Placenta Accreta Spectrum: A Review of Pathology, Molecular Biology, and Biomarkers

Helena C Bartels, James D Postle, Paul Downey, Donal J Brennan, Helena C Bartels, James D Postle, Paul Downey, Donal J Brennan

Abstract

Background. Placenta accreta spectrum (PAS) is a condition of abnormal placental invasion encompassing placenta accreta, increta, and percreta and is a major cause of severe maternal morbidity and mortality. The diagnosis of a PAS is made on the basis of histopathologic examination and characterised by an absence of decidua and chorionic villi are seen to directly adjacent to myometrial fibres. The underlying molecular biology of PAS is a complex process that requires further research; for ease, we have divided these processes into angiogenesis, proliferation, and inflammation/invasion. A number of diagnostic serum biomarkers have been investigated in PAS, including human chorionic gonadotropin (HCG), pregnancy-associated plasma protein-A (PAPP-A), and alpha-fetoprotein (AFP). They have shown variable reliability and variability of measurement depending on gestational age at sampling. At present, a sensitive serum biomarker for invasive placentation remains elusive. In summary, there are a limited number of studies that have contributed to our understanding of the molecular biology of PAS, and additional biomarkers are needed to aid diagnosis and disease stratification.

Figures

Figure 1
Figure 1
Histopathology of placenta accreta syndrome. (a) High-power picture of decidualised endometrium as a result of pregnancy. Stromal cells are large, pale, and polygonal. (b) Low-power image of decidualised endometrium on the surface with underlying congested myometrial blood vessels and myometrium. (c) Low-power image of PAS showing chorionic villi in direct contact with myometrium (no intervening decidua). (d) Chorionic villus with polar trophoblast invading myometrial muscle. (e) Nonadherent area of the same placenta where decidua is seen between villi (bottom right) and myometrium (top left). (f) PAS—chorionic villi in direct contact with muscle; a multinucleated extravillous trophoblast is seen in the top right.
Figure 2
Figure 2
Similarities between PAS and cancer. Figure showing the 8 hallmarks of cancer as described by Weinberg and Hannahan and the similarities to the molecular biology of PAS [18].

References

    1. Irving C., Hertig A. T. A study of placenta accreta. Surgery, Gynecology & Obstetrics. 1937;38(6):1088–1200. doi: 10.1016/S0002-9378(39)90680-0.
    1. Jauniaux E., Chantraine F., Silver R. M., Langhoff-Roos J., and for the FIGO Placenta Accreta Diagnosis and Management Expert Consensus Panel FIGO consensus guidelines on placenta accreta spectrum disorders: epidemiology. International Journal of Gynecology & Obstetrics. 2018;140(3):265–273. doi: 10.1002/ijgo.12407.
    1. Chuong E. Evolutionary perspectives into placental biology and disease. Applied & Translational Genomics. 2013;2:64–69. doi: 10.1016/j.atg.2013.07.001.
    1. Higgins M., Monteith C., Foley M., O’Herlihy C. Real increasing incidence of hysterectomy for placenta accreta following previous caesarean section. European Journal of Obstetrics & Gynecology, and Reproductive Biology. 2013;171(1):54–56. doi: 10.1016/j.ejogrb.2013.08.030.
    1. Silver R. M., Barbour K. D. Placenta accreta spectrum: accreta, increta, and percreta. Obstetrics and Gynecology Clinics of North America. 2015;42(2):381–402. doi: 10.1016/j.ogc.2015.01.014.
    1. O’Brien J. M., Barton J. R., Donaldson E. S. The management of placenta percreta: conservative and operative strategies. American Journal of Obstetrics & Gynecology. 1996;175(6):1632–1638. doi: 10.1016/S0002-9378(96)70117-5.
    1. Knight M., Nair M., Tuffnell D., et al. Saving Lives, Improving Mothers’ Care - Lessons Learned to Inform Maternity Care from the UK and Ireland Confidential Enquiries into Maternal Deaths and Morbidity 2013–15. Oxford: National Perinatal Epidemiology Unit, University of Oxford; 2017.
    1. Placenta Praevia, Placenta Praevia Accreta and Vasa Praevia: Diagnosis and Management (Green-top Guideline No. 27) Royal College of Obstetricians and Gynaecologists; 2011.
    1. Bailit J. L., Grobman W. A., Rice M. M., et al. Morbidly adherent placenta treatments and outcomes. Obstetrics & Gynecology. 2015;125(3):683–689. doi: 10.1097/AOG.0000000000000680.
    1. Fitzpatrick K. E., Sellers S., Spark P., Kurinczuk J. J., Brocklehurst P., Knight M. The management and outcomes of placenta accreta, increta, and percreta in the UK: a population-based descriptive study. BJOG: An International Journal of Obstetrics & Gynaecology. 2014;121(1):62–71. doi: 10.1111/1471-0528.12405.
    1. Jauniaux E., Bhide A., Burton G. J. Placenta Accreta Syndrome, Silver. Taylor and Francis; 2017. Chapter 2 Pathophysiology of accreta. .
    1. Parra-Herran C., Djordjevic B. Histopathology of placenta creta: chorionic villi intrusion into myometrial vascular spaces and extravillous trophoblast proliferation are frequent and specific findings with implications for diagnosis and pathogenesis. International Journal of Gynecological Pathology. 2016;35(6):497–508.
    1. Dannheim K., Shainker S. A., Hecht J. L. Hysterectomy for placenta accreta; methods for gross and microscopic pathology examination. Archives of Gynecology and Obstetrics. 2016;293(5):951–958. doi: 10.1007/s00404-015-4006-5.
    1. Miller E. S., Linn R. L., Ernst L. M. Does the presence of placental basal plate myometrial fibres increase the risk of subsequent morbidly adherent placenta: a case–control study. BJOG: An International Journal of Obstetrics & Gynaecology. 2016;123(13):2140–2145. doi: 10.1111/1471-0528.13579.
    1. Jauniaux E., Collins S., Burton G. J. Placenta accreta spectrum: pathophysiology and evidence-based anatomy for prenatal ultrasound imaging. American Journal of Obstetrics & Gynecology. 2018;218(1):75–87. doi: 10.1016/j.ajog.2017.05.067.
    1. Ernst L. M., Linn R. L., Minturn L., Miller E. S. Placental pathologic associations with morbidly adherent placenta: potential insights into pathogenesis. Pediatric and Developmental Pathology. 2017;20(5):387–393. doi: 10.1177/1093526617698600.
    1. Tantbirojn P., Crum C. P., Parast M. M. Pathophysiology of placenta creta: the role of decidua and extravillous trophoblast. Placenta. 2008;29(7):639–645. doi: 10.1016/j.placenta.2008.04.008.
    1. Hanahan D., Weinberg R. A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Tseng J., Chou M. Differential expression of growth-, angiogenesis- and invasion-related factors in the development of placenta accreta. Taiwanese Journal of Obstetrics and Gynecology. 2006;45(2):100–106. doi: 10.1016/S1028-4559(09)60205-9.
    1. Baltajian K., Hecht J. L., Wenger J. B., et al. Placental lesions of vascular insufficiency are associated with anti-angiogenic state in women with preeclampsia. Hypertension in Pregnancy. 2014;33(4):427–439. doi: 10.3109/10641955.2014.926914.
    1. Maynard S. E., Min J. Y., Merchan J., et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. The American Society for Clinical Investigation. 2003;111(5):649–658. doi: 10.1172/JCI17189.
    1. McMahon K., Karumanchi S. A., Stillman I. E., Cummings P., Patton D., Easterling T. Does soluble fms-like tyrosine kinase-1 regulate placental invasion? Insight from the invasive placenta. American Journal of Obstetrics and Gynecology. 2014;210(68):e61–e64. doi: 10.1016/j.ajog.2013.08.032.
    1. Shainker S. A., Dannheim K., Gerson K. D., et al. Down-regulation of soluble fms-like tyrosine kinase 1 expression in invasive placentation. Archives of Gynecology and Obstetrics. 2017;296(2):257–262. doi: 10.1007/s00404-017-4432-7.
    1. Unemori E. N., Erikson M. E., Rocco S. E., et al. Relaxin stimulates expression of vascular endothelial growth factor in normal human endometrial cells in vitro and is associated with menometrorrhagia in women. Human Reproduction. 1999;14(3):800–806. doi: 10.1093/humrep/14.3.800.
    1. Goh W., Yamamoto S. Y., Thompson K. S., Bryant-Greenwood G. D. Relaxin, its receptor (RXFP1), and insulin-like peptide 4 expression through gestation and in placenta accreta. Reproductive Sciences. 2013;20(8):968–980. doi: 10.1177/1933719112472735.
    1. Kim K. R., Jun S. Y., Kim J. Y., Ro J. Y. Implantation site intermediate trophoblasts in placenta cretas. Modern Pathology. 2004;17(12):1483–1490. doi: 10.1038/modpathol.3800210.
    1. Stanek J., Drummond Z. Occult placenta accreta: the missing link in the diagnosis of abnormal placentation. Pediatric and Developmental Pathology. 2007;10(4):266–273. doi: 10.2350/06-10-0174.1.
    1. Tseng J. J., Hsu S. L., Wen M. C., Ho E. S. C., Chou M. M. Expression of epidermal growth factor receptor and c-erbB-2 oncoprotein in trophoblast populations of placenta accreta. American Journal of Obstetrics & Gynecology. 2004;191(6):2106–2113. doi: 10.1016/j.ajog.2004.04.043.
    1. Smith S. C., Baker P. N., Symonds E. M. Placental apoptosis in normal human pregnancy. American Journal of Obstetrics & Gynecology. 1997;177(1):57–65. doi: 10.1016/S0002-9378(97)70438-1.
    1. Millar L., Streiner N., Webster L., et al. Early placental insulin-like protein (INSL4 or EPIL) in placental and fetal membrane growth. Biology of Reproduction. 2005;73(4):695–702. doi: 10.1095/biolreprod.105.039859.
    1. Gu Y., Bian Y., Xu X., et al. Downregulation of miR-29a/b/c in placenta accreta inhibits apoptosis of implantation site intermediate trophoblast cells by targeting MCL1 . Placenta. 2016;48:13–19. doi: 10.1016/j.placenta.2016.09.017.
    1. Ernst L. M., Linn R. L., Minturn L., Miller E. S. Placental pathologic associations with morbidly adherent placenta potential insights into pathogenesis. Paediatric pathology society. 2017;20:p. 5. doi: 10.2350/16-03-1789-oa.1.
    1. Jabrane-Ferrat N., Siewiera J. The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology. 2014;141(4):490–497. doi: 10.1111/imm.12218.
    1. Laban M., Ibrahim E. A.-S., Elsafty M. S. E., Hassanin A. S. Placenta accreta is associated with decreased decidual natural killer (dNK) cells population: a comparative pilot study. European Journal of Obstetrics & and Reproductive Biology. 2014;181:284–288. doi: 10.1016/j.ejogrb.2014.08.015.
    1. Kalluri R., Weinberg R. A. The basics of epithelial-mesenchymal transition. The Journal of Clinical Investigation. 2009;119(6):1420–1428. doi: 10.1172/JCI39104.
    1. Duzyj C. M., Buhimschi I. A., Motawea H., et al. The invasive phenotype of placenta accreta extravillous trophoblasts associates with loss of E-cadherin. Placenta. 2015;36(6):645–651. doi: 10.1016/j.placenta.2015.04.001.
    1. Zhu J. Y., Pang Z. J., Yu Y. H. Regulation of trophoblast invasion: the role of matrix metalloproteinases. Reviews in Obstetrics & Gynecology. 2012;5(3-4):e137–e143.
    1. Demir-Weusten A., Seval Y., Kaufmann P., Demir R., Yucel G., Huppertz B. Matrix metalloproteinases-2, −3 and −9 in human term placenta. Acta Histochemica. 2007;109(5):403–412. doi: 10.1016/j.acthis.2007.04.001.
    1. Kocarslan S., Incebıyık A., Guldur M. E., Ekinci T., Ozardali H. I. What is the role of matrix metalloproteinase-2 in placenta percreta? Journal of Obstetrics and Gynaecology Research. 2015;41(7):1018–1022. doi: 10.1111/jog.12667.
    1. Y K. E., Lu J. H., Yang B. L., et al. Involvement of matrix metalloproteinase-2, −9, and tissue inhibitors of metalloproteinase-1, 2 in occurrence of the accrete placenta. Zhonghua Fu Chan Ke Za Zhi. 2006;41(5):311–314. doi: 10.3760/j.issn:0529-567x.2006.05.007.
    1. Chen Y., Zhang H., Han F., et al. The depletion of MARVELD1 leads to murine placenta accreta via integrin β4-dependent trophoblast cell invasion. Journal of Cellular Physiology. 2018;233:2257–2269. doi: 10.1002/jcp.26591.
    1. Wang S., Li Y., Han F., et al. Identification and characterization of MARVELD1, a novel nuclear protein that is down-regulated in multiple cancers and silenced by DNA methylation. Cancer Letters. 2009;282(1):77–86. doi: 10.1016/j.canlet.2009.03.008.
    1. Burton D. G., Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cellular and Molecular Life Sciences. 2014;71(22):4373–4386. doi: 10.1007/s00018-014-1691-3.
    1. Geffen T., Gal H., Vainer I., et al. Senescence and telomere homeostasis might be involved in placenta percreta—preliminary investigation. Reproductive Sciences. 2017 doi: 10.1177/1933719117737852.
    1. Silahtaroglu A. N., Tumer Z., Kristensen T., Sottrup-Jensen L., Tommerup N. Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes. Cytogenetics and Cell Genetics. 1993;62(4):214–216. doi: 10.1159/000133479.
    1. Lin T.-M., Halbert S. P., Kiefer D., Spellacy W. N., Gall S. Characterization of four human pregnancy-associated plasma proteins. American Journal of Obstetrics & Gynecology. 1974;118(2):223–236. doi: 10.1016/0002-9378(74)90553-5.
    1. Conover C. A. Key questions and answers about pregnancy-associated plasma protein-A. Trends in Endocrinology and Metabolism. 2012;23(5):242–249. doi: 10.1016/j.tem.2012.02.008.
    1. Entrez gene: PAPPA pregnancy-associated plasma protein A, pappalysin 1. February 2018, .
    1. Lawrence J. B., Bale L. K., Haddad T. C., Clarkson J. T., Conover C. A. Characterization and partial purification of the insulin-like growth factor (IGF)-dependent IGF binding protein-4-specific protease from human fibroblast conditioned media. Growth Hormone & IGF Research. 1999;9(1):25–34. doi: 10.1054/ghir.1998.0083.
    1. Laursen L. S., Overgaard M. T., Soe R., et al. Pregnancy-associated plasma protein-A (PAPP-A) cleaves insulin-like growth factor binding protein (IGFBP)-5 independent of IGF: implications for the mechanism of IGFBP-4 proteolysis by PAPP-A. FEBS Letters. 2001;504(1-2):36–40. doi: 10.1016/S0014-5793(01)02760-0.
    1. Laursen L. S., Kjaer-Sorensen K., Andersen M. H., Oxvig C. Regulation of insulin-like growth factor (IGF) bioactivity by sequential proteolytic cleavage of IGF binding protein-4 and −5. Molecular Endocrinology. 2007;21(5):1246–1257. doi: 10.1210/me.2006-0522.
    1. Sun I. Y., Overgaard M. T., Oxvig C., Giudice L. C. Pregnancy-associated plasma protein A proteolytic activity is associated with the human placental trophoblast cell membrane. The Journal of Clinical Endocrinology & Metabolism. 2002;87(11):5235–5240. doi: 10.1210/jc.2002-020561.
    1. Gagnon A., Wilson R. D., Audibert F., et al. Obstetrical complications associated with abnormal maternal serum markers analytes. Journal of Obstetrics and Gynaecology Canada. 2008;30(10):918–932. doi: 10.1016/S1701-2163(16)32973-5.
    1. Kilcoyne A., Shenoy-Bhangle A. S., Roberts D. J., Sisodia R. C., Gervais D. A., Leeca S. I. MRI of placenta accreta, placenta increta, and Placenta Percreta: Pearls and Pitfalls. American Journal of Roentgenology. 2017;208(1):214–221. doi: 10.2214/AJR.16.16281.
    1. Christopher Baughman W., Corteville J. E., Shah R. R. Placenta accreta: spectrum of US and MR iumaging findings. Radiographics. 2008;28(7):1905–1916. doi: 10.1148/rg.287085060.
    1. Zelop C., Nadel A., Frigoletto F. D., Jr, Pauker S., MacMillan M., Benacerraf B. R. Placenta accreta/percreta/increta: a cause of elevated maternal serum alpha-fetoprotein. Obstetrics and Gynecology. 1992;80(4):693–694.
    1. Thompson O., Ogbah C., Nnochiri A., Sumithran E., Spencer K. First trimester maternal serum biochemical markers of aneuploidy in pregnancies with abnormally invasive placentation. BJOG: An International Journal of Obstetrics and Gynaecology. 2015;122(10):1370–1376. doi: 10.1111/1471-0528.13298.
    1. Lawrence J. B., Oxvig C., Overgaard M. T., et al. The insulin-like growth factor (IGF)-dependent IGF binding protein-4 protease secreted by human fibroblasts is pregnancy-associated plasma protein-A. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(6):3149–3153. doi: 10.1073/pnas.96.6.3149.
    1. Krantz D., Goetzl L., Simpson J. L., et al. Association of extreme first-trimester free human chorionic gonadotropin-β, pregnancy-associated plasma protein A, and nuchal translucency with intrauterine growth restriction and other adverse pregnancy outcomes. American Journal of Obstetrics & Gynecology. 2004;191(4):1452–1458. doi: 10.1016/j.ajog.2004.05.068.
    1. Dugoff L., Hobbins J. C., Malone F. D., et al. First-trimester maternal serum PAPP-A and free-beta subunit human chorionic gonadotropin concentrations and nuchal translucency are associated with obstetric complications: a population-based screening study (The FASTER Trial) American Journal of Obstetrics & Gynecology. 2004;191(4):1446–1451. doi: 10.1016/j.ajog.2004.06.052.
    1. Ong C. Y. T., Liao A. W., Spencer K., Munim S., Nicolaides K. H. First trimester maternal serum free β human chorionic gonadotrophin and pregnancy associated plasma protein A as predictors of pregnancy complications. BJOG: An International Journal of Obstetrics & Gynaecology. 2000;107(10):1265–1270. doi: 10.1111/j.1471-0528.2000.tb11618.x.
    1. Smith G. C. S., Stenhouse E. J., Crossley J. A., Aitken D. A., Cameron A. D., Connor J. M. Early pregnancy levels of pregnancy-associated plasma protein A and the risk of intrauterine growth restriction, premature birth, preeclampsia, and stillbirth. The Journal of Clinical Endocrinology & Metabolism. 2002;87(4):1762–1767. doi: 10.1210/jcem.87.4.8430.
    1. Tul N., Tul N., Pušenjak S., Osredkar J., Spencer K., Novak-Antolič Ž. Predicting complications of pregnancy with first-trimester maternal serum free-βhCG, PAPP-A and inhibin-A. Prenatal Diagnosis. 2003;23(12):990–996. doi: 10.1002/pd.735.
    1. She B.-Q., Chen S.-C., Lee F.-K., Cheong M.-L., Tsai M.-S. Low maternal levels of pregnancy- associated plasma protein-A during the first trimester are associated with subsequent preterm delivery with preterm premature rupture of membranes. Taiwanese Journal of Obstetrics & Gynecology. 2007;46(3):242–247. doi: 10.1016/S1028-4559(08)60027-3.
    1. Barrett S. L., Bower C., Hadlow N. C. Use of the combined first-trimester screen result and low PAPP-A to predict risk of adverse fetal outcomes. Prenatal Diagnosis. 2008;28(1):28–35. doi: 10.1002/pd.1898.
    1. Pihl K., Sorensen T. L., Norgaard-Pedersen B., et al. First-trimester combined screening for Down syndrome: prediction of low birth weight, small for gestational age and pre-term delivery in a cohort of non-selected women. Prenatal Diagnosis. 2008;28(3):247–253. doi: 10.1002/pd.1946.
    1. Spencer K., Cowans N. J., Molina F., Kagan K. O., Nicolaides K. H. First-trimester ultrasound and biochemical markers of aneuploidy and the prediction of preterm or early preterm delivery. Ultrasound in Obstetrics & Gynecology. 2008;31:147–152. doi: 10.1002/uog.5163.
    1. Lyell D., Faucett A., Baer R., et al. Maternal serum markers, characteristics and morbidly adherent pla- centa in women with previa. Journal of Perinatology. 2015;35(8):570–574. doi: 10.1038/jp.2015.40.
    1. Tomasi T. B. Structure and function of alpha-fetoprotein. Annual Review of Medicine. 1977;28(1):453–465. doi: 10.1146/annurev.me.28.020177.002321.
    1. Speroff L., Fritz M. A. Clinical Gynecologic Endocrinology and Infertility. 7th. Philadelphia, PA, USA: Lippincott Williams & Wilkins; 2005. The endocrinology of pregnancy; pp. 259–315.
    1. Dugoff L. First- and second-trimester maternal serum markers for aneuploidy and adverse obstetric out- comes. Obstetrics and Gynecology. 2010;115(5):1052–1061. doi: 10.1097/AOG.0b013e3181da93da.
    1. Mizejewski G. J. Physiology of alpha-fetoprotein as a biomarker for perinatal distress: relevance to adverse pregnancy outcome. Experimental Biology and Medicine. 2007;232(8):993–1004. doi: 10.3181/0612-mr-291.
    1. Cole L. A. Biological functions of hCG and hCG-related molecules. Reproductive Biology and Endocrinology. 2010;8(1):p. 102. doi: 10.1186/1477-7827-8-102.
    1. Shi Q., Lei Z., Rao C. V., Lin J. Novel role of human chorionic gonadotropin in differentiation of human cytotro- phoblasts. Endocrinology. 1993;132(3):1387–1395. doi: 10.1210/endo.132.3.7679981.
    1. Costa S. L., Proctor L., Dodd J. M., et al. Screening for placental insufficiency in high-risk pregnancies: is earlier better? Placenta. 2008;29(12):1034–1040. doi: 10.1016/j.placenta.2008.09.004.
    1. Liu D. F., Dickerman L. H., Redline R. W. Pathologic findings in pregnancies with unexplained increases in midtrimester maternal serum human chorionic gonadotropin levels. American Journal of Clinical Pathology. 1999;111(2):209–215. doi: 10.1093/ajcp/111.2.209.
    1. Chandra S., Scott H., Dodds L., Watts C., Blight C., Van Den Hof M. Unexplained elevated maternal serum α-fetoprotein and/or human chorionic gonadotropin and the risk of adverse outcomes. American Journal of Obstetrics & Gynecology. 2003;189(3):775–781. doi: 10.1067/S0002-9378(03)00769-5.
    1. Hung T. H., Shau W. Y., Hsieh C. C., Chiu T. H., Hsu J. J., Hsieh T. T. Risk factors for placenta accreta. Obstetrics & Gynecology. 1999;93(4):545–550. doi: 10.1016/s0029-7844(98)00460-8.
    1. Dreux S., Salomon L. J., Muller F., et al. Second-trimester maternal serum markers and placenta accreta. Prenatal Diagnosis. 2012;32(10):1010–1012. doi: 10.1002/pd.3932.
    1. Desai N., Krantz D., Roman A., Fleischer A., Boulis S., Rochelson B. Elevated first trimester PAPP-A is associated with increased risk of placenta accreta. Prenatal Diagnosis. 2014;34(2):159–162. doi: 10.1002/pd.4277.
    1. Büke B., Akkaya H., Demir S., et al. Relationship between first trimester aneuploidy screening test serum analytes and placenta accreta. The Journal of Maternal-Fetal & Neonatal Medicine. 2017;31(1):59–62. doi: 10.1080/14767058.2016.1275546.
    1. Mizejewski G. J. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Experimental Biology and Medicine. 2001;226(5):377–408. doi: 10.1177/153537020122600503.
    1. Carter C. S. Neuroendocrinology of sexual behaviour in the female. In: Becker J. B., editor. Behavioural Endocrinology. Cambridge, MA, USA: MIT Press; 2002. pp. 88–89.
    1. Waller D. K., Lustig L. S., Smith A. H., Hook E. B. Alpha-fetoprotein: a biomarker for pregnancy outcome. Epidemiology. 1993;4(5):471–476. doi: 10.1097/00001648-199309000-00014.
    1. Lo Y. M., Corbetta N., Chamberlain P. F., et al. Presence of fetal DNA in maternal plasma and serum. The Lancet. 1997;350(9076):485–487. doi: 10.1016/S0140-6736(97)02174-0.
    1. Sekizawa A., Jimbo M., Saito H., et al. Increased cell-free fetal DNA in plasma of two women with invasive placenta. Clinical Chemistry. 2002;48(2):353–354.
    1. Samuel A., Bonanno C., Oliphant A., Batey A., Wright J. D. Fraction of cell-free fetal DNA in the maternal serum as a predictor of abnormal placental invasion-a pilot study. Prenatal Diagnosis. 2013;33(11):1050–1053. doi: 10.1002/pd.4195.
    1. Ng E. K., Tsui N. B., Lau T. K., et al. mRNA of placental origin is readily detectable in maternal plasma. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(8):4748–4753. doi: 10.1073/pnas.0637450100.
    1. Tjoa M. L., Jani J., Lewi L., Peter I., Wataganara T., Johnson K. L. etal. Circulating cell- free fetal messenger RNA levels after fetoscopic interventions of complicated pregnancies. American Journal of Obstetrics & Gynecology. 2006;195(1):230–235. doi: 10.1016/j.ajog.2006.01.041.
    1. Dennis Lo Y. M., Chiu R. W. Prenatal diagnosis: progress through plasma nucleic acids. Nature Reviews Genetics. 2007;8(1):71–77. doi: 10.1038/nrg1982.
    1. Maron J. L., Bianchi D. W. Prenatal diagnosis using cell-free nucleic acids in maternal body fluids: a decade of progress. American Journal of Medical Genetics Part C, Seminars in Medical Genetics. 2007;145C(1):5–17. doi: 10.1002/ajmg.c.30115.
    1. Zhou J., Li J., Yan P., et al. Maternal plasma levels of cell-free β-HCG mRNA as a prenatal diagnostic indicator of placenta accrete. Placenta. 2014;35(9):691–695. doi: 10.1016/j.placenta.2014.07.007.
    1. El Behery M. M., Etewa Rasha L., El Alfy Y. Cell-free placental mRNA in maternal plasma to predict placental invasion in patients with placenta accreta. International Journal of Gynecology & Obstetrics. 2010;109(1):30–33. doi: 10.1016/j.ijgo.2009.11.013.
    1. Ersoy A. O., Oztas E., Ozler S., et al. Can venous ProBNP levels predict placenta accreta? The Journal of Maternal-Fetal & Neonatal Medicine. 2016;29(24):4020–4024. doi: 10.3109/14767058.2016.1152576.
    1. Oztas E., Ozler S., Caglar A. T., Yucel A. Analysis of first and second trimester maternal serum analytes for the prediction of morbidly adherent placenta requiring hysterectomy. The Kaohsiung Journal of Medical Sciences. 2016;32:579–585. doi: 10.1016/j.kjms.2016.08.011.
    1. Craven C. M., Chedwick L. R., Ward K. Placental basal plate formation is associated with fibrin deposition in decidual veins at sites of trophoblast cell invasion. American Journal of Obstetrics & Gynecology. 2002;186(2):291–296. doi: 10.1067/mob.2002.119717.
    1. Vassiliadou N., Bulmer J. N. Characterization of tubal and decidual leukocyte populations in ectopic pregnancy: evidence that endometrial granulated lymphocytes are absent from the tubal implantation site. Fertility and Sterility. 1998;69(4):760–767. doi: 10.1016/S0015-0282(98)00005-3.
    1. Qin L., Wang Y. L., Bai S. X., et al. Temporal and spatial expression of integrins and their extracellular matrix ligands at the maternal-fetal interface in the rhesus monkey during pregnancy. Biology of Reproduction. 2003;69(2):563–571. doi: 10.1095/biolreprod.103.015198.
    1. Kupferminc M. J., Tamura R. K., Wigton T. R., Glassenberg R., Socol M. L. Placenta accreta is associated with elevated maternal serum alpha-fetoprotein. Obstetrics and Gynecology. 1993;82(2):266–269.

Source: PubMed

3
구독하다