Icco R., Avenali M., Berlangieri M., De Paoli I., Bolla M., Allena M., Ghiotto N., Guaschino E., et al. Cost of Chronic and Episodic Migraine: A pilot study from a tertiary headache centre in northern Italy. J. Headache Pain. 2015;16:1–8. doi: 10.1186/s10194-015-0532-6.
    1. Linde M., Gustavsson A., Stovner L.J., Steiner T.J., Barré J., Katsarava Z., Lainez J.M., Lampl C., Lantéri-Minet M., Rastenyte D., et al. The cost of headache disorders in Europe: The Eurolight project. Eur. J. Neurol. 2011;19:703–711. doi: 10.1111/j.1468-1331.2011.03612.x.
    1. Straube A., Pfaffenrath V., Ladwig K.-H., Meisinger C., Hoffmann W., Fendrich K., Vennemann M., Berger K. Prevalence of chronic migraine and medication overuse headache in Germany—The German DMKG headache study. Cephalalgia. 2009;30:207–213. doi: 10.1111/j.1468-2982.2009.01906.x.
    1. Scher A.I., Stewart W.F., Liberman J., Lipton R.B. Prevalence of Frequent Headache in a Population Sample. Headache. 1998;38:497–506. doi: 10.1046/j.1526-4610.1998.3807497.x.
    1. Katsarava Z., Schneeweiss S., Kurth T., Kroener U., Fritsche G., Eikermann A., Diener H.-C., Limmroth V. Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology. 2004;62:788–790. doi: 10.1212/01.WNL.0000113747.18760.D2.
    1. Scher I.A., Stewart F.W., Ricci A.J., Lipton B.R. Factors associated with the onset and remission of chronic daily headache in a population-based study. Pain. 2003;106:81–89. doi: 10.1016/S0304-3959(03)00293-8.
    1. May A., Schulte A.M.L.H. Chronic migraine: Risk factors, mechanisms and treatment. Nat. Rev. Neurol. 2016;12:455–464. doi: 10.1038/nrneurol.2016.93.
    1. Jabbari B. Botulinum neurotoxins in the treatment of refractory pain. Nat. Clin. Pract. Neurol. 2008;4:676–685. doi: 10.1038/ncpneuro0948.
    1. Aurora S.K., Winner P., Freeman M.C., Spierings E.L., Heiring J.O., DeGryse R.E., Turkel C.C. OnabotulinumtoxinA for treatment of chronic migraine: Pooled analyses of the 56-Week PREEMPT clinical program. Headache. 2011;51:1358–1373. doi: 10.1111/j.1526-4610.2011.01990.x.
    1. Aoki K. Review of a Proposed Mechanism for the Antinociceptive Action of Botulinum Toxin Type A. Neurotoxicology. 2005;26:785–793. doi: 10.1016/j.neuro.2005.01.017.
    1. Cui M., Khanijou S., Rubino J., Aoki K.R. Subcutaneous administration of botulinum toxin A reduces formalin-induced pain. Pain. 2004;107:125–133. doi: 10.1016/j.pain.2003.10.008.
    1. Durham P.L., Cady R. Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: Implications for migraine therapy. Headache. 2004;44:35–42. doi: 10.1111/j.1526-4610.2004.04007.x.
    1. Purkiss J., Welch M., Doward S., Foster K. Capsaicin-stimulated release of substance P from cultured dorsal root ganglion neurons: Involvement of two distinct mechanisms. Biochem. Pharmacol. 2000;59:1403–1406. doi: 10.1016/S0006-2952(00)00260-4.
    1. Welch M.J., Purkiss J.R., Foster K.A. Sensitivity of embryonic rat dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon. 1999;38:245–258. doi: 10.1016/S0041-0101(99)00153-1.
    1. Ferrandiz-Huertas C., Mathivanan S., Wolf C.J., Devesa I., Ferrer-Montiel A. Trafficking of ThermoTRP Channels. Membranes. 2014;4:525–564. doi: 10.3390/membranes4030525.
    1. Apostolidis A., Popat R., Yiangou Y., Cockayne D., Ford A., Davis J., Dasgupta P., Fowler C., Anand P. Decreased sensory receptors p2x 3 and trpv1 in suburothelial nerve fibers following intradetrusor injections of botulinum toxin for human detrusor overactivity. J. Urol. 2005;174:977–983. doi: 10.1097/01.ju.0000169481.42259.54.
    1. McMahon H.T., Foran P., Dolly J.O., Verhage M., Wiegant V.M., Nicholls D.G. Tetanus toxin and botulinum toxins type A and B inhibit glutamate, gamma-aminobutyric acid, aspartate, and met-enkephalin release from synaptosomes. Clues to the locus of action. J. Biol. Chem. 1992;267:21338–21343. doi: 10.1016/S0021-9258(19)36614-1.
    1. Becker W.J. Botulinum Toxin in the Treatment of Headache. Toxins. 2020;12:803. doi: 10.3390/toxins12120803.
    1. Kępczyńska K., Domitrz I. Botulinum Toxin—A Current Place in the Treatment of Chronic Migraine and Other Primary Headaches. Toxins. 2022;14:619. doi: 10.3390/toxins14090619.
    1. Shimizu T., Shibata M., Toriumi H., Iwashita T., Funakubo M., Sato H., Kuroi T., Ebine T., Koizumi K., Suzuki N. Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol. Dis. 2012;48:367–378. doi: 10.1016/j.nbd.2012.07.010.
    1. Edvinsson J., Warfvinge K., Edvinsson L. Modulation of inflammatory mediators in the trigeminal ganglion by botulinum neurotoxin type A: An organ culture study. J. Headache Pain. 2015;16:555. doi: 10.1186/s10194-015-0555-z.
    1. Diener H.C., Dodick D.W., Aurora S.K., Turkel C.C., DeGryse R.E., Lipton R.B., Brin M.F. OnabotulinumtoxinA for treatment of chronic migraine: Results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30:804–814. doi: 10.1177/0333102410364677.
    1. Casillo F., Sebastianelli G., Di Renzo A., Cioffi E., Parisi V., Di Lorenzo C., Serrao M., Coppola G. The monoclonal CGRP-receptor blocking antibody erenumab has different effects on brainstem and cortical sensory-evoked responses. Cephalalgia. 2022 doi: 10.1177/03331024221103811.
    1. Serrao M., Coppola G., Di Lorenzo C., Di Fabio R., Padua L., Sandrini G., Pierelli F. Nociceptive trigeminocervical reflexes in healthy subjects. Clin. Neurophysiol. 2010;121:1563–1568. doi: 10.1016/j.clinph.2010.03.031.
    1. e Tommaso M., Santostasi R., Devitofrancesco V., Franco G., Vecchio E., Delussi M., Livrea P., Katzarava Z. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation. Clin. Neurophysiol. 2011;122:2482–2487. doi: 10.1016/j.clinph.2011.05.006.
    1. Pellizzari R., Rossetto O., Schiavo G., Montecucco C. Tetanus and botulinum neurotoxins: Mechanism of action and therapeutic uses. Philos. Trans. R. Soc. B Biol. Sci. 1999;354:259–268. doi: 10.1098/rstb.1999.0377.
    1. Joussain C., Le Coz O., Pichugin A., Marconi P., Lim F., Sicurella M., Aranda Muñoz A. Botulinum Neurotoxin Light Chains Expressed by Defective Herpes Simplex Virus Type-1 Vectors Cleave SNARE Proteins and Inhibit CGRP Release in Rat Sensory Neurons. Toxins. 2019;11:123. doi: 10.3390/toxins11020123.
    1. Cernuda-Morollón E., Ramón C., Martínez-Camblor P., Serrano-Pertierra E., Larrosa D., Pascual J. OnabotulinumtoxinA decreases interictal CGRP plasma levels in patients with chronic migraine. Pain. 2015;156:820–824. doi: 10.1097/j.pain.0000000000000119.
    1. da Silva L.B., Karshenas A., Bach F.W., Rasmussen S., Arendt-Nielsen L., Gazerani P. Blockade of Glutamate Release by Botulinum Neurotoxin Type A in Humans: A Dermal Microdialysis Study. Pain Res. Manag. 2014;19:126–132. doi: 10.1155/2014/410415.
    1. Burstein R., Blumenfeld A.M., Silberstein S.D., Adams A.M., Brin M.F. Mechanism of Action of OnabotulinumtoxinA in Chronic Migraine: A Narrative Review. Headache. 2020;60:1259–1272. doi: 10.1111/head.13849.
    1. Gfrerer L., Xu W., Austen W., Ashina S., Melo-Carrillo A., Longhi M.S., Adams A.M., Houle T., Brin M.F., Burstein R. OnabotulinumtoxinA alters inflammatory gene expression and immune cells in chronic headache patients. Brain. 2021;145:2436–2449. doi: 10.1093/brain/awab461.
    1. Burstein R., Zhang X., Levy D., Aoki K.R., Brin M.F. Selective inhibition of meningeal nociceptors by botulinum neurotoxin type A: Therapeutic implications for migraine and other pains. Cephalalgia. 2014;34:853–869. doi: 10.1177/0333102414527648.
    1. Kosaras B., Jakubowski M., Kainz V., Burstein R. Sensory innervation of the calvarial bones of the mouse. J. Comp. Neurol. 2009;515:331–348. doi: 10.1002/cne.22049.
    1. Noseda R., Melo-Carrillo A., Nir R.-R., Strassman A.M., Burstein R. Non-Trigeminal Nociceptive Innervation of the Posterior Dura: Implications to Occipital Headache. J. Neurosci. 2019;39:1867–1880. doi: 10.1523/JNEUROSCI.2153-18.2018.
    1. Kaube H., Katsarava Z., Käufer T., Diener H.-C., Ellrich J. A new method to increase nociception specificity of the human blink reflex. Clin. Neurophysiol. 2000;111:413–416. doi: 10.1016/S1388-2457(99)00295-3.
    1. De Marinis M., Pujia A., Colaizzo E., Accornero N. The blink reflex in “chronic migraine”. Clin. Neurophysiol. 2007;118:457–463. doi: 10.1016/j.clinph.2006.10.011.
    1. Sohn J.-H., Kim C.-H., Choi H.-C. Differences in central facilitation between episodic and chronic migraineurs in nociceptive-specific trigeminal pathways. J. Headache Pain. 2016;17:35. doi: 10.1186/s10194-016-0637-6.
    1. De Tommaso M., Brighina F., Delussi M. Effects of Botulinum Toxin A on Allodynia in Chronic Migraine: An Observational Open-Label Two-Year Study. Eur. Neurol. 2019;81:37–46. doi: 10.1159/000499764.
    1. Sava S.L., De Pasqua V., Magis D., Schoenen J. Effects of Visual Cortex Activation on the Nociceptive Blink Reflex in Healthy Subjects. PLoS ONE. 2014;9:e100198. doi: 10.1371/journal.pone.0100198.
    1. Di Clemente L., Coppola G., Magis D., Fumal A., De Pasqua V., Di Piero V., Schoenen J. Interictal habituation deficit of the nociceptive blink reflex: An endophenotypic marker for presymptomatic migraine? Brain. 2007;130:765–770. doi: 10.1093/brain/awl351.
    1. Ellrich J. Brain Stem Reflexes: Probing Human Trigeminal Nociception. Physiology. 2000;15:94–97. doi: 10.1152/physiologyonline.2000.15.2.94.
    1. Esteban A. A neurophysiological approach to brainstem reflexes. Blink reflex. Neurophysiol. Clin. 1999;29:7–38. doi: 10.1016/S0987-7053(99)80039-2.
    1. Valls-Sole J. Assessment of excitability in brainstem circuits mediating the blink reflex and the startle reaction. Clin. Neurophysiol. 2012;123:13–20. doi: 10.1016/j.clinph.2011.04.029.
    1. Calabresi P., Cupini L.M. Medication-overuse headache: Similarities with drug addiction. Trends Pharmacol. Sci. 2005;26:62–68. doi: 10.1016/j.tips.2004.12.008.
    1. de Tommaso M., Delussi M., Ricci K., Montemurno A., Carbone I., Vecchio E. Effects of OnabotulintoxinA on Habituation of Laser Evoked Responses in Chronic Migraine. Toxins. 2016;8:163. doi: 10.3390/toxins8060163.
    1. Drinovac V., Bach-Rojecky L., Matak I., Lacković Z. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology. 2013;70:331–337. doi: 10.1016/j.neuropharm.2013.02.011.
    1. Drinovac V., Bach-Rojecky L., Lacković Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J. Neural Transm. 2014;121:665–669. doi: 10.1007/s00702-013-1150-6.
    1. Matak I., Riederer P., Lacković Z. Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem. Int. 2012;61:236–239. doi: 10.1016/j.neuint.2012.05.001.
    1. Matak I., Bach-Rojecky L., Filipović B., Lacković Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience. 2011;186:201–207. doi: 10.1016/j.neuroscience.2011.04.026.
    1. Matak I., Lacković Z. Botulinum toxin A, brain and pain. Prog. Neurobiol. 2014;119–120:39–59. doi: 10.1016/j.pneurobio.2014.06.001.
    1. Lawrence G.W., Ovsepian S.V., Wang J., Aoki K.R., Dolly J.O. Extravesicular intraneuronal migration of internalized botulinum neurotoxins without detectable inhibition of distal neurotransmission. Biochem. J. 2011;441:443–452. doi: 10.1042/BJ20111117.
    1. Cai B.B., Francis J., Brin M.F., Broide R.S. Botulinum neurotoxin type A-cleaved SNAP25 is confined to primary motor neurons and localized on the plasma membrane following intramuscular toxin injection. Neuroscience. 2017;352:155–169. doi: 10.1016/j.neuroscience.2017.03.049.
    1. Weise D., Weise C.M., Naumann M. Central Effects of Botulinum Neurotoxin—Evidence from Human Studies. Toxins. 2019;11:21. doi: 10.3390/toxins11010021.
    1. Matak I., Bölcskei K., Bach-Rojecky L., Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins. 2019;11:459. doi: 10.3390/toxins11080459.
    1. Headache Classification Committee of the International Headache Society (IHS) The International Classification of Headache Disorders, 3rd edition. Cephalalgia. 2018;38:1–211. doi: 10.1177/0333102417738202.
    1. Giffin J.N., Katsarava Z., Pfundstein A., Ellrich J., Kaube H. The effect of multiple stimuli on the modulation of the ‘nociceptive’ blink reflex. Pain. 2004;108:124–128. doi: 10.1016/j.pain.2003.12.014.
    1. Coppola G., Di Clemente L., Fumal A., Magis D., De Pasqua V., Pierelli F., Schoenen J. Inhibition of the Nociceptive R2 Blink Reflex after Supraorbital or Index Finger Stimulation is Normal in Migraine Without Aura Between Attacks. Cephalalgia. 2007;27:803–808. doi: 10.1111/j.1468-2982.2007.01323.x.
    1. Ayzenberg I., Obermann M., Nyhuis P., Gastpar M., Limmroth V., Diener H.C., Kaube H., Katsarava Z. Central Sensitization of The Trigeminal and Somatic Nociceptive Systems in Medication Overuse Headache Mainly Involves Cerebral Supraspinal Structures. Cephalalgia. 2006;26:1106–1114. doi: 10.1111/j.1468-2982.2006.01183.x.
    1. Coppola G., Currà A., Di Lorenzo C., Parisi V., Gorini M., Sava S.L., Schoenen J., Pierelli F. Abnormal cortical responses to somatosensory stimulation in medication-overuse headache. BMC Neurol. 2010;10:126. doi: 10.1186/1471-2377-10-126.
    1. Di Clemente L., Coppola G., Magis D., Gérardy P.-Y., Fumal A., De Pasqua V., Di Piero V., Schoenen J. Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: Evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain. 2009;144:156–161. doi: 10.1016/j.pain.2009.04.018.
    1. Dunn O.J. Multiple Comparisons Using Rank Sums. Technometrics. 1964;6:241–252. doi: 10.1080/00401706.1964.10490181.

Source: PubMed

3
구독하다