Does multicomponent physical exercise with simultaneous cognitive training boost cognitive performance in older adults? A 6-month randomized controlled trial with a 1-year follow-up

Patrick Eggenberger, Vera Schumacher, Marius Angst, Nathan Theill, Eling D de Bruin, Patrick Eggenberger, Vera Schumacher, Marius Angst, Nathan Theill, Eling D de Bruin

Abstract

Background: Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive-physical components would add training specific cognitive benefits compared to exclusively physical training.

Methods: Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated.

Results: Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive-physical programs were found in two dimensions of executive function. "Shifting attention" showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and "working memory" showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R (2)=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups.

Conclusion: Particular executive functions benefit from simultaneous cognitive-physical training compared to exclusively physical multicomponent training. Cognitive-physical training programs may counteract widespread cognitive impairments in the elderly.

Keywords: cognitive impairment; dance; elderly; executive function; transfer; video game.

Figures

Figure 1
Figure 1
Simultaneous cognitive–physical training components: video game dancing (A) and treadmill memory training (B). In (A) two participants perform steps on a pressure sensitive platform to the rhythm of the music. Step timing and direction is cued with arrows on a screen. In (B) a participant is walking on a treadmill while performing verbal memory exercises presented on a computer screen.
Figure 2
Figure 2
Examples of complementary balance (A) and strength (B) exercises. Notes: The participant in (A) tries to maintain balance while stepping from one object to the next (objects are soft rubber “stones” and a skipping rope) and (B) shows a participant performing split leg squats wearing a weight vest.
Figure 3
Figure 3
Trial design and participants’ flow. Notes: Participants were randomly assigned to one of two simultaneous cognitive–physical training groups (DANCE and MEMORY) or an exclusively physical multicomponent training group (PHYS) and were trained over 6 months twice weekly for 1 hour. Nine cognitive tests were assessed at pretest, 3-months test, and 6-months test. Four tests were repeated at 1-year follow-up. Abbreviations: DANCE, virtual reality video game dancing; MEMORY, treadmill walking with simultaneous verbal memory training; PHYS, treadmill walking.
Figure 4
Figure 4
Cognitive performance developments in the four tests that included a 1-year follow-up measurement. Notes: Significant overall improvements were shown in all tests over the 6-months training period (graphs AD all P<0.05, one tailed). In Trail Making B (graph B), only the two groups with a cognitive training component (DANCE and MEMORY) improved from pretest to 3-months test (trend P=0.075, one tailed). In Executive Control (graph C), different time courses of adaptation between DANCE and MEMORY were found (trend P=0.051, one tailed). From 6-months test to 1-year follow-up test Trail Making B improved significantly (graph B, P=0.015), while performance was maintained in the three other tests (graphs A, C, and D). Error bars indicate ± standard error of the mean. Abbreviations: DANCE, virtual reality video game dancing; MEMORY, treadmill walking with simultaneous verbal memory training; PHYS, treadmill walking.
Figure 5
Figure 5
Cognitive performance developments in the five tests that did not include a 1-year follow-up measurement. Notes: Significant overall improvements were shown in the tests in graphs (A, C, D, and E) (all P<0.05, one tailed) over the 6-months training period. No improvement was found in Digit Forward (graph B). Error bars indicate ± standard error of the mean. Abbreviations: DANCE, virtual reality video game dancing; MEMORY, treadmill walking with simultaneous verbal memory training; PHYS, treadmill walking.
Figure 6
Figure 6
Comparison of training enjoyment in the three interventions. Notes: No group differences were shown for overall training enjoyment (PACES), strength, and balance training (all P>0.05). The two cognitive–physical training components (video game dancing and treadmill memory) tended to be enjoyed more than treadmill walking (trend P=0.069, one tailed). Scores system is from one to seven points (least to maximal enjoyment), tP<0.10 trend, error bars indicate ± standard error of the mean. Abbreviations: PACES, Physical Activity Enjoyment Scale; TE, training enjoyment; DANCE, virtual reality video game dancing; MEMORY, treadmill walking with simultaneous verbal memory training; PHYS, treadmill walking.

References

    1. Scafato E, Gandin C, Galluzzo L, et al. PR.E.A. Working Group (Italian PRoject on Epidemiology of Alzheimer’s disease) Prevalence of aging-associated cognitive decline in an Italian elderly population: results from cross-sectional phase of Italian PRoject on Epidemiology of Alzheimer’s disease (IPREA) Aging Clin Exp Res. 2010;22(5–6):440–449.
    1. Williams KN, Kemper S. Interventions to reduce cognitive decline in aging. J Psychosoc Nurs Ment Health Serv. 2010;48(5):42–51.
    1. Erickson KI, Weinstein AM, Lopez OL. Physical activity, brain plasticity, and Alzheimer’s disease. Arch Med Res. 2012;43(8):615–621.
    1. Lautenschlager NT, Cox K, Cyarto EV. The influence of exercise on brain aging and dementia. Biochim Biophys Acta. 2012;1822(3):474–481.
    1. Gregory MA, Gill DP, Petrella RJ. Brain health and exercise in older adults. Curr Sports Med Rep. 2013;12(4):256–271.
    1. Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. 2013;3(1):403–428.
    1. Hotting K, Roder B. Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev. 2013;37(9 pt B):2243–2257.
    1. Colcombe S, Kramer AF. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci. 2003;14(2):125–130.
    1. Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–252.
    1. Chang YK, Pan CY, Chen FT, Tsai CL, Huang CC. Effect of resistance-exercise training on cognitive function in healthy older adults: a review. J Aging Phys Act. 2012;20(4):497–517.
    1. Voelcker-Rehage C, Godde B, Staudinger UM. Cardiovascular and coordination training differentially improve cognitive performance and neural processing in older adults. Front Hum Neurosci. 2011;5:26.
    1. Liu-Ambrose T, Nagamatsu LS, Voss MW, Khan KM, Handy TC. Resistance training and functional plasticity of the aging brain: a 12-month randomized controlled trial. Neurobiol Aging. 2012;33(8):1690–1698.
    1. Hindin SB, Zelinski EM. Extended practice and aerobic exercise interventions benefit untrained cognitive outcomes in older adults: a meta-analysis. J Am Geriatr Soc. 2012;60(1):136–141.
    1. Zelinski EM. Far transfer in cognitive training of older adults. Restor Neurol Neurosci. 2009;27(5):455–471.
    1. Papp KV, Walsh SJ, Snyder PJ. Immediate and delayed effects of cognitive interventions in healthy elderly: a review of current literature and future directions. Alzheimers Dement. 2009;5(1):50–60.
    1. Noack H, Lovden M, Schmiedek F, Lindenberger U. Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor Neurol Neurosci. 2009;27(5):435–453.
    1. Oei AC, Patterson MD. Are videogame training gains specific or general? Front Syst Neurosci. 2014;8:54.
    1. Lustig C, Shah P, Seidler R, Reuter-Lorenz PA. Aging, training, and the brain: a review and future directions. Neuropsychol Rev. 2009;19(4):504–522.
    1. Schaefer S, Schumacher V. The interplay between cognitive and motor functioning in healthy older adults: findings from dual-task studies and suggestions for intervention. Gerontology. 2011;57(3):239–246.
    1. Kraft E. Cognitive function, physical activity, and aging: possible biological links and implications for multimodal interventions. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2012;19(1–2):248–263.
    1. Law LL, Barnett F, Yau MK, Gray MA. Effects of combined cognitive and exercise interventions on cognition in older adults with and without cognitive impairment: a systematic review. Ageing Res Rev. 2014;15:61–75.
    1. Thom JM, Clare L. Rationale for combined exercise and cognition-focused interventions to improve functional independence in people with dementia. Gerontology. 2011;57(3):265–275.
    1. Legault C, Jennings JM, Katula JA, et al. SHARP-P Study Group Designing clinical trials for assessing the effects of cognitive training and physical activity interventions on cognitive outcomes: the Seniors Health and Activity Research Program Pilot (SHARP-P) study, a randomized controlled trial. BMC Geriatr. 2011;11:27.
    1. Fabre C, Chamari K, Mucci P, Masse-Biron J, Prefaut C. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med. 2002;23(6):415–421.
    1. Oswald WD, Rupprecht R, Gunzelmann T, Tritt K. The SIMA-project: effects of 1 year cognitive and psychomotor training on cognitive abilities of the elderly. Behav Brain Res. 1996;78(1):67–72.
    1. O’Dwyer S. The effect of exercise training, and combined exercise and cognitive training, on cognitive and physical function in older adults: A randomized controlled trial and qualitative evaluation. Australia: University of Queensland; 2009. dissertation.
    1. Theill N, Schumacher V, Adelsberger R, Martin M, Jancke L. Effects of simultaneously performed cognitive and physical training in older adults. BMC Neurosci. 2013;14:103.
    1. Pichierri G, Coppe A, Lorenzetti S, Murer K, de Bruin ED. The effect of a cognitive-motor intervention on voluntary step execution under single and dual task conditions in older adults: a randomized controlled pilot study. Clin Interv Aging. 2012;7:175–184.
    1. Pichierri G, Murer K, de Bruin ED. A cognitive-motor intervention using a dance video game to enhance foot placement accuracy and gait under dual task conditions in older adults: a randomized controlled trial. BMC Geriatr. 2012;12:74.
    1. Forte R, Boreham CA, Leite JC, et al. Enhancing cognitive functioning in the elderly: multicomponent vs resistance training. Clin Interv Aging. 2013;8:19–27.
    1. Moher D, Hopewell S, Schulz KF, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c869.
    1. Pro Senectute St Gallen [homepage on the Internet] [Accessed August 8, 2012]. Available from: .
    1. Geriatrische Klinik St Gallen [homepage on the Internet] [Accessed August 8, 2012]. Available from: .
    1. Amt für Sport Kanton St Gallen [homepage on the Internet] [Accessed August 8, 2012]. Available from: .
    1. MacKenzie DM, Copp P, Shaw RJ, Goodwin GM. Brief cognitive screening of the elderly: a comparison of the Mini-Mental State Examination (MMSE), Abbreviated Mental Test (AMT) and Mental Status Questionnaire (MSQ) Psychol Med. 1996;26(2):427–430.
    1. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189–198.
    1. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191.
    1. [homepage on the Internet] [Accessed September 21, 2012]. Available from: .
    1. Chodzko-Zajko WJ, Proctor DN, et al. American College of Sports Medicine American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med Sci Sports Exerc. 2009;41(7):1510–1530.
    1. Sherrington C, Tiedemann A, Fairhall N, Close JC, Lord SR. Exercise to prevent falls in older adults: an updated meta-analysis and best practice recommendations. N S W Public Health Bull. 2011;22(3–4):78–83.
    1. Granacher U, Muehlbauer T, Gruber M. A qualitative review of balance and strength performance in healthy older adults: impact for testing and training. J Aging Res. 2012;2012:708905.
    1. Ammann BC, Knols RH, Baschung P, de Bie RA, de Bruin ED. Application of principles of exercise training in sub-acute and chronic stroke survivors: a systematic review. BMC Neurol. 2014;14:167.
    1. [homepage on the Internet] [Accessed September 9, 2012]. Available from: .
    1. de Bruin ED, Murer K. Effect of additional functional exercises on balance in elderly people. Clin Rehabil. 2007;21(2):112–121.
    1. Lezak MD, Howiesen DB, Bigler ED, Tranel D. Neuropsychological Assessment. 5th ed. Oxford; Oxford University Press; 2012.
    1. Baller G, Brand M, Kalbe E, Kessler J. Inventar zur Gedächtnisdiagnostik (IGD), Manual. Goettingen: Hogrefe; 2006.
    1. Härting C, Markowitsch HJ, Neufeld H, Calabrese P, Deisinger K, Kessler J. WMS-R – Wechsler Gedächtnistest – revidierte Fassung. Bern: Huber; 2000.
    1. Wechsler D. Wechsler Memory Scale – Revised (WMS-R) Manual. San Antonio: The Psychological Corporation, Harcourt Brace Jovanovich; 1987.
    1. Gatterer G. Der Alters-Konzentrations-Test. 2nd ed. Goettingen: Hogrefe; 2008.
    1. Wechsler D. Manual for the Wechsler Adult Intelligence Scale-Revised. New York: Psychological Corporation; 1981.
    1. Jekauc D, Voelkle M, Wagner MO, Mewes N, Woll A. Reliability, validity, and measurement invariance of the German version of the physical activity enjoyment scale. J Pediatr Psychol. 2013;38(1):104–115.
    1. Mullen SP, Olson EA, Phillips SM, et al. Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (PACES) across groups and time. Int J Behav Nutr Phys Act. 2011;8:103.
    1. Graves LE, Ridgers ND, Williams K, Stratton G, Atkinson G, Cable NT. The physiological cost and enjoyment of Wii Fit in adolescents, young adults, and older adults. J Phys Act Health. 2010;7(3):393–401.
    1. Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum; 1988.
    1. Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline. Br Med Bull. 2009;92:135–152.
    1. Coubard OA, Duretz S, Lefebvre V, Lapalus P, Ferrufino L. Practice of contemporary dance improves cognitive flexibility in aging. Front Aging Neurosci. 2011;3:13.
    1. Wilson BA, Evans JJ, Emslie H, Alderman N, Burgess P. The development of an ecologically valid test for assessing patients with dysexecutive syndrome. Neuropsychol Rehabil. 1998;8:213–228.
    1. van het Reve E, de Bruin ED. Strength-balance supplemented with computerized cognitive training to improve dual task gait and divided attention in older adults: a multicenter randomized-controlled trial. BMC Geriatr. 2014;14:134.
    1. Cai L, Chan JS, Yan JH, Peng K. Brain plasticity and motor practice in cognitive aging. Front Aging Neurosci. 2014;6:31.
    1. Mirelman A, Herman T, Brozgol M, et al. Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PLoS One. 2012;7(6):e40297.
    1. Hotting K, Schauenburg G, Roder B. Long-term effects of physical exercise on verbal learning and memory in middle-aged adults: results of a one-year follow-up study. Brain Sci. 2012;2(3):332–346.
    1. Oswald WD, Gunzelmann T, Rupprecht R, Hagen B. Differential effects of single versus combined cognitive and physical training with older adults: the SimA study in a 5-year perspective. Eur J Ageing. 2006;3:179–192.
    1. Valenzuela M, Sachdev P. Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am J Geriatr Psychiatry. 2009;17(3):179–187.
    1. Williamson JD, Espeland M, Kritchevsky SB, et al. LIFE Study Investigators Changes in cognitive function in a randomized trial of physical activity: results of the lifestyle interventions and independence for elders pilot study. J Gerontol A Biol Sci Med Sci. 2009;64(6):688–694.
    1. Roig M, Nordbrandt S, Geertsen SS, Nielsen JB. The effects of cardiovascular exercise on human memory: a review with meta-analysis. Neurosci Biobehav Rev. 2013;37(8):1645–1666.
    1. Liu-Ambrose T, Donaldson MG. Exercise and cognition in older adults: is there a role for resistance training programmes? Br J Sports Med. 2009;43(1):25–27.
    1. Liu-Ambrose T, Nagamatsu LS, Graf P, Beattie BL, Ashe MC, Handy TC. Resistance training and executive functions: a 12-month randomized controlled trial. Arch Intern Med. 2010;170(2):170–178.
    1. Cassilhas RC, Viana VA, Grassmann V, et al. The impact of resistance exercise on the cognitive function of the elderly. Med Sci Sports Exerc. 2007;39(8):1401–1407.
    1. Marmeleira J. An examination of the mechanisms underlying the effects of physical activity on brain and cognition. Eur Rev Aging Phys Act. 2013;10(2):83–94.
    1. Etnier JL, Nowell PM, Landers DM, Sibley BA. A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Res Rev. 2006;52(1):119–130.
    1. Chodzko-Zajko WJ, Schuler P, Solomon J, Heinl B, Ellis NR. The influence of physical fitness on automatic and effortful memory changes in aging. Int J Aging Hum Dev. 1992;35(4):265–285.
    1. Zornetzer SF. Catecholamine system involvement in age-related memory dysfunction. Ann N Y Acad Sci. 1985;444:242–254.

Source: PubMed

3
구독하다