Gut Microbiota Changes and Their Relationship with Inflammation in Patients with Acute and Chronic Insomnia

Yuanyuan Li, Bin Zhang, Ya Zhou, Daoming Wang, Xianchen Liu, Lin Li, Tong Wang, Yuechu Zhang, Min Jiang, Huilan Tang, Lawrence V Amsel, Fang Fan, Christina W Hoven, Yuanyuan Li, Bin Zhang, Ya Zhou, Daoming Wang, Xianchen Liu, Lin Li, Tong Wang, Yuechu Zhang, Min Jiang, Huilan Tang, Lawrence V Amsel, Fang Fan, Christina W Hoven

Abstract

Purpose: The major purpose of this study was to detect the changes in gut microbiota composition and inflammatory cytokines production associated with acute and chronic insomnia. This study also evaluated the relationship between gut microbiota changes and increased inflammatory cytokines in insomnia patients.

Patients and methods: Outpatients with acute and chronic insomnia (aged 26-55 years; n=20 and 38, respectively) and age/gender-matched healthy controls (n=38) were recruited from a southern China region. Participants' gut microbiome, plasma cytokines, and self-reported sleep quality and psychopathological symptoms were measured.

Results: The gut microbiomes of insomnia patients compared with healthy controls were characterized by lower microbial richness and diversity, depletion of anaerobes, and short-chain fatty acid (SCFA)-producing bacteria, and an expansion of potential pathobionts. Lachnospira and Bacteroides were signature bacteria for distinguishing acute insomnia patients from healthy controls, while Faecalibacterium and Blautia were signature bacteria for distinguishing chronic insomnia patients from healthy controls. Acute/chronic insomnia-related signature bacteria also showed correlations with these patients' self-reported sleep quality and plasma IL-1β.

Conclusion: These findings suggest that insomnia symptomology, gut microbiota, and inflammation may be interrelated in complex ways. Gut microbiota may serve as an important indicator for auxiliary diagnosis of insomnia and provide possible new therapeutic targets in the field of sleep disorders.

Keywords: acute insomnia; chronic insomnia; gut microbiome; inflammatory cytokines; random forest.

Conflict of interest statement

All authors report no conflicts of interest in this work.

© 2020 Li et al.

Figures

Figure 1
Figure 1
Phylogenetic diversity of gut microbiomes among AID, CID, and HC groups.
Figure 2
Figure 2
Comparison of relative abundance (>1% of the total sequences in either group) at the bacterial genus level between AID, CID, and HC groups.
Figure 3
Figure 3
Disease classification based on gut microbiome signature. (A and B) Classification performance of random forest model using relative abundance of insomnia-associated genera was assessed by area under the ROC in AID patients (A) and CID patients (B), respectively. (C and D) Identification of the signature gut microbiota associated with insomnia disorder by random forest. To identify the signature biomarkers, 5-fold cross-validation together with random forest was performed. (C) The detailed results of random forest in signature biomarkers’ random seed are presented between AID and HC group; (D) The detailed results of random forest in signature biomarkers’ random seed are presented between CID and HC group.
Figure 4
Figure 4
(A) Partial correlation between relative abundance of signature gut microbiota and insomnia-related inflammatory cytokines by partial Spearman’s rank-based correlation test in AID and HC group. (B) Partial correlation between relative abundance of signature gut microbiota and insomnia-related inflammatory cytokines by partial Spearman’s rank-based correlation test in CID and HC group.

References

    1. Mai E, Buysse DJ. Insomnia: prevalence, impact, pathogenesis, differential diagnosis, and evaluation. Sleep Med Clin. 2008;3(2):167–174. doi:10.1016/j.jsmc.2008.02.001
    1. Ohayon MM. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev. 2002;6(2):97–111. doi:10.1053/smrv.2002.0186
    1. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J Clin Sleep Med. 2007;3(5 Suppl):S7–S10. doi:10.5664/jcsm.26929
    1. Morin CM, Drake CL, Harvey AG, et al. Insomnia disorder. Nat Rev Dis Primers. 2015;1:15037. doi:10.1038/nrdp.2015.37
    1. Hertenstein E, Feige B, Gmeiner T, et al. Insomnia as a predictor of mental disorders: a systematic review and meta-analysis. Sleep Med Rev. 2019;43:96–105. doi:10.1016/j.smrv.2018.10.006
    1. Blank M, Zhang J, Lamers F, Taylor AD, Hickie IB, Merikangas KR. Health correlates of insomnia symptoms and comorbid mental disorders in a nationally representative sample of US adolescents. Sleep. 2015;38(2):197–204. doi:10.5665/sleep.4396
    1. Bollu PC, Kaur H. Sleep medicine: insomnia and sleep. Mo Med. 2019;116(1):68–75.
    1. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–712. doi:10.1038/nrn3346
    1. Macpherson AJ, Harris NL. Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol. 2004;4(6):478–485. doi:10.1038/nri1373
    1. Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis in psychiatric and inflammatory disorders. Front Psychiatry. 2018;9:44. doi:10.3389/fpsyt.2018.00044
    1. Thaiss CA, Levy M, Korem T, et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016;167(6):1495–1510.e12. doi:10.1016/j.cell.2016.11.003
    1. Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright KP Jr, Dawson D. The shift work and health research agenda: considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease. Sleep Med Rev. 2017;34:3–9. doi:10.1016/j.smrv.2016.06.009
    1. Jackson ML, Butt H, Ball M, Lewis DP, Bruck D. Sleep quality and the treatment of intestinal microbiota imbalance in chronic fatigue syndrome: a pilot study. Sleep Sci. 2015;8(3):124–133. doi:10.1016/j.slsci.2015.10.001
    1. Fernandez-Mendoza J, Baker JH, Vgontzas AN, Gaines J, Liao D, Bixler EO. Insomnia symptoms with objective short sleep duration are associated with systemic inflammation in adolescents. Brain Behav Immun. 2017;61:110–116. doi:10.1016/j.bbi.2016.12.026
    1. Zielinski MR, Kim Y, Karpova SA, McCarley RW, Strecker RE, Gerashchenko D. Chronic sleep restriction elevates brain interleukin-1 beta and tumor necrosis factor-alpha and attenuates brain-derived neurotrophic factor expression. Neurosci Lett. 2014;580:27–31. doi:10.1016/j.neulet.2014.07.043
    1. Patel SR, Zhu X, Storfer-Isser A, et al. Sleep duration and biomarkers of inflammation. Sleep. 2009;32(2):200–204. doi:10.1093/sleep/32.2.200
    1. Sheehan DV, Lecrubier Y, Sheehan KH, et al. The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59(Suppl 20):22–57.
    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Dsm-5; 2013:5
    1. Mollayeva T, Thurairajah P, Burton K, Mollayeva S, Shapiro CM, Colantonio A. The Pittsburgh sleep quality index as a screening tool for sleep dysfunction in clinical and non-clinical samples: a systematic review and meta-analysis. Sleep Med Rev. 2016;25:52–73. doi:10.1016/j.smrv.2015.01.009
    1. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–1097. doi:10.1001/archinte.166.10.1092
    1. Kroenke K, Spitzer RL, Williams JB. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–613. doi:10.1046/j.1525-1497.2001.016009606.x
    1. Kroenke K, Spitzer RL, Williams JB. The PHQ-15: validity of a new measure for evaluating the severity of somatic symptoms. Psychosom Med. 2002;64(2):258–266. doi:10.1097/00006842-200203000-00008
    1. Yi WANG, Sheng W, Guibao ZHU, et al. Method to evaluate an adult eating behavior questionnaire. Chin J Public Health. 2005;21(2):246–247. doi:10.3321/j.issn:1001-0580.2005.02.072
    1. Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy. Gut. 2018;67(3):534–541. doi:10.1136/gutjnl-2016-313332
    1. Bokulich NA, Subramanian S, Faith JJ, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10:57. doi:10.1038/nmeth.2276
    1. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996. doi:10.1038/nmeth.2604
    1. Liaw A, Wiener M. Classification and regression by random Forest. R News. 2002;2:18–22.
    1. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. doi:10.1186/1471-2105-12-77
    1. Lima-Ojeda JM, Rupprecht R, Baghai TC. “I am I and my bacterial circumstances”: linking gut microbiome, neurodevelopment, and depression. Front Psychiatry. 2017;8:153. doi:10.3389/fpsyt.2017.00153
    1. Vuong HE, Yano JM, Fung TC, Hsiao EY. The microbiome and host behavior. Annu Rev Neurosci. 2017;40:21–49. doi:10.1146/annurev-neuro-072116-031347
    1. Thase ME. Correlates and consequences of chronic insomnia. Gen Hosp Psychiatry. 2005;27(2):100–112. doi:10.1016/j.genhosppsych.2004.09.006
    1. Vgontzas AN, Zoumakis M, Papanicolaou DA, et al. Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime. Metabolism. 2002;51(7):887–892. doi:10.1053/meta.2002.33357
    1. Jiang H, Ling Z, Zhang Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–194. doi:10.1016/j.bbi.2015.03.016
    1. Jiang HY, Zhang X, Yu ZH, et al. Altered gut microbiota profile in patients with generalized anxiety disorder. J Psychiatr Res. 2018;104:130–136. doi:10.1016/j.jpsychires.2018.07.007
    1. Liu B, Lin W, Chen S, et al. Gut Microbiota as a subjective measurement for auxiliary diagnosis of insomnia disorder. Front Microbiol. 2019;10:1770. doi:10.3389/fmicb.2019.01770
    1. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145(2):396–406.e10. doi:10.1053/j.gastro.2013.04.056
    1. Kim CH, Park J, Kim M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation. Immune Netw. 2014;14(6):277–288. doi:10.4110/in.2014.14.6.277
    1. Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ. Acetate utilization and butyryl coenzyme A (CoA): acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol. 2002;68(10):5186–5190. doi:10.1128/aem.68.10.5186-5190.2002
    1. Bach Knudsen KE, Lærke HN, Hedemann MS, et al. Impact of diet-modulated butyrate production on intestinal barrier function and inflammation. Nutrients. 2018;10(10):1499. doi:10.3390/nu10101499
    1. Eren AM, Sogin ML, Morrison HG, et al. A single genus in the gut microbiome reflects host preference and specificity. ISME J. 2015;9(1):90–100. doi:10.1038/ismej.2014.97
    1. Juste C, Kreil DP, Beauvallet C, et al. Bacterial protein signals are associated with Crohn’s disease. Gut. 2014;63(10):1566–1577. doi:10.1136/gutjnl-2012-303786
    1. Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int. 2017;16(4):375–381. doi:10.1016/S1499-3872(17)60019-5
    1. Zhang J, Guo Z, Xue Z, et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015;9(9):1979–1990. doi:10.1038/ismej.2015.11
    1. Zhang X, Zhao Y, Xu J, et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci Rep. 2015;5:14405. doi:10.1038/srep14405
    1. Evans SJ, Bassis CM, Hein R, et al. The gut microbiome composition associates with bipolar disorder and illness severity. J Psychiatr Res. 2017;87:23–29. doi:10.1016/j.jpsychires.2016.12.007
    1. Tamanai-Shacoori Z, Smida I, Bousarghin L, et al. Roseburia spp.: a marker of health? Future Microbiol. 2017;12:157–170. doi:10.2217/fmb-2016-0130
    1. Gao T, Wang Z, Dong Y, et al. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J Pineal Res. 2019;67(1):e12574. doi:10.1111/jpi.12574
    1. Wrzosek L, Miquel S, Noordine ML, et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol. 2013;11:61. doi:10.1186/1741-7007-11-61
    1. Poroyko VA, Carreras A, Khalyfa A, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405. doi:10.1038/srep35405
    1. Rodenbeck A, Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev Neurol (Paris). 2001;157(11 Pt 2):S57–S61.
    1. He Y, Wu W, Zheng HM, et al. Author correction: regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018;24(12):1940. doi:10.1038/s41591-018-0219-z

Source: PubMed

3
구독하다