Retinal Inflammation, Cell Death and Inherited Retinal Dystrophies

Lorena Olivares-González, Sheyla Velasco, Isabel Campillo, Regina Rodrigo, Lorena Olivares-González, Sheyla Velasco, Isabel Campillo, Regina Rodrigo

Abstract

Inherited retinal dystrophies (IRDs) are a group of retinal disorders that cause progressive and severe loss of vision because of retinal cell death, mainly photoreceptor cells. IRDs include retinitis pigmentosa (RP), the most common IRD. IRDs present a genetic and clinical heterogeneity that makes it difficult to achieve proper treatment. The progression of IRDs is influenced, among other factors, by the activation of the immune cells (microglia, macrophages, etc.) and the release of inflammatory molecules such as chemokines and cytokines. Upregulation of tumor necrosis factor alpha (TNFα), a pro-inflammatory cytokine, is found in IRDs. This cytokine may influence photoreceptor cell death. Different cell death mechanisms are proposed, including apoptosis, necroptosis, pyroptosis, autophagy, excessive activation of calpains, or parthanatos for photoreceptor cell death. Some of these cell death mechanisms are linked to TNFα upregulation and inflammation. Therapeutic approaches that reduce retinal inflammation have emerged as useful therapies for slowing down the progression of IRDs. We focused this review on the relationship between retinal inflammation and the different cell death mechanisms involved in RP. We also reviewed the main anti-inflammatory therapies for the treatment of IRDs.

Keywords: TNFα; cell death; inflammation; retinal dystrophies.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
A scheme of possible cell death mechanisms during of tumor necrosis factor alpha (TNFα)-induced signaling in inherited retinal dystrophies (IRDs). TNFα can simultaneously activate multiple signaling pathways of cell death or survival. TNFα binds to tumor necrosis factor receptor 1 (TNFR1), triggering three functional states. (i) The intracellular domain of TNFR1 recruits a death-domain containing adaptor protein (TRADD). TRADD recruits TNF receptor-associated factor 2 (TRAF2) and receptor-interacting protein kinase 1 (RIPK1) to form Complex 1. Complex 1 seems to be important for nuclear factor kappa beta (NF-κB)activation. NF-κB regulates anti-apoptotic genes to block the initiation of apoptosis by Complex 2. (ii) Complex 1 dissociates from TNFR1 and integrates Fas-associated protein with death domain (FADD) and pro-caspase 8 to form Complex 2. The FADD/caspase 8 association depends on complexes containing unubiquitinated RIPK1 as a scaffold. Activated caspase 8 induces caspase 3 and apoptosis. Under apoptotic conditions, active caspase 8 prevents further necroptotic signaling by cleaving and inactivating RIPK1 and RIPK3. (iii) Necroptosis is also mediated through TNFα signaling, when caspase 8 is not active. RIPK1 recruits RIPK3 to form the necrosome complex. RIPK3 phosphorylates the pseudokinase kinase-like domain of mixed-lineage kinase do-main-like (MLKL), leading to its oligomerization. Thus, MLKL recruitment to the plasma membrane induces necroptosis by triggering Ca+ and Na2+ influx into the cell. RIPK3 can also promote the nucleotide-binding oligomerization domain containing protein (NOD)-like receptor (NLR) family protein 3 (NLRP3) inflammasome and interleukin (IL)-1β inflammatory responses. TNFα or oxidative stress could activate parthanatos through the overactivation of poly [ADP-ribose] polymerase 1 (PARP1). PARP1 cleaves nicotinamide adenine dinucleotide (NAD+) to nicotinamide and adenosine diphosphate (ADP-ribose). PARPs couple one or more ADP-ribose (PAR) to acceptor proteins (PARylation) and components of the DNA repair machinery. Overactivation of PARP1 can deplete cellular adenosine triphosphate (ATP) and NAD+ storage and lead to bioenergetic collapse and cell death. Adapted from Olivares-González et al. [28].
Figure 2
Figure 2
Schematic representation of the inflammatory processes underlying photoreceptor degeneration in retinitis pigmentosa, the most common inherited retinal dystrophy (IRD). The genetic defect leads to rod degeneration. During rod degeneration several cellular processes are activated, including inflammation and oxidative stress, which lead to the loss of intercellular communications, the oxidation of macromolecules, and the activation of microglia and Müller cells, among others. Activated microglia cells release inflammatory molecules such as cytokines (tumor necrosis factor alpha (TNFα) and interleukin 6 (IL6)), chemokines, etc., which would exacerbate photoreceptor degeneration (both rods and cones) through different cell death mechanism such as necroptosis, parthanatos, apoptosis, etc.

References

    1. Hartong D.T., Berson E.L., Dryja T.P. Retinitis pigmentosa. Lancet. 2006;368:1795–1809. doi: 10.1016/S0140-6736(06)69740-7.
    1. Wooff Y., Man S.M., Aggio-Bruce R., Natoli R., Fernando N. IL-1 Family Members Mediate Cell Death, Inflammation and Angiogenesis in Retinal Degenerative Diseases. Front. Immunol. 2019;10:1618. doi: 10.3389/fimmu.2019.01618.
    1. Broadgate S., Yu J., Downes S.M., Halford S. Unravelling the genetics of inherited retinal dystrophies: Past, present and future. Prog. Retin. Eye Res. 2017;59:53–96. doi: 10.1016/j.preteyeres.2017.03.003.
    1. RetNet Retinal Information Network. [(accessed on 29 December 2020)]; Available online: .
    1. Chang B. Animal Models of Retinitis Pigmentosa (RP) In: Chan C.-C., editor. Animal Models of Ophthalmic Diseases. Springer International Publishing; Cham, Switzerland: 2016. pp. 101–116.
    1. Campochiaro P.A., Mir T.A. The mechanism of cone cell death in Retinitis Pigmentosa. Prog. Retin. Eye Res. 2018;62:24–37. doi: 10.1016/j.preteyeres.2017.08.004.
    1. Chen L., Deng H., Cui H., Fang J., Zuo Z., Deng J., Li Y., Wang X., Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2018;9:7204–7218. doi: 10.18632/oncotarget.23208.
    1. Jiao H., Natoli R., Valter K., Provis J.M., Rutar M. Spatiotemporal Cadence of Macrophage Polarisation in a Model of Light-Induced Retinal Degeneration. PLoS ONE. 2015;10:e0143952. doi: 10.1371/journal.pone.0143952.
    1. McMenamin P.G., Saban D.R., Dando S.J. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog. Retin. Eye Res. 2019;70:85–98. doi: 10.1016/j.preteyeres.2018.12.002.
    1. Streit W.J., Mrak R.E., Griffin W.S.T. Microglia and neuroinflammation: A pathological perspective. J. Neuroinflammation. 2004;1:14. doi: 10.1186/1742-2094-1-14.
    1. Karlstetter M., Scholz R., Rutar M., Wong W.T., Provis J.M., Langmann T. Retinal microglia: Just bystander or target for therapy? Prog. Retin. Eye Res. 2015;45:30–57. doi: 10.1016/j.preteyeres.2014.11.004.
    1. Vilhardt F. Microglia: Phagocyte and glia cell. Int. J. Biochem. Cell Biol. 2005;37:17–21. doi: 10.1016/j.biocel.2004.06.010.
    1. Noailles A., Fernández-Sánchez L., Lax P., Cuenca N. Microglia activation in a model of retinal degeneration and TUDCA neuroprotective effects. J. Neuroinflammation. 2014;11:186. doi: 10.1186/s12974-014-0186-3.
    1. Arroba A.I., Valverde Á.M. Modulation of microglia in the retina: New insights into diabetic retinopathy. Acta Diabetol. 2017;54:527–533. doi: 10.1007/s00592-017-0984-z.
    1. Murakami Y., Ishikawa K., Nakao S., Sonoda K.-H. Innate immune response in retinal homeostasis and inflammatory disorders. Prog. Retin. Eye Res. 2020;74:100778. doi: 10.1016/j.preteyeres.2019.100778.
    1. Sun Y., Lin Z., Liu C.-H., Gong Y., Liegl R., Fredrick T.W., Meng S.S., Burnim S.B., Wang Z., Akula J.D., et al. Inflammatory signals from photoreceptor modulate pathological retinal angiogenesis via c-Fos. J. Exp. Med. 2017;214:1753–1767. doi: 10.1084/jem.20161645.
    1. Massengill M.T., Ahmed C.M., Lewin A.S., Ildefonso C.J. Neuroinflammation in Retinitis Pigmentosa, Diabetic Retinopathy, and Age-Related Macular Degeneration: A Minireview. Volume 1074. Springer International Publishing; Cham, Switzerland: 2018. pp. 185–191.
    1. Murakami Y., Ikeda Y., Nakatake S., Fujiwara K., Tachibana T., Yoshida N., Notomi S., Hisatomi T., Yoshida S., Ishibashi T., et al. C-Reactive protein and progression of vision loss in retinitis pigmentosa. Acta Ophthalmol. 2018;96:e174–e179. doi: 10.1111/aos.13502.
    1. Zabel M.K., Zhao L., Zhang Y., Gonzalez S.R., Ma W., Wang X., Fariss R.N., Wong W.T. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64:1479–1491. doi: 10.1002/glia.23016.
    1. Newsome D.A., Michels R.G. Detection of Lymphocytes in the Vitreous Gel of Patients with Retinitis Pigmentosa. Am. J. Ophthalmol. 1988;105:596–602. doi: 10.1016/0002-9394(88)90050-5.
    1. Gupta N., Brown K.E., Milam A.H. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp. Eye Res. 2003;76:463–471. doi: 10.1016/S0014-4835(02)00332-9.
    1. Yoshida N., Ikeda Y., Notomi S., Ishikawa K., Murakami Y., Hisatomi T., Enaida H., Ishibashi T. Clinical Evidence of Sustained Chronic Inflammatory Reaction in Retinitis Pigmentosa. Ophthalmology. 2013;120:100–105. doi: 10.1016/j.ophtha.2012.07.006.
    1. Appelbaum T., Santana E., Aguirre G.D. Strong upregulation of inflammatory genes accompanies photoreceptor demise in canine models of retinal degeneration. PLoS ONE. 2017;12:e0177224. doi: 10.1371/journal.pone.0177224.
    1. Berge J.C.T., Fazil Z., Born I.V.D., Wolfs R.C.W., Schreurs M.W.J., Dik W.A., Rothova A. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019;97:185–192. doi: 10.1111/aos.13899.
    1. Okita A., Murakami Y., Shimokawa S., Funatsu J., Fujiwara K., Nakatake S., Koyanagi Y., Akiyama M., Takeda A., Hisatomi T., et al. Changes of Serum Inflammatory Molecules and Their Relationships with Visual Function in Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2020;61:30. doi: 10.1167/iovs.61.11.30.
    1. Totsuka K., Ueta T., Uchida T., Roggia M.F., Nakagawa S., Vavvas D.G., Honjo M., Aihara M. Oxidative stress induces ferroptotic cell death in retinal pigment epithelial cells. Exp. Eye Res. 2019;181:316–324. doi: 10.1016/j.exer.2018.08.019.
    1. Mathis T., Housset M., Eandi C., Beguier F., Touhami S., Reichman S., Augustin S., Gondouin P., Sahel J.-A., Kodjikian L., et al. Activated monocytes resist elimination by retinal pigment epithelium and downregulate their OTX2 expression via TNF-α. Aging Cell. 2017;16:173–182. doi: 10.1111/acel.12540.
    1. Olivares-González L., Velasco S., Millán J.M., Rodrigo R. Intravitreal administration of adalimumab delays retinal degeneration in rd10 mice. FASEB J. 2020;34:13839–13861. doi: 10.1096/fj.202000044RR.
    1. Cvenkel B., Kopitar A.N., Ihan A. Inflammatory Molecules in Aqueous Humour and on Ocular Surface and Glaucoma Surgery Outcome. Mediat. Inflamm. 2010;2010:939602. doi: 10.1155/2010/939602.
    1. Durrani K., Ahmed M., Foster C.S. Adamantiades-Behcet disease: Diagnosis and current concepts in management of ocular manifestations. Compr. Ophthalmol. Update. 2007;8:225–233.
    1. Fernández-Vega B., Fernández-Vega Á., Rangel C.M., Nicieza J., Villota-Deleu E., Vega J.A., Sanchez-Avila R.M. Blockade of Tumor Necrosis Factor-Alpha: A Role for Adalimumab in Neovascular Age-Related Macular Degeneration Refractory to Anti-Angiogenesis Therapy? Case Rep. Ophthalmol. 2016;7:154–162. doi: 10.1159/000445102.
    1. Japiassú R.M., Brasil O.F.M., Cunha A.L., De Souza E.C. Regression of Vasoproliferative Tumor with Systemic Infliximab. Ophthalmic Surg. Lasers Imaging. 2008;39:348–349. doi: 10.3928/15428877-20080701-09.
    1. Saxena S., Khanna V.K., Pant A.B., Meyer C.H., Singh V.K. Elevated Tumor Necrosis Factor in Serum Is Associated with Increased Retinal Ischemia in Proliferative Eales’ Disease. Pathobiology. 2011;78:261–265. doi: 10.1159/000329589.
    1. Kocabora M.S., Telli M.E., Fazil K., Erdur S.K., Ozsutcu M., Çekiç O., Ozbilen K.T. Serum and Aqueous Concentrations of Inflammatory Markers in Diabetic Macular Edema. Ocul. Immunol. Inflamm. 2016;24:549–554. doi: 10.3109/09273948.2015.1034804.
    1. Sharma R.K., Rogojina A.T., Chalam K. Multiplex immunoassay analysis of biomarkers in clinically accessible quantities of human aqueous humor. Mol. Vis. 2009;15:60–69.
    1. Takeuchi M., Sato T., Tanaka A., Muraoka T., Taguchi M., Sakurai Y., Karasawa Y., Ito M. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients. PLoS ONE. 2015;10:e0137358. doi: 10.1371/journal.pone.0137358.
    1. Huang Z., Zhou T., Sun X., Zheng Y., Cheng B., Li M., Liu X., He C. Necroptosis in microglia contributes to neuroinflammation and retinal degeneration through TLR4 activation. Cell Death Differ. 2018;25:180–189. doi: 10.1038/cdd.2017.141.
    1. de la Cámara C.M., Hernández-Pinto A.M., Olivares-González L., Cuevas-Martín C., Sánchez-Aragó M., Hervás D., Salom D., Cuezva J.M., Enrique J., Millán J.M., et al. Adalimumab Reduces Photoreceptor Cell Death in A Mouse Model of Retinal Degeneration. Sci. Rep. 2015;5:11764. doi: 10.1038/srep11764.
    1. de la Cámara C.M., Olivares-González L., Hervás D., Salom D., Millán J.M., Rodrigo R. Infliximab reduces Zaprinast-induced retinal degeneration in cultures of porcine retina. J. Neuroinflammation. 2014;11:172. doi: 10.1186/s12974-014-0172-9.
    1. Olivares-Gonza´ lez L., Martínez-Fernandez de la Ca´ mara C., Herva´ s D., Mar´ a Milla´ n J., Rodrigo R. HIF-1α stabilization reduces retinal degeneration in a mouse model of retinitis pigmentosa. FASEB J. 2018;32:2438–2451. doi: 10.1096/fj.201700985R.
    1. Rana T., Kotla P., Fullard R., Gorbatyuk M. TNFa knockdown in the retina promotes cone survival in a mouse model of autosomal dominant retinitis pigmentosa. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2017;1863:92–102. doi: 10.1016/j.bbadis.2016.10.008.
    1. Niederkorn J.Y. Immune escape mechanisms of intraocular tumors. Prog. Retin. Eye Res. 2009;28:329–347. doi: 10.1016/j.preteyeres.2009.06.002.
    1. Noailles A., Maneu V., Campello L., Lax P., Cuenca N. Systemic inflammation induced by lipopolysaccharide aggravates inherited retinal dystrophy. Cell Death Dis. 2018;9:350. doi: 10.1038/s41419-018-0355-x.
    1. Zhao L., Zabel M.K., Wang X., Ma W., Shah P., Fariss R.N., Qian H., Parkhurst C.N., Gan W., Wong W.T. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol. Med. 2015;7:1179–1197. doi: 10.15252/emmm.201505298.
    1. Peng B., Xiao J., Wang K., So K.-F., Tipoe G.L., Lin B. Suppression of Microglial Activation Is Neuroprotective in a Mouse Model of Human Retinitis Pigmentosa. J. Neurosci. 2014;34:8139–8150. doi: 10.1523/JNEUROSCI.5200-13.2014.
    1. Feldman N., Rotter-Maskowitz A., Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res. Rev. 2015;24:29–39. doi: 10.1016/j.arr.2015.01.003.
    1. Akhtar-Schäfer I., Wang L., Krohne T.U., Xu H., Langmann T. Modulation of three key innate immune pathways for the most common retinal degenerative diseases. EMBO Mol. Med. 2018;10:e8259. doi: 10.15252/emmm.201708259.
    1. Fletcher E.L. Mechanisms of Photoreceptor Death During Retinal Degeneration. Optom. Vis. Sci. 2010;87:269–275. doi: 10.1097/OPX.0b013e3181c9132b.
    1. Franchi L., Eigenbrod T., Muñoz-Planillo R., Nuñez G. The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol. 2009;10:241–247. doi: 10.1038/ni.1703.
    1. Silva-Vilches C., Ring S., Mahnke K. ATP and Its Metabolite Adenosine as Regulators of Dendritic Cell Activity. Front. Immunol. 2018;9:2581. doi: 10.3389/fimmu.2018.02581.
    1. Wooff Y., Fernando N., Wong J.H.C., Dietrich C., Aggio-Bruce R., Chu-Tan J.A., Robertson A.A.B., Doyle S.L., Man S.M., Natoli R. Caspase-1-dependent inflammasomes mediate photoreceptor cell death in photo-oxidative damage-induced retinal degeneration. Sci. Rep. 2020;10:2263. doi: 10.1038/s41598-020-58849-z.
    1. Viringipurampeer I.A., Metcalfe A.L., Bashar A.E., Sivak O., Yanai A., Mohammadi Z., Moritz O.L., Gregory-Evans C.Y., Gregory-Evans K. NLRP3 inflammasome activation drives bystander cone photoreceptor cell death in a P23H rhodopsin model of retinal degeneration. Hum. Mol. Genet. 2016;25:1501–1516. doi: 10.1093/hmg/ddw029.
    1. Sudharsan R., Beiting D.P., Aguirre G.D., Beltran W.A. Involvement of Innate Immune System in Late Stages of Inherited Photoreceptor Degeneration. Sci. Rep. 2017;7:17897. doi: 10.1038/s41598-017-18236-7.
    1. Chang G.-Q., Hao Y., Wong F. Apoptosis: Final common pathway of photoreceptor death in rd, rds, and mutant mice. Neuron. 1993;11:595–605. doi: 10.1016/0896-6273(93)90072-Y.
    1. Viringipurampeer I.A., Gregory-Evans C.Y., Metcalfe A.L., Bashar E., Moritz O.L., Gregory-Evans K. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration. Mol. Neurobiol. 2019;56:1637–1652. doi: 10.1007/s12035-018-1192-8.
    1. Liao Y., Zhang H., He D., Wang Y., Cai B., Chen J., Ma J., Liu Z., Wu Y. Retinal Pigment Epithelium Cell Death Is Associated with NLRP3 Inflammasome Activation by All-trans Retinal. Investig. Opthalmology Vis. Sci. 2019;60:3034–3045. doi: 10.1167/iovs.18-26360.
    1. Gao J., Cui J.Z., To E., Cao S., Matsubara J.A. Evidence for the activation of pyroptotic and apoptotic pathways in RPE cells associated with NLRP3 inflammasome in the rodent eye. J. Neuroinflammation. 2018;15:15. doi: 10.1186/s12974-018-1062-3.
    1. Power M., Das S., Schütze K., Marigo V., Ekström P., Paquet-Durand F. Cellular mechanisms of hereditary photoreceptor degeneration—Focus on cGMP. Prog. Retin. Eye Res. 2020;74:100772. doi: 10.1016/j.preteyeres.2019.07.005.
    1. Fricker M., Tolkovsky A.M., Borutaite V., Coleman M., Brown G.C. Neuronal Cell Death. Physiol. Rev. 2018;98:813–880. doi: 10.1152/physrev.00011.2017.
    1. Trachsel-Moncho L., Benlloch-Navarro S., Fernández-Carbonell Á., Ramírez-Lamelas D.T., Olivar T., Silvestre D., Poch E., Miranda M. Oxidative stress and autophagy-related changes during retinal degeneration and development. Cell Death Dis. 2018;9:812. doi: 10.1038/s41419-018-0855-8.
    1. Nirmala J.G., Lopus M. Cell death mechanisms in eukaryotes. Cell Biol. Toxicol. 2020;36:145–164. doi: 10.1007/s10565-019-09496-2.
    1. D’Arcy M.S. Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol. Int. 2019;43:582–592. doi: 10.1002/cbin.11137.
    1. Brenner D., Mak T.W. Mitochondrial cell death effectors. Curr. Opin. Cell Biol. 2009;21:871–877. doi: 10.1016/j.ceb.2009.09.004.
    1. Choudhury S.R., Bhootada Y., Gorbatyuk M.S. Caspase-7 ablation modulates UPR, reprograms TRAF2-JNK apoptosis and protects T17M rhodopsin mice from severe retinal degeneration. Cell Death Dis. 2013;4:e528. doi: 10.1038/cddis.2013.34.
    1. Comitato A., Sanges D., Rossi A., Humphries M.M., Marigo V. Activation of Bax in Three Models of Retinitis Pigmentosa. Investig. Ophthalmol. Vis. Sci. 2014;55:3555–3561. doi: 10.1167/iovs.14-13917.
    1. Kunte M.M., Choudhury S., Manheim J.F., Shinde V.M., Miura M., Chiodo V.A., Hauswirth W.W., Gorbatyuk O.S., Gorbatyuk M.S. ER Stress Is Involved in T17M Rhodopsin-Induced Retinal Degeneration. Investig. Ophthalmol. Vis. Sci. 2012;53:3792–3800. doi: 10.1167/iovs.11-9235.
    1. Chen Y., Yang M., Wang Z.-J. (Z)-7,4’-Dimethoxy-6-hydroxy-aurone-4-O-β-glucopyranoside mitigates retinal degeneration in Rd10 mouse model through inhibiting oxidative stress and inflammatory responses. Cutan. Ocul. Toxicol. 2020;39:36–42. doi: 10.1080/15569527.2019.1685535.
    1. Liu C., Li Y., Peng M., Laties A.M., Wen R. Activation of Caspase-3 in the Retina of Transgenic Rats with the Rhodopsin Mutation S334ter during Photoreceptor Degeneration. J. Neurosci. 1999;19:4778–4785. doi: 10.1523/JNEUROSCI.19-12-04778.1999.
    1. Zeiss C.J., Neal J., Johnson E.A. Caspase-3 in postnatal retinal development and degeneration. Investig. Ophthalmol. Vis. Sci. 2004;45:964–970. doi: 10.1167/iovs.03-0439.
    1. Fink S.L., Cookson B.T. Apoptosis, Pyroptosis, and Necrosis: Mechanistic Description of Dead and Dying Eukaryotic Cells. Infect. Immun. 2005;73:1907–1916. doi: 10.1128/IAI.73.4.1907-1916.2005.
    1. Tang D., Kang R., Berghe T.V., Vandenabeele P., Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019;29:347–364. doi: 10.1038/s41422-019-0164-5.
    1. Peng J.J., Song W.T., Yao F., Zhang X., Peng J., Luo X.J., Xia X.B. Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp. Eye Res. 2020;191:107922. doi: 10.1016/j.exer.2020.107922.
    1. Galluzzi L., Vitale I., Abrams J.M., Alnemri E.S., Baehrecke E.H., Blagosklonny M.V., Dawson T.M., Dawson V.L., Eldeiry W.S., Fulda S., et al. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–120. doi: 10.1038/cdd.2011.96.
    1. Vandenabeele P., Declercq W., Van Herreweghe F., Berghe T.V. The Role of the Kinases RIP1 and RIP3 in TNF-Induced Necrosis. Sci. Signal. 2010;3:re4. doi: 10.1126/scisignal.3115re4.
    1. Lawlor K.E., Khan N., Mildenhall A., Gerlic M., Croker B.A., D’Cruz A.A., Hall C., Spall S.K., Anderton H., Masters S.L., et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL. Nat. Commun. 2015;6:6282. doi: 10.1038/ncomms7282.
    1. Vince J.E., Wong W.W.-L., Gentle I., Lawlor K.E., Allam R., O’Reilly L., Mason K., Gross O., Ma S., Guarda G., et al. Inhibitor of Apoptosis Proteins Limit RIP3 Kinase-Dependent Interleukin-1 Activation. Immunity. 2012;36:215–227. doi: 10.1016/j.immuni.2012.01.012.
    1. Murakami Y., Matsumoto H., Roh M., Suzuki J., Hisatomi T., Ikeda Y., Miller J.W., Vavvas D.G. Receptor interacting protein kinase mediates necrotic cone but not rod cell death in a mouse model of inherited degeneration. Proc. Natl. Acad. Sci. USA. 2012;109:14598–14603. doi: 10.1073/pnas.1206937109.
    1. Hachim M.Y., Khalil B.A., Elemam N.M., Maghazachi A.A. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J. Leukoc. Biol. 2020;108:323–338. doi: 10.1002/JLB.3MIR0120-625R.
    1. Jorgensen I., Miao E.A. Pyroptotic cell death defends against intracellular pathogens. Immunol. Rev. 2015;265:130–142. doi: 10.1111/imr.12287.
    1. Bergsbaken T., Fink S.L., Cookson B.T. Pyroptosis: Host cell death and inflammation. Nat. Rev. Genet. 2009;7:99–109. doi: 10.1038/nrmicro2070.
    1. Robinson N., Ganesan R., Hegedűs C., Kovács K., Kufer T.A., Virág L. Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 2019;26:101239. doi: 10.1016/j.redox.2019.101239.
    1. Kaur J., Mencl S., Sahaboglu A., Farinelli P., Van Veen T., Zrenner E., Ekström P., Paquet-Durand F., Arango-Gonzalez B. Calpain and PARP Activation during Photoreceptor Cell Death in P23H and S334ter Rhodopsin Mutant Rats. PLoS ONE. 2011;6:e22181. doi: 10.1371/journal.pone.0022181.
    1. Sahaboglu A., Miranda M., Canjuga D., Avci-Adali M., Savytska N., Secer E., Feria-Pliego J.A., Kayık G., Durdagi S. Drug repurposing studies of PARP inhibitors as a new therapy for inherited retinal degeneration. Cell. Mol. Life Sci. 2020;77:2199–2216. doi: 10.1007/s00018-019-03283-2.
    1. Jayakody S.A., Gonzalez-Cordero A., Ali R.R., Pearson R.A. Cellular strategies for retinal repair by photoreceptor replacement. Prog. Retin. Eye Res. 2015;46:31–66. doi: 10.1016/j.preteyeres.2015.01.003.
    1. Hamam R.N., Barikian A.W., Antonios R.S., Abdulaal M.R., Alameddine R.M., El Mollayess G., Mansour A.M. Intravitreal Adalimumab in Active Noninfectious Uveitis: A Pilot Study. Ocul. Immunol. Inflamm. 2016;24:319–326. doi: 10.3109/09273948.2014.990041.
    1. Mirshahi A., Hoehn R., Lorenz K., Kramann C., Baatz H. Anti-Tumor Necrosis Factor Alpha for Retinal Diseases: Current Knowledge and Future Concepts. J. Ophthalmic Vis. Res. 2012;7:39–44.
    1. Wu L., Arevalo J.F., Hernandez-Bogantes E., Regatieri C.V., Roca J.A., Farah M.E. Intravitreal Tumor Necrosis Factor-Alpha Inhibitors for Neovascular Age-Related Macular Degeneration Suboptimally Responsive to Antivascular Endothelial Growth Factor Agents: A Pilot Study from the Pan American Collaborative Retina Study Group. J. Ocul. Pharmacol. Ther. 2013;29:366–371. doi: 10.1089/jop.2012.0203.
    1. Wu L., Hernandez-Bogantes E., Roca J.A., Arevalo J.F., Barraza K., Lasave A.F. Intravitreal tumor necrosis factor inhibitors in the treatment of refractory diabetic macular edema: A pilot study from the Pan-American Collaborative Retina Study Group. Retina. 2011;31:298–303. doi: 10.1097/IAE.0b013e3181eac7a6.
    1. Llorenç V., Mesquida M., De La Maza M.S., Blanco R., Calvo V., Maíz O., Blanco A., Aberásturi J.R.D.D.-J.D., Adán A. Certolizumab Pegol, a New Anti-TNF-α in the Armamentarium against Ocular Inflammation. Ocul. Immunol. Inflamm. 2016;24:167–172. doi: 10.3109/09273948.2014.967779.
    1. Hasegawa E., Takeda A., Yawata N., Sonoda K.-H. The effectiveness of adalimumab treatment for non-infectious uveitis. Immunol. Med. 2019;42:79–83. doi: 10.1080/25785826.2019.1642080.
    1. Lichtlen P., Lam T.T., Nork T.M., Streit T., Urech D.M. Relative Contribution of VEGF and TNF-α in the Cynomolgus Laser-Induced CNV Model: Comparing the Efficacy of Bevacizumab, Adalimumab, and ESBA105. Investig. Opthalmology Vis. Sci. 2010;51:4738–4745. doi: 10.1167/iovs.09-4890.
    1. Joussen A.M., Doehmen S., Le M.L., Koizumi K., Radetzky S., Krohne T.U., Poulaki V., Semkova I., Kociok N. TNF-α mediated apoptosis plays an important role in the development of early diabetic retinopathy and long-term histopathological alterations. Mol. Vis. 2009;15:1418–1428.
    1. Roh M., Zhang Y., Murakami Y., Thanos A., Lee S.C., Vavvas D.G., Benowitz L.I., Miller J.W. Etanercept, a Widely Used Inhibitor of Tumor Necrosis Factor-α (TNF- α), Prevents Retinal Ganglion Cell Loss in a Rat Model of Glaucoma. PLoS ONE. 2012;7:e40065. doi: 10.1371/journal.pone.0040065.
    1. Rashid K., Akhtar-Schaefer I., Langmann T. Microglia in Retinal Degeneration. Front. Immunol. 2019;10:1975. doi: 10.3389/fimmu.2019.01975.
    1. Schick T., Steinhauer M., Aslanidis A., Altay L., Karlstetter M., Langmann T., Kirschfink M., Fauser S. Local complement activation in aqueous humor in patients with age-related macular degeneration. Eye. 2017;31:810–813. doi: 10.1038/eye.2016.328.
    1. Madeira M.H., Rashid K., Ambrósio A.F., Santiago A.R., Langmann T. Blockade of microglial adenosine A2A receptor impacts inflammatory mechanisms, reduces ARPE-19 cell dysfunction and prevents photoreceptor loss in vitro. Sci. Rep. 2018;8:2272. doi: 10.1038/s41598-018-20733-2.
    1. Grigsby J.G., Cardona S.M., Pouw C.E., Muniz A., Mendiola A.S., Tsin A.T.C., Allen D.M., Cardona A.E. The Role of Microglia in Diabetic Retinopathy. J. Ophthalmol. 2014;2014:705783. doi: 10.1155/2014/705783.
    1. Zeng H.-Y., Green W.R., Tso M.O.M. Microglial Activation in Human Diabetic Retinopathy. Arch. Ophthalmol. 2008;126:227–232. doi: 10.1001/archophthalmol.2007.65.
    1. Zeng H.-L., Shi J.-M. The role of microglia in the progression of glaucomatous neurodegeneration—A review. Int. J. Ophthalmol. 2018;11:143–149. doi: 10.18240/ijo.2018.01.22.
    1. Arroba A.I., Campos-Caro A., Aguilar-Diosdado M., Valverde Á.M. IGF-1, Inflammation and Retinal Degeneration: A Close Network. Front. Aging Neurosci. 2018;10:203. doi: 10.3389/fnagi.2018.00203.
    1. Arroba A.I., Alcalde-Estevez E., García-Ramírez M., Cazzoni D., De La Villa P., Sánchez-Fernández E.M., Mellet C.O., Fernández J.M.G., Hernández C., Simó R., et al. Modulation of microglia polarization dynamics during diabetic retinopathy in db/db mice. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2016;1862:1663–1674. doi: 10.1016/j.bbadis.2016.05.024.
    1. Krady J.K., Basu A., Allen C.M., Xu Y., LaNoue K.F., Gardner T.W., Levison S.W. Minocycline Reduces Proinflammatory Cytokine Expression, Microglial Activation, and Caspase-3 Activation in a Rodent Model of Diabetic Retinopathy. Diabetes. 2005;54:1559–1565. doi: 10.2337/diabetes.54.5.1559.
    1. Wu Y., Chen Y., Wu Q., Jia L., Du X. Minocycline inhibits PARP-1 expression and decreases apoptosis in diabetic retinopathy. Mol. Med. Rep. 2015;12:4887–4894. doi: 10.3892/mmr.2015.4064.
    1. Bosco A., Inman D.M., Steele M.R., Wu G., Soto I., Marsh-Armstrong N., Hubbard W.C., Calkins D.J., Horner P.J., Vetter M.L. Reduced Retina Microglial Activation and Improved Optic Nerve Integrity with Minocycline Treatment in the DBA/2J Mouse Model of Glaucoma. Investig. Opthalmology Vis. Sci. 2008;49:1437–1446. doi: 10.1167/iovs.07-1337.
    1. Benlloch-Navarro S., Trachsel-Moncho L., Fernández-Carbonell Á., Olivar T., Soria J.M., Almansa I., Miranda M. Progesterone anti-inflammatory properties in hereditary retinal degeneration. J. Steroid Biochem. Mol. Biol. 2019;189:291–301. doi: 10.1016/j.jsbmb.2019.01.007.
    1. Roche S.L., Ruiz-Lopez A.M., Moloney J.N., Byrne A.M., Cotter T.G. Microglial-induced Müller cell gliosis is attenuated by progesterone in a mouse model of retinitis pigmentosa. Glia. 2018;66:295–310. doi: 10.1002/glia.23243.
    1. Roche S.L., Kutsyr O., Cuenca N., Cotter T.G. Norgestrel, a Progesterone Analogue, Promotes Significant Long-Term Neuroprotection of Cone Photoreceptors in a Mouse Model of Retinal Disease. Investig. Opthalmology Vis. Sci. 2019;60:3221–3235. doi: 10.1167/iovs.19-27246.
    1. Guadagni V., Biagioni M., Novelli E., Aretini P., Mazzanti C.M., Strettoi E. Rescuing cones and daylight vision in retinitis pigmentosa mice. FASEB J. 2019;33:10177–10192. doi: 10.1096/fj.201900414R.
    1. Tao Y., Dong X., Lu X., Qu Y., Wang C., Peng G., Zhang J. Subcutaneous delivery of tauroursodeoxycholic acid rescues the cone photoreceptors in degenerative retina: A promising therapeutic molecule for retinopathy. Biomed. Pharmacother. 2019;117:109021. doi: 10.1016/j.biopha.2019.109021.
    1. Ramírez-Lamelas D.T., Benlloch-Navarro S., Lopez-Pedrajas R., Gimeno-Hernández R., Olivar T., Silvestre D., Miranda M. Lipoic Acid and Progesterone Alone or in Combination Ameliorate Retinal Degeneration in an Experimental Model of Hereditary Retinal Degeneration. Front. Pharmacol. 2018;9:469. doi: 10.3389/fphar.2018.00469.
    1. Terluk M.R., Ebeling M.C., Fisher C.R., Kapphahn R.J., Yuan C., Kartha R.V., Montezuma S.R., Ferrington D.A. N-Acetyl-L-cysteine Protects Human Retinal Pigment Epithelial Cells from Oxidative Damage: Implications for Age-Related Macular Degeneration. Oxidative Med. Cell. Longev. 2019;2019:5174957-14. doi: 10.1155/2019/5174957.
    1. Wang Y., Yin Z., Gao L., Sun D., Hu X., Xue L., Dai J., Zeng Y., Chen S., Pan B., et al. Curcumin Delays Retinal Degeneration by Regulating Microglia Activation in the Retina of rd1 Mice. Cell. Physiol. Biochem. 2017;44:479–493. doi: 10.1159/000485085.
    1. Chan H.H.-L., Lam H.-I., Choi K.-Y., Li S.Z.-C., Lakshmanan Y., Yu W.-Y., Chang R.C.-C., Lai J.S.-M., So K.-F. Delay of cone degeneration in retinitis pigmentosa using a 12-month treatment with Lycium barbarum supplement. J. Ethnopharmacol. 2019;236:336–344. doi: 10.1016/j.jep.2019.03.023.
    1. Tang L., Bao S., Du Y., Jiang Z., Wuliji A., Ren X., Zhang C., Chu H., Kong L., Ma H. Antioxidant effects of Lycium barbarum polysaccharides on photoreceptor degeneration in the light-exposed mouse retina. Biomed. Pharmacother. 2018;103:829–837. doi: 10.1016/j.biopha.2018.04.104.
    1. Wiedemann J., Rashid K., Langmann T. Resveratrol induces dynamic changes to the microglia transcriptome, inhibiting inflammatory pathways and protecting against microglia-mediated photoreceptor apoptosis. Biochem. Biophys. Res. Commun. 2018;501:239–245. doi: 10.1016/j.bbrc.2018.04.223.
    1. Lew D.S., Mazzoni F., Finnemann S.C. Microglia Inhibition Delays Retinal Degeneration Due to MerTK Phagocytosis Receptor Deficiency. Front. Immunol. 2020;11:1463. doi: 10.3389/fimmu.2020.01463.
    1. Chumsakul O., Wakayama K., Tsuhako A., Baba Y., Takai Y., Kurose T., Honma Y., Watanabe S. Apigenin Regulates Activation of Microglia and Counteracts Retinal Degeneration. J. Ocul. Pharmacol. Ther. 2020;36:311–319. doi: 10.1089/jop.2019.0163.
    1. Zhou T., Huang Z., Zhu X., Sun X., Liu Y., Cheng B., Li M., Liu Y., He C., Liu X. Alpha-1 Antitrypsin Attenuates M1 Microglia-Mediated Neuroinflammation in Retinal Degeneration. Front. Immunol. 2018;9:1202. doi: 10.3389/fimmu.2018.01202.
    1. Ahn S.J., Kim K.E., Woo S.J., Park K.H., Joon A.S., Eun K.K., Hyung P.K. The Effect of an Intravitreal Dexamethasone Implant for Cystoid Macular Edema in Retinitis Pigmentosa: A Case Report and Literature Review. Ophthalmic Surg. Lasers Imaging Retin. 2014;45:160–164. doi: 10.3928/23258160-20140131-03.
    1. Zhang X., Shahani U., Reilly J., Shu X. Disease mechanisms and neuroprotection by tauroursodeoxycholic acid in Rpgr knockout mice. J. Cell. Physiol. 2019;234:18801–18812. doi: 10.1002/jcp.28519.
    1. Hernández-Rabaza V., López-Pedrajas R., Almansa I. Progesterone, Lipoic Acid, and Sulforaphane as Promising Antioxidants for Retinal Diseases: A Review. Antioxidants. 2019;8:53. doi: 10.3390/antiox8030053.
    1. Lee S.Y., Usui S., Zafar A.-B., Oveson B.C., Jo Y.-J., Lu L., Masoudi S., Campochiaro P.A. N-acetylcysteine promotes long-term survival of cones in a model of retinitis pigmentosa. J. Cell. Physiol. 2011;226:1843–1849. doi: 10.1002/jcp.22508.
    1. Liu F., Zhang J., Xiang Z., Xu D., So K.-F., Vardi N., Xu Y. Lycium Barbarum Polysaccharides Protect Retina in rd1 Mice During Photoreceptor Degeneration. Investig. Opthalmology Vis. Sci. 2018;59:597–611. doi: 10.1167/iovs.17-22881.
    1. Campochiaro P.A., Iftikhar M., Hafiz G., Akhlaq A., Tsai G., Wehling D., Lu L., Wall G.M., Singh M.S., Kong X. Oral N-acetylcysteine improves cone function in retinitis pigmentosa patients in phase I trial. J. Clin. Investig. 2020;130:1527–1541. doi: 10.1172/JCI132990.
    1. Vasireddy V., Chavali V.R.M., Joseph V.T., Kadam R., Lin J.H., Jamison J.A., Kompella U.B., Reddy G.B., Ayyagari R. Rescue of Photoreceptor Degeneration by Curcumin in Transgenic Rats with P23H Rhodopsin Mutation. PLoS ONE. 2011;6:e21193. doi: 10.1371/journal.pone.0021193.
    1. Scott P.A., Kaplan H.J., McCall M.A. Prenatal Exposure to Curcumin Protects Rod Photoreceptors in a Transgenic Pro23His Swine Model of Retinitis Pigmentosa. Transl. Vis. Sci. Technol. 2015;4:5. doi: 10.1167/tvst.4.5.5.
    1. Leonard K.C., Petrin D., Coupland S.G., Baker A.N., Leonard B.C., Lacasse E.C., Hauswirth W.W., Korneluk R.G., Tsilfidis C. XIAP Protection of Photoreceptors in Animal Models of Retinitis Pigmentosa. PLoS ONE. 2007;2:e314. doi: 10.1371/journal.pone.0000314.
    1. Paquet-Durand F., Sanges D., McCall J., Silva J., Van Veen T., Marigo V., Ekström P. Photoreceptor rescue and toxicity induced by different calpain inhibitors. J. Neurochem. 2010;115:930–940. doi: 10.1111/j.1471-4159.2010.06983.x.
    1. Kim C.R., Kim J.H., Park H.Y., Park C.K. Ischemia Reperfusion Injury Triggers TNFalpha Induced-Necroptosis in Rat Retina. Curr. Eye Res. 2017;42:771–779. doi: 10.1080/02713683.2016.1227449.
    1. Sato K., Li S., Gordon W.C., He J., Liou G.I., Hill J.M., Travis G.H., Bazan N.G., Jin M. Receptor Interacting Protein Kinase-Mediated Necrosis Contributes to Cone and Rod Photoreceptor Degeneration in the Retina Lacking Interphotoreceptor Retinoid-Binding Protein. J. Neurosci. 2013;33:17458–17468. doi: 10.1523/JNEUROSCI.1380-13.2013.
    1. Jiao K., Sahaboglu A., Zrenner E., Ueffing M., Ekström P.A.R., Paquet-Durand F. Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations. Cell Death Discov. 2016;2:16040. doi: 10.1038/cddiscovery.2016.40.
    1. Sahaboglu A., Barth M., Secer E., Del Amo E.M., Urtti A., Arsenijevic Y., Zrenner E., Paquet-Durand F. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Sci. Rep. 2016;6:39537. doi: 10.1038/srep39537.
    1. Trifunović D., Petridou E., Comitato A., Marigo V., Ueffing M., Paquet-Durand F. Primary Rod and Cone Degeneration Is Prevented by HDAC Inhibition. Adv. Exp. Med. Biol. 2018;1074:367–373. doi: 10.1007/978-3-319-75402-4_45.
    1. Yao J., Qiu Y., Frontera E., Jia L., Khan N.W., Klionsky D.J., Ferguson T.A., Thompson D.A., Zacks D.N. Inhibiting autophagy reduces retinal degeneration caused by protein misfolding. Autophagy. 2018;14:1226–1238. doi: 10.1080/15548627.2018.1463121.
    1. Fan B., Sun Y.-J., Liu S.-Y., Che L., Li G.-Y. Neuroprotective Strategy in Retinal Degeneration: Suppressing ER Stress-Induced Cell Death via Inhibition of the mTOR Signal. Int. J. Mol. Sci. 2017;18:201. doi: 10.3390/ijms18010201.

Source: PubMed

3
구독하다