Virtual reality (VR) as a simulation modality for technical skills acquisition

Aussama K Nassar, Farris Al-Manaseer, Lisa M Knowlton, Faiz Tuma, Aussama K Nassar, Farris Al-Manaseer, Lisa M Knowlton, Faiz Tuma

Abstract

Efforts continue to facilitate surgical skills training and provide accessible and safe training opportunities. Educational technology has played an essential role in minimizing the challenges facing traditional surgical training and providing feasible training opportunities. Simulation and virtual reality (VR) offer an important innovative training approach to enhance and supplement both technical and non-technical skills acquisition and overcome the many training challenges facing surgical training programs. To maximize the effectiveness of simulation modalities, an in-depth understanding of the cognitive learning theory is necessary. Knowing the stages and mental processes of skills acquisition when integrated with simulation applications can help trainees achieve maximal learning outcomes. This article aims to review important literature related to VR effectiveness and discuss the leading theories of technical skills acquisition related to VR simulation technologies.

Keywords: Educational technology; Simulation; Surgical education; Surgical skills; Virtual reality.

Conflict of interest statement

The authors report no conflicts of interest.

© 2021 The Authors.

Figures

Fig. 1
Fig. 1
Fitts–Posner Three-Stage Theory of Motor Skill Acquisition conceptual framework.

References

    1. Holmboe E.S., Ward D.S., Reznick R.K., et al. Faculty development in assessment: the missing link in competency-based medical education. Acad. Med. 2011;86(4):460–467. doi: 10.1097/acm.0b013e31820cb2a7.
    1. Kavic M.S. Teaching and training surgery to the next generation of surgeons. J. Soc. Laparoendosc. Surg. 2011;15(3):279–281. doi: 10.4293/108680811X13125733356675.
    1. Kneebone R. Simulation in surgical training: educational issues and practical implications. Med. Educ. 2003;37(3):267–277. doi: 10.1046/j.1365-2923.2003.01440.x.
    1. Frezzo D. The Role of Technology in the Education of the Future. World Economic Forum, Published May 10, 2017. Accessed.
    1. Norman G., Dore K., Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med. Educ. 2012;46(7):636–647. doi: 10.1111/j.1365-2923.2012.04243.x.
    1. Furness T.A. Configuring virtual space for the super cockpit. Human Interface Technology Laboratory Technical Report. 1989;89(1):103–110.
    1. Azuma R., Baillot Y., Behringer R., Feiner S.K., Julier S., MacIntyre B. Recent advances in augmented reality. IEEE Computer Graphics and Applications. 2001;21(6):34–47. doi: 10.1109/38.963459.
    1. Reznick R.K., MacRae H. Teaching surgical skills--changes in the wind. N. Engl. J. Med. 2006;355(25):2664–2669. doi: 10.1056/NEJMra054785.
    1. Kopta J.A. The development of motor skills in Orthopaedic Education. Clin. Orthop. Relat. Res. 1971;75:80–85. doi: 10.1097/00003086-197103000-00011.
    1. Anson G., Elliott D., Davids K. Information processing and constraints-based views of skill acquisition: divergent or complementary? Mot. Control. 2005;9(3):217–241. doi: 10.1123/mcj.9.3.217.
    1. Schmidt R.A. A schema theory of discrete motor skill learning. Psychol. Rev. 1975;82(4):225–260. doi: 10.1037/h0076770.
    1. Adams J.A. A closed-loop theory of motor learning. J. Mot. Behav. 1971;3(2):111–149. doi: 10.1080/00222895.1971.10734898.
    1. Kugler P.N., Scott Kelso J.A., Turvey M.T. 1 on the concept of Coordinative structures as DISSIPATIVE Structures: I. theoretical lines of convergence. Adv. Psychol. 1980;1:3–47. doi: 10.1016/s0166-4115(08)61936-6.
    1. Fitts P.M. Categories of Human Learning; 1964. Perceptual-Motor Skill Learning11. This Chapter Is Based in Part on Research Supported by the U. S. Air Force, Office of Scientific Research; pp. 243–285. under Contract No. af 49 (638)-449.
    1. Petersson H., Sinkvist D., Wang C., Smedby O. Web-based interactive 3d visualization as a tool for improved anatomy learning. Anat. Sci. Educ. 2009;2(2):61–68. doi: 10.1002/ase.76.
    1. John N.W., Lim I.S. Cybermedicine tools for communication and learning. J. Vis. Commun. Med. 2007;30(1):4–9. doi: 10.1080/01405110701252963.
    1. Walsh K. Mobile learning in medical education: review. Ethiop J Health Sci. 2015;25(4):363–366. doi: 10.4314/ejhs.v25i4.10.
    1. Garg A.X., Norman G.R., Eva K.W., Spero L., Sharan S. Is there any real virtue of virtual reality?: the minor role of multiple orientations in learning anatomy from computers. Acad. Med. 2002;77(10 Suppl):S97–S99. doi: 10.1097/00001888-200210001-00030.
    1. Stepan K., Zeiger J., Hanchuk S., et al. Immersive virtual reality as a teaching tool for neuroanatomy. Int Forum Allergy Rhinol. 2017;7(10):1006–1013. doi: 10.1002/alr.21986.
    1. Shao X., Yuan Q., Qian D., et al. Virtual reality technology for teaching neurosurgery of skull base tumor. BMC Med. Educ. 2020;20(1):3. doi: 10.1186/s12909-019-1911-5.
    1. Blumstein G., Zukotynski B., Cevallos N., et al. Randomized trial of a virtual reality tool to teach surgical technique for tibial shaft fracture intramedullary nailing. J. Surg. Educ. 2020;77(4):969–977. doi: 10.1016/j.jsurg.2020.01.002.
    1. Lohre R., Bois A., Pollock J., et al. Effectiveness of immersive virtual reality on orthopedic surgical skills and knowledge acquisition among senior surgical residents: a randomized clinical trial. Jama Netw Open. 2020;3(12) doi: 10.1001/jamanetworkopen.2020.31217.
    1. Hopkins R., Regehr G., Wilson T.D. Exploring the changing learning environment of the gross anatomy lab. Acad. Med. 2011;86(7):883–888. doi: 10.1097/ACM.0b013e31821de30f.
    1. Yoganathan S., Finch D.A., Parkin E., Pollard J. 360° virtual reality video for the acquisition of knot tying skills: a randomised controlled trial. Int. J. Surg. 2018;54(Pt A):24–27. doi: 10.1016/j.ijsu.2018.04.002.
    1. Pulijala Y., Ma M., Pears M., Peebles D., Ayoub A. Effectiveness of immersive virtual reality in surgical training-A randomized control trial. J. Oral Maxillofac. Surg. 2018;76(5):1065–1072. doi: 10.1016/j.joms.2017.10.002.
    1. Moulton C.A., Dubrowski A., Macrae H., Graham B., Grober E., Reznick R. Teaching surgical skills: what kind of practice makes perfect?: a randomized, controlled trial. Ann. Surg. 2006;244(3):400–409. doi: 10.1097/01.sla.0000234808.85789.6a.
    1. Shea J.B., Morgan R.L. Contextual interference effects on the acquisition, retention, and transfer of a motor skill. J. Exp. Psychol. Hum. Learn. Mem. 1979;5(2):179–187. doi: 10.1037/0278-7393.5.2.179.
    1. Ericsson K.A., Krampe R.T., Tesch-Römer C. The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 1993;100(3):363–406. doi: 10.1037/0033-295x.100.3.363.
    1. Bernardo A. Virtual reality and simulation in neurosurgical training. World Neurosurg. 2017;106:1015–1029. doi: 10.1016/j.wneu.2017.06.140.
    1. Palter V.N., Grantcharov T.P. Individualized deliberate practice on a virtual reality simulator improves technical performance of surgical novices in the operating room: a randomized controlled trial. Ann. Surg. 2014;259(3):443–448. doi: 10.1097/SLA.0000000000000254.
    1. Gasco J., Patel A., Ortega-Barnett J., et al. Virtual reality spine surgery simulation: an empirical study of its usefulness. Neurol. Res. 2014;36(11):968–973. doi: 10.1179/1743132814Y.0000000388.
    1. Brinkmann C., Fritz M., Pankratius U., et al. Box- or virtual-reality trainer: which tool results in better transfer of laparoscopic basic skills?-A prospective randomized trial. J. Surg. Educ. 2017;74(4):724–735. doi: 10.1016/j.jsurg.2016.12.009.
    1. Middleton R.M., Alvand A., Garfjeld Roberts P., Hargrove C., Kirby G., Rees J.L. Simulation-based training platforms for arthroscopy: a randomized comparison of virtual reality learning to benchtop learning. Arthroscopy. 2017;33(5):996–1003. doi: 10.1016/j.arthro.2016.10.021.
    1. Banaszek D., You D., Chang J., et al. Virtual reality compared with bench-top simulation in the acquisition of arthroscopic skill: a randomized controlled trial. J Bone Joint Surg Am. 2017;99(7):e34. doi: 10.2106/JBJS.16.00324.
    1. McKnight R., Pean C., Buck J., et al. Virtual reality and augmented reality-translating surgical training into surgical technique. Curr Rev Musculoskelet Med. 2020 Dec;13(6):663–674. doi: 10.1007/s12178-020-09667-3.
    1. Xeroulis G.J., Park J., Moulton C.A., Reznick R.K., Leblanc V., Dubrowski A. Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery. 2007;141(4):442–449. doi: 10.1016/j.surg.2006.09.012.
    1. Gabriele K.M., Holthaus R.M., Boulet J.R. Usefulness of video-assisted peer mentor feedback in undergraduate nursing education. Clinical Simulation in Nursing. 2016;12(8):337–345. doi: 10.1016/j.ecns.2016.03.004.
    1. Tuma F., Nassar A.K. StatPearls. Treasure Island (FL) StatPearls Publishing; 2020. Feedback in medical education. September 27.
    1. Hodges N.J., Wulf G., Shea C.H. In: Skill Acquisition in Sport Research, Theory and Practice. Williams A.M., editor. Routledge; 2004. Understanding the role of augmented feedback: the good, the bad, and the ugly; pp. 121–144.
    1. Sharma D.A., Chevidikunnan M.F., Khan F.R., Gaowgzeh R.A. Effectiveness of knowledge of result and knowledge of performance in the learning of a skilled motor activity by healthy young adults. J. Phys. Ther. Sci. 2016;28(5):1482–1486. doi: 10.1589/jpts.28.1482.
    1. Snyder C.W., Vandromme M.J., Tyra S.L., Porterfield J.R., Jr., Clements R.H., Hawn M.T. Effects of virtual reality simulator training method and observational learning on surgical performance. World J. Surg. 2011;35(2):245–252. doi: 10.1007/s00268-010-0861-1.
    1. Wijewickrema S., Piromchai P., Zhou Y., et al. Developing effective automated feedback in temporal bone surgery simulation. Otolaryngol. Head Neck Surg. 2015;152(6):1082–1088. doi: 10.1177/0194599815570880.
    1. Beilock S.L., Carr T.H., MacMahon C., Starkes J.L. When paying attention becomes counterproductive: impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. J. Exp. Psychol. Appl. 2002;8(1):6–16. doi: 10.1037//1076-898x.8.1.6.
    1. Larsen C.R., Soerensen J.L., Grantcharov T.P., et al. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial [published correction appears in BMJ. 2009;338. doi: 10.1136/bmj.b2074] BMJ. 2009;338:b1802. doi: 10.1136/bmj.b1802. Published 2009 May 14.
    1. Calatayud D., Arora S., Aggarwal R., et al. Warm-up in a virtual reality environment improves performance in the operating room. Ann. Surg. 2010;251(6):1181–1185. doi: 10.1097/SLA.0b013e3181deb630.
    1. Logishetty K., Rudran B., Cobb J.P. Virtual reality training improves trainee performance in total hip arthroplasty: a randomized controlled trial. Bone Joint Lett. J. 2019;101-B(12):1585–1592. doi: 10.1302/0301-620X.101B12.BJJ-2019-0643.R1.
    1. Shah R.N., Leight W.D., Patel M.R., et al. A controlled laboratory and clinical evaluation of a three-dimensional endoscope for endonasal sinus and skull base surgery. Am J Rhinol Allergy. 2011;25(3):141–144. doi: 10.2500/ajra.2011.25.3593.
    1. Smith R., Day A., Rockall T., Ballard K., Bailey M., Jourdan I. Advanced stereoscopic projection technology significantly improves novice performance of minimally invasive surgical skills. Surg. Endosc. 2012;26(6):1522–1527. doi: 10.1007/s00464-011-2080-8.
    1. Byrn J.C., Schluender S., Divino C.M., et al. Three-dimensional imaging improves surgical performance for both novice and experienced operators using the da Vinci Robot System. Am. J. Surg. 2007;193(4):519–522. doi: 10.1016/j.amjsurg.2006.06.042.
    1. Blavier A., Gaudissart Q., Cadière G.B., Nyssen A.S. Impact of 2D and 3D vision on performance of novice subjects using da Vinci robotic system. Acta Chir. Belg. 2006;106(6):662–664. doi: 10.1080/00015458.2006.11679976.
    1. Mastrangelo M.J., Jr., Adrales G., McKinlay R., et al. Inclusion of 3-D computed tomography rendering and immersive VR in a third year medical student surgery curriculum. Stud. Health Technol. Inf. 2003;94:199–203.
    1. Prinz A., Bolz M., Findl O. Advantage of three dimensional animated teaching over traditional surgical videos for teaching ophthalmic surgery: a randomised study. Br. J. Ophthalmol. 2005;89(11):1495–1499. doi: 10.1136/bjo.2005.075077.
    1. Shah R.N., Leight W.D., Patel M.R., et al. A controlled laboratory and clinical evaluation of a three-dimensional endoscope for endonasal sinus and skull base surgery. Am J Rhinol Allergy. 2011;25(3):141–144. doi: 10.2500/ajra.2011.25.3593.
    1. Votanopoulos K., Brunicardi F.C., Thornby J., Bellows C.F. Impact of three-dimensional vision in laparoscopic training. World J. Surg. 2008;32(1):110–118. doi: 10.1007/s00268-007-9253-6.
    1. Sankaranarayanan G., Odlozil C., Wells K., et al. Training with cognitive load improves performance under similar conditions in a real surgical task. Am. J. Surg. 2020;2230(3):620–629. doi: 10.1016/j.amsurg.2020.02.002.
    1. Krüger M., Ackermann J., Osmonov D., et al. Impact of acoustic and interactive disruptive factors during robot-assisted surgery – a virtual surgical training model. Sensors. 2020;20(20):5891. doi: 10.3390/s20205891.
    1. Brewer D.N., Wilson T.D., Eagleson R., de Ribaupierre S. Evaluation of neuroanatomical training using a 3D visual reality model. Stud. Health Technol. Inf. 2012;173:85–91.
    1. Honeck P., Wendt-Nordahl G., Rassweiler J., Knoll T. Three-dimensional laparoscopic imaging improves surgical performance on standardized ex-vivo laparoscopic tasks. J. Endourol. 2012;26(8):1085–1088. doi: 10.1089/end.2011.0670.
    1. Metzler R., Stein D., Tetzlaff R., et al. Teaching on three-dimensional presentation does not improve the understanding of according CT images: a randomized controlled study. Teach. Learn. Med. 2012;24(2):140–148. doi: 10.1080/10401334.2012.664963.
    1. Dziegielewski P.T., Zhu J., King B., et al. Three-dimensional biomodeling in complex mandibular reconstruction and surgical simulation: prospective trial. J Otolaryngol Head Neck Surg. 2011;40(Suppl 1):S70–S81.
    1. Podolsky D.J., Martin A.R., Whyne C.M., Massicotte E.M., Hardisty M.R., Ginsberg H.J. Exploring the role of 3-dimensional simulation in surgical training: feedback from a pilot study. J. Spinal Disord. Tech. 2010;23(8):e70–e74. doi: 10.1097/BSD.0b013e3181d345cb.
    1. Jurgaitis J., Paskonis M., Pivoriūnas J., et al. The comparison of 2-dimensional with 3-dimensional hepatic visualization in the clinical hepatic anatomy education. Medicina (Kaunas) 2008;44(6):428–438.

Source: PubMed

3
구독하다