Translating principles of precision medicine into speech-language pathology: Clinical trial of a proactive speech and language intervention for infants with classic galactosemia

Beate Peter, Jennifer Davis, Lizbeth Finestack, Carol Stoel-Gammon, Mark VanDam, Laurel Bruce, Yookyung Kim, Linda Eng, Sarah Cotter, Emily Landis, Sam Beames, Nancy Scherer, Ina Knerr, Delaney Williams, Claire Schrock, Nancy Potter, Beate Peter, Jennifer Davis, Lizbeth Finestack, Carol Stoel-Gammon, Mark VanDam, Laurel Bruce, Yookyung Kim, Linda Eng, Sarah Cotter, Emily Landis, Sam Beames, Nancy Scherer, Ina Knerr, Delaney Williams, Claire Schrock, Nancy Potter

Abstract

Precision medicine is an emerging approach to managing disease by taking into consideration an individual's genetic and environmental profile toward two avenues to improved outcomes: prevention and personalized treatments. This framework is largely geared to conditions conventionally falling into the field of medical genetics. Here, we show that the same avenues to improving outcomes can be applied to conditions in the field of behavior genomics, specifically disorders of spoken language. Babble Boot Camp (BBC) is the first comprehensive and personalized program designed to proactively mitigate speech and language disorders in infants at predictable risk by fostering precursor and early communication skills via parent training. The intervention begins at child age 2 to 5 months and ends at age 24 months, with follow-up testing at 30, 42, and 54 months. To date, 44 children with a newborn diagnosis of classic galactosemia (CG) have participated in the clinical trial of BBC. CG is an inborn error of metabolism of genetic etiology that predisposes up to 85% of children to severe speech and language disorders. Of 13 children with CG who completed the intervention and all or part of the follow-up testing, only one had disordered speech and none had disordered language skills. For the treated children who completed more than one assessment, typical speech and language skills were maintained over time. This shows that knowledge of genetic risk at birth can be leveraged toward proactive and personalized management of a disorder that manifests behaviorally.

Keywords: Babble Boot Camp; clinical trial; disorders of speech and language; genetic risk; medical versus behavior genomics; newborn screening; parent training; proactive instead of deficit-based intervention.

Conflict of interest statement

The authors declare no competing interests.

© 2022 The Authors.

Figures

Figure 1
Figure 1
Mean babbling level scores for treated and untreated children with CG and typical controls at ages 10 through 12 months
Figure 2
Figure 2
Scatterplot matrix of mean babbling scores at ages 10 through 12 months, Goldman-Fristoe Test of Articulation 3, and Preschool Language Scales 5 Expressive Communication and Auditory Comprehension subtests GFTA-3, Goldman-Fristoe Test of Articulation 3; PLS-5, Preschool Language Scale 5; BNL, below normal levels; Aud. Compr., auditory comprehension; Expr. Comm., expressive communication; box (□), child with CG who did not receive the intervention but provided continuous data from infancy (data at age 30 months are an estimate based on the mean from age 42 and 54 months).

References

    1. All of Us Research Program I., Denny J.C., Rutter J.L., Goldstein D.B., Philippakis A., Smoller J.W., Jenkins G., Dishman E. The "all of us" research program. N. Engl. J. Med. 2019;381:668–676. doi: 10.1056/nejmsr1809937.
    1. Deriziotis P., Fisher S.E. Speech and language: translating the genome. Trends Genet. 2017;33:642–656. doi: 10.1016/j.tig.2017.07.002.
    1. Shriberg L.D., Tomblin J.B., McSweeny J.L. Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. J. Speech Lang. Hear. Res. 1999;42:1461–1481. doi: 10.1044/jslhr.4206.1461.
    1. Shriberg L.D., Aram D.M., Kwiatkowski J. Developmental apraxia of speech: I. Descriptive and theoretical perspectives. J. Speech Lang. Hear. Res. 1997;40:273–285. doi: 10.1044/jslhr.4002.273.
    1. Shriberg L.D., Potter N.L., Strand E.A. Prevalence and phenotype of childhood apraxia of speech in youth with galactosemia. J. Speech Lang. Hear. Res. 2011;54:487–519. doi: 10.1044/1092-4388(2010/10-0068).
    1. Terband H., Maassen B., van Lieshout P., Nijland L. Stability and composition of functional synergies for speech movements in children with developmental speech disorders. J. Commun. Disord. 2011;44:59–74. doi: 10.1016/j.jcomdis.2010.07.003.
    1. van der Merwe A. In: Clinical Management of Sensorimotor Speech Disorders. Second Edition. McNeil M.R., editor. Thieme Medical Publishers; 2009. A theoretical framework for the characterization of pathological speech sensorimotor control; pp. 3–18.
    1. Peter B., Bruce L., Raaz C., Williams E., Pfeiffer A., Rogalsky C. Comparing global motor characteristics in children and adults with childhood apraxia of speech to a cerebellar stroke patient: evidence for the cerebellar hypothesis in a developmental motor speech disorder. Clin. Linguist. Phon. 2020;35:368–392. doi: 10.1080/02699206.2020.1861103.
    1. Iuzzini-Seigel J. Motor performance in children with childhood apraxia of speech and speech sound disorders. J. Speech Lang. Hear. Res. 2019;62:3220–3233. doi: 10.1044/2019_jslhr-s-18-0380.
    1. Tomblin J.B., Records N.L., Buckwalter P., Zhang X., Smith E., O'Brien M. Prevalence of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 1997;40:1245–1260. doi: 10.1044/jslhr.4006.1245.
    1. Berry G.T. In: GeneReviews((R)) Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., et al., editors. University of Washington; 1993. Classic galactosemia and clinical variant galactosemia.
    1. Potter N.L. Personal Communication; 2015. Prelinguistic and Early Linguistic Development Is Delayed in Infants with Galactosemia (A Social Media Inquiry)
    1. Waisbren S.E., Norman T.R., Schnell R.R., Levy H.L. Speech and language deficits in early-treated children with galactosemia. J. Pediatr. 1983;102:75–77. doi: 10.1016/s0022-3476(83)80292-3.
    1. Peterson R.L., Pennington B.F. Developmental dyslexia. Lancet. 2012;379:1997–2007. doi: 10.1016/s0140-6736(12)60198-6.
    1. Lousada M., Jesus L.M.T., Hall A., Joffe V. Intelligibility as a clinical outcome measure following intervention with children with phonologically based speech-sound disorders. Int. J. Lang. Commun. Disord. 2014;49:584–601. doi: 10.1111/1460-6984.12095.
    1. Hall B.J.C. Attitudes of fourth and sixth graders toward peers with mild articulation disorders. Lang. Speech Hear. Serv. Sch. 1991;22:334–340. doi: 10.1044/0161-1461.2201.334.
    1. Lindsay G., Dockrell J.E., Mackie C. Vulnerability to bullying in children with a history of specific speech and language difficulties. Eur. J. Spec. Needs Educ. 2008;23:1–16. doi: 10.1080/08856250701791203.
    1. Hitchcock E.R., Harel D., Byun T.M. Social, emotional, and academic impact of residual speech errors in school-aged children: a survey study. Semin. Speech Lang. 2015;36:283–294. doi: 10.1055/s-0035-1562911.
    1. McCormack J., McLeod S., McAllister L., Harrison L.J. A systematic review of the association between childhood speech impairment and participation across the lifespan. Int. J. Speech Lang. Pathol. 2009;11:155–170. doi: 10.1080/17549500802676859.
    1. Peter B. In: Comprehensive Perspectives on Speech Sound Development and Disorders: Pathways from Linguistic Theory to Clinical Practice. Peter B., MacLeod A., editors. Nova Science Publishers; 2013. Subtypes of primary speech sound disorders: theories and case studies.
    1. Raskind W.H., Peter B., Richards T., Eckert M.M., Berninger V.W. The genetics of reading disabilities: from phenotypes to candidate genes. Front. Psychol. 2012;3:601. doi: 10.3389/fpsyg.2012.00601.
    1. Lewis B.A., Avrich A.A., Freebairn L.A., Hansen A.J., Sucheston L.E., Kuo I., Taylor H.G., Iyengar S.K., Stein C.M. Literacy outcomes of children with early childhood speech sound disorders: impact of endophenotypes. J. Speech Lang. Hear. Res. 2011;54:1628–1643. doi: 10.1044/1092-4388(2011/10-0124).
    1. Sices L., Taylor H.G., Freebairn L., Hansen A., Lewis B. Relationship between speech-sound disorders and early literacy skills in preschool-age children: impact of comorbid language impairment. J. Dev. Behav. Pediatr. 2007;28:438–447. doi: 10.1097/dbp.0b013e31811ff8ca.
    1. Lewis B.A., Freebairn L.A., Hansen A.J., Iyengar S.K., Taylor H.G. School-age follow-up of children with childhood apraxia of speech. Lang. Speech Hear. Serv. Sch. 2004;35:122–140. doi: 10.1044/0161-1461(2004/014).
    1. Nathan L., Stackhouse J., Goulandris N., Snowling M.J. The development of early literacy skills among children with speech difficulties: a test of the "critical age hypothesis". J. Speech Lang. Hear. Res. 2004;47:377–391. doi: 10.1044/1092-4388(2004/031).
    1. Culton G.L. Speech disorders among college freshmen: a 13-year survey. J. Speech Hear. Disord. 1986;51:3–7. doi: 10.1044/jshd.5101.03.
    1. Allard E.R., Williams D.F. Listeners' perceptions of speech and language disorders. J. Commun. Disord. 2008;41:108–123. doi: 10.1016/j.jcomdis.2007.05.002.
    1. Mitchell P., McMahon B., McKee D. Speech impairment and workplace discrimination: the national EEOC ADA research project. J. Vocat. Rehabil. 2005;23:163–169.
    1. Vieland V.J., Merette C., Goodman D., Rouillard E. Identification and mapping of Mendelian subtypes of disease. Genet. Epidemiol. 1995;12:819–824. doi: 10.1002/gepi.1370120648.
    1. Baker E., McLeod S. Evidence-based practice for children with speech sound disorders: part 1 narrative review. Lang. Speech Hear. Serv. Sch. 2011;42:102–139. doi: 10.1044/0161-1461(2010/09-0075).
    1. Campbell T.F. In: Clinical Management of Motor Speech Disorders in Children. Caruso A.J., Strand E.A., editors. Thieme; 1999. Functional treatment outcomes in young children with motor speech disorders; pp. 385–397.
    1. Young A.R., Beitchman J.H., Johnson C., Douglas L., Atkinson L., Escobar M., Wilson B. Young adult academic outcomes in a longitudinal sample of early identified language impaired and control children. J. Child Psychol. Psychiatry. 2002;43:635–645. doi: 10.1111/1469-7610.00052.
    1. Cronin P., Reeve R., McCabe P., Viney R., Goodall S. The impact of childhood language difficulties on healthcare costs from 4 to 13 years: Australian longitudinal study. Int. J. Speech Lang. Pathol. 2017;19:381–391. doi: 10.1080/17549507.2016.1216599.
    1. Berninger V.W., Abbott R.D., Thomson J.B., Raskind W.H. Language phenotype for reading and writing disability: a family approach. Sci. Stud. Read. 2001;5:59–106. doi: 10.1207/s1532799xssr0501_3.
    1. Shaywitz S.E., Shaywitz B.A., Fletcher J.M., Escobar M.D. Prevalence of reading-disability in boys and girls - results of the Connecticut Longitudinal-Study. J. Am. Med. Assoc. 1990;264:998–1002. doi: 10.1001/jama.1990.03450080084036.
    1. de Beer J., Engels J., Heerkens Y., van der Klink J. Factors influencing work participation of adults with developmental dyslexia: a systematic review. BMC Publ. Health. 2014;14:77. doi: 10.1186/1471-2458-14-77.
    1. Graham S.A., Fisher S.E. Understanding language from a genomic perspective. Annu. Rev. Genet. 2015;49:131–160. doi: 10.1146/annurev-genet-120213-092236.
    1. Guerra J., Cacabelos R. Genomics of speech and language disorders. J. Transl. Genet. Genom. 2019;3 doi: 10.20517/jtgg.2018.03.
    1. Gialluisi A., Andlauer T.F.M., Mirza-Schreiber N., Moll K., Becker J., Hoffmann P., Ludwig K.U., Czamara D., Pourcain B.S., Honbolygo F., et al. Genome-wide association study reveals new insights into the heritability and genetic correlates of developmental dyslexia. Mol. Psychiatr. 2020 doi: 10.1038/s41380-020-00898-x.
    1. Gialluisi A., Andlauer T.F.M., Mirza-Schreiber N., Moll K., Becker J., Hoffmann P., Ludwig K.U., Czamara D., St Pourcain B., Brandler W., et al. Genome-wide association scan identifies new variants associated with a cognitive predictor of dyslexia. Transl. Psychiatry. 2019;9:77. doi: 10.1038/s41398-019-0402-0.
    1. Peter B., Matsushita M., Oda K., Raskind W. De novo microdeletion of BCL11A is associated with severe speech sound disorder. Am. J. Med. Genet. 2014;164:2091–2096. doi: 10.1002/ajmg.a.36599.
    1. Eising E., Carrion-Castillo A., Vino A., Strand E.A., Jakielski K.J., Scerri T.S., Hildebrand M.S., Webster R., Ma A., Mazoyer B., et al. A set of regulatory genes co-expressed in embryonic human brain is implicated in disrupted speech development. Mol. Psychiatr. 2018;24:1065–1078. doi: 10.1038/s41380-018-0020-x.
    1. Manto M., Bower J.M., Conforto A.B., Delgado-Garcia J.M., da Guarda S.N.F., Gerwig M., Habas C., Hagura N., Ivry R.B., Marien P., et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–487. doi: 10.1007/s12311-011-0331-9.
    1. Marien P., Ackermann H., Adamaszek M., Barwood C.H.S., Beaton A., Desmond J., De Witte E., Fawcett A.J., Hertrich I., Kuper M., et al. Consensus paper: language and the cerebellum: an ongoing enigma. Cerebellum. 2014;13:386–410. doi: 10.1007/s12311-013-0540-5.
    1. Button L., Peter B., Stoel-Gammon C., Raskind W.H. Associations among measures of sequential processing in motor and linguistics tasks in adults with and without a family history of childhood apraxia of speech: a replication study. Clin. Linguist. Phon. 2013;27:192–212. doi: 10.3109/02699206.2012.744097.
    1. Peter B., Albert A., Gray S. Spelling errors reveal underlying sequential and spatial processing deficits in adults with dyslexia. Clin. Linguist. Phon. 2021;35:310–339. doi: 10.1080/02699206.2020.1780322.
    1. Peter B., Albert A., Panagiotides H., Gray S. Sequential and spatial letter reversals in adults with dyslexia during a word comparison task: demystifying the "was saw" and "db" myths. Clin. Linguist. Phon. 2021;35:340–367. doi: 10.1080/02699206.2019.1705916.
    1. Peter B., Button L., Stoel-Gammon C., Chapman K., Raskind W.H. Deficits in sequential processing manifest in motor and linguistic tasks in a multigenerational family with childhood apraxia of speech. Clin. Linguist. Phon. 2013;27:163–191. doi: 10.3109/02699206.2012.736011.
    1. Peter B., Dougherty M.J., Reed E.K., Edelman E., Hanson K. Perceived gaps in genetics training among audiologists and speech-language pathologists: lessons from a national survey. Am. J. Speech Lang. Pathol. 2019;28:408–423. doi: 10.1044/2018_ajslp-18-0069.
    1. Fridovich-Keil J.L. In: The Online Metabolic & Molecular Bases of Inherited Disease. Valle D., Beaudet A.L., Vogelstein B., Kinzler K., Antonarakis S.E., Ballabio A., editors. McGraw Hill; 2008. Galactosemia.
    1. Coss K.P., Doran P.P., Owoeye C., Codd M.B., Hamid N., Mayne P.D., Crushell E., Knerr I., Monavari A.A., Treacy E.P. Classical Galactosaemia in Ireland: incidence, complications and outcomes of treatment. J. Inherit. Metab. Dis. 2013;36:21–27. doi: 10.1007/s10545-012-9507-9.
    1. Berry G.T. Is prenatal myo-inositol deficiency a mechanism of CNS injury in galactosemia? J. Inherit. Metab. Dis. 2011;34:555. doi: 10.1007/s10545-011-9310-z.
    1. Ryan E.L., Lynch M.E., Taddeo E., Gleason T.J., Epstein M.P., Fridovich-Keil J.L. Cryptic residual GALT activity is a potential modifier of scholastic outcome in school age children with classic galactosemia. J. Inherit. Metab. Dis. 2013;36:1049–1061. doi: 10.1007/s10545-012-9575-x.
    1. Demirbas D., Coelho A.I., Rubio-Gozalbo M.E., Berry G.T. Hereditary galactosemia. Metabolism. 2018;83:188–196.
    1. Antshel K.M., Epstein I.O., Waisbren S.E. Cognitive strengths and weaknesses in children and adolescents homozygous for the galactosemia Q188R mutation: a descriptive study. Neuropsychology. 2004;18:658–664. doi: 10.1037/0894-4105.18.4.658.
    1. Potter N.L., Nievergelt Y., Shriberg L.D. Motor and speech disorders in classic galactosemia. JIMD Rep. 2013;11:31–41. doi: 10.1007/8904_2013_219.
    1. Karadag N., Zenciroglu A., Eminoglu F.T., Dilli D., Karagol B.S., Kundak A., Dursun A., Hakan N., Okumus N. Literature review and outcome of classic galactosemia diagnosed in the neonatal period. Clin. Lab. 2013;59:1139–1146. doi: 10.7754/clin.lab.2013.121235.
    1. Webb A.L., Singh R.H., Kennedy M.J., Elsas L.J. Verbal dyspraxia and galactosemia. Pediatr. Res. 2003;53:396–402. doi: 10.1203/01.pdr.0000049666.19532.1b.
    1. Nelson D. Verbal dyspraxia in children with galactosemia. Eur. J. Pediatr. 1995;154:S6–S7. doi: 10.1007/bf02143795.
    1. Nelson C.D., Waggoner D.D., Donnell G.N., Tuerck J.M., Buist N.R.M., Buist N.R. Verbal dyspraxia in treated galactosemia. Pediatrics. 1991;88:346–350. doi: 10.1542/peds.88.2.346.
    1. Timmers I., van den Hurk J., Di Salle F., Rubio-Gozalbo M.E., Jansma B.M. Language production and working memory in classic galactosemia from a cognitive neuroscience perspective: future research directions. J. Inherit. Metab. Dis. 2011;34:367–376. doi: 10.1007/s10545-010-9266-4.
    1. Lewis F.M., Coman D.J., Syrmis M., Kilcoyne S., Murdoch B.E. Charting a seven-year trajectory of language outcomes for a child with galactosemia. J. Dev. Behav. Pediatr. 2013;34:414–418. doi: 10.1097/dbp.0b013e31829a7be1.
    1. Lewis F.M., Coman D.J., Syrmis M., Kilcoyne S., Murdoch B.E. Differential phonological awareness skills in children with classic galactosemia: a descriptive study of four cases. JIMD Rep. 2013;10:45–52. doi: 10.1007/8904_2012_200.
    1. Timmers I., Jansma B.M., Rubio-Gozalbo M.E. From mind to mouth: event related potentials of sentence production in classic galactosemia. PLoS One. 2012;7:e52826. doi: 10.1371/journal.pone.0052826.
    1. Potter N.L., Lazarus J.A.C., Johnson J.M., Steiner R.D., Shriberg L.D. Correlates of language impairment in children with galactosaemia. J. Inherit. Metab. Dis. 2008;31:524–532. doi: 10.1007/s10545-008-0877-y.
    1. Waggoner D.D., Buist N.R.M., Donnell G.N. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J. Inherit. Metab. Dis. 1990;13:802–818. doi: 10.1007/bf01800204.
    1. Hughes J., Ryan S., Lambert D., Geoghegan O., Clark A., Rogers Y., Hendroff U., Monavari A., Twomey E., Treacy E.P. Outcomes of siblings with classical galactosemia. J. Pediatr. 2009;154:721–726. doi: 10.1016/j.jpeds.2008.11.052.
    1. Rubio-Gozalbo M.E., Haskovic M., Bosch A.M., Burnyte B., Coelho A.I., Cassiman D., Couce M.L., Dawson C., Demirbas D., Derks T., et al. The natural history of classic galactosemia: lessons from the GalNet registry. Orphanet J. Rare Dis. 2019;14:86. doi: 10.1186/s13023-019-1047-z.
    1. Waisbren S.E., Potter N.L., Gordon C.M., Green R.C., Greenstein P., Gubbels C.S., Rubio-Gozalbo E., Schomer D., Welt C., Anastasoaie V., et al. The adult galactosemic phenotype. J. Inherit. Metab. Dis. 2012;35:279–286. doi: 10.1007/s10545-011-9372-y.
    1. Dubroff J.G., Ficicioglu C., Segal S., Wintering N.A., Alavi A., Newberg A.B. FDG-PET findings in patients with galactosaemia. J. Inherit. Metab. Dis. 2008;31:533–539. doi: 10.1007/s10545-008-0806-0.
    1. Ahtam B., Waisbren S.E., Anastasoaie V., Berry G.T., Brown M., Petrides S., Afacan O., Prabhu S.P., Schomer D., Grant P.E., Greenstein P.E. Identification of neuronal structures and pathways corresponding to clinical functioning in galactosemia. J. Inherit. Metab. Dis. 2020;43:1205–1218. doi: 10.1002/jimd.12279.
    1. Peter B., Davis J., Cotter S., Belter A., Williams E., Stumpf M., Bruce L., Eng L., Kim Y., Finestack L., et al. Toward preventing speech and language disorders of known genetic origin: first post-intervention results of babble Boot Camp in children with classic galactosemia. Am. J. Speech Lang. Pathol. 2021;30:2616–2634. doi: 10.1044/2021_AJSLP-21-00098.
    1. Peter B., Potter N., Davis J., Donenfeld-Peled I., Finestack L., Stoel-Gammon C., Lien K., Bruce L., Vose C., Eng L., et al. Toward a paradigm shift from deficit-based to proactive speech and language treatment: randomized pilot trial of the Babble Boot Camp in infants with classic galactosemia. F1000Res. 2019;8:271. doi: 10.12688/f1000research.18062.2.
    1. Graham S.A., Deriziotis P., Fisher S.E. Insights into the genetic foundations of human communication. Neuropsychol. Rev. 2015;25:3–26. doi: 10.1007/s11065-014-9277-2.
    1. Highman C., Hennessey N.W., Leitao S., Piek J.P. Early development in infants at risk of childhood apraxia of speech: a longitudinal investigation. Dev. Neuropsychol. 2013;38:197–210. doi: 10.1080/87565641.2013.774405.
    1. Highman C., Leitao S., Hennessey N., Piek J. Prelinguistic communication development in children with childhood apraxia of speech: a retrospective analysis. Int. J. Speech Lang. Pathol. 2012;14:35–47. doi: 10.3109/17549507.2011.596221.
    1. Bosch A.M., Maurice-Stam H., Wijburg F.A., Grootenhuis M.A. Remarkable differences: the course of life of young adults with galactosaemia and PKU. J. Inherit. Metab. Dis. 2009;32:706. doi: 10.1007/s10545-009-1253-2.
    1. Potter N.L. Personal Communication; 2016. A Facebook Survey of Families with Galactosemia: Tell Us about Babble, First Assessments, and Start of Treatment.
    1. Roberts M.Y., Kaiser A.P., Wolfe C.E., Bryant J.D., Spidalieri A.M. Effects of the teach-model-coach-review instructional approach on caregiver use of language support strategies and children's expressive language skills. J. Speech Lang. Hear. Res. 2014;57:1851–1869. doi: 10.1044/2014_jslhr-l-13-0113.
    1. Vygotsky L.S. The development of higher forms of attention in childhood. Sov. Psychol. 1979;18:67–115. doi: 10.2753/rpo1061-0405180167.
    1. Stoel-Gammon C. Prespeech and early speech development of two late talkers. First Lang. 1989;9:207–223. doi: 10.1177/014272378900900607.
    1. Paul R., Jennings P. Phonological behavior in toddlers with slow expressive language development. J. Speech Hear. Res. 1992;35:99–107. doi: 10.1044/jshr.3501.99.
    1. Squires J., Bricker D. Third Edition. Brookes; 2009. Ages & Stages Questionnaires.
    1. Fenson L., Marchman V.A., Thal D.J., Dale P.S., Reznick J.S., Bates E. Second Edition. Brookes; 2007. MacArthur-Bates Communicative Development Inventories: User's Guide and Technical Manual.
    1. Goldman R., Fristoe M. Pearson; 2015. Goldman-Fristoe Test of Articulation - 3.
    1. Zimmerman I., Steiner V., Pond R. Fifth Edition. Pearson; 2011. Preschool Language Scales.
    1. Kaufman A.S., Kaufman N.L. Second Edition. American Guidance Sericces; 2004. Kaufman Brief Intelligence Test.
    1. Judith K.V., Maddox T. Second Edition. PRO-ED; 2013. Developmental Assessment of Young Children. DAYC-2)
    1. Dunn W. Pearson; 2014. Sensory Profile 2.
    1. DePaolis R.A., Vihman M.M., Nakai S. The influence of babbling patterns on the processing of speech. Infant Behav. Dev. 2013;36:642–649. doi: 10.1016/j.infbeh.2013.06.007.
    1. Oller D.K., Eilers R.E., Neal A.R., Cobo-Lewis A.B. Late onset canonical babbling: a possible early marker of abnormal development. Am. J. Ment. Retard. 1998;103:249–263. doi: 10.1352/0895-8017(1998)103<0249:locbap>;2.
    1. Oller D.K., Eilers R.E., Neal A.R., Schwartz H.K. Precursors to speech in infancy. J. Commun. Disord. 1999;32:223–245. doi: 10.1016/s0021-9924(99)00013-1.

Source: PubMed

3
구독하다