TGF Beta as a Prognostic Biomarker of COVID-19 Severity in Patients with NAFLD-A Prospective Case-Control Study

Frano Susak, Nina Vrsaljko, Adriana Vince, Neven Papic, Frano Susak, Nina Vrsaljko, Adriana Vince, Neven Papic

Abstract

Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease in Western countries, has been identified as a possible risk factor for COVID-19 severity. However, the immunological mechanisms by which NAFLD exacerbates COVID-19 remain unknown. Transforming growth factor-beta 1 (TGF-β1) has an important immunomodulatory and pro-fibrotic role, which has already been described in NAFLD. However, the role of TGF-β1 in COVID-19 remains unclear, and could also be the pathophysiology link between these two conditions. The aim of this case-control study was to analyze the expression of TGF-β1 in COVID-19 patients depending on the presence of NAFLD and COVID-19 severity. Serum TGF-β1 concentrations were measured in 60 hospitalized COVID-19 patients (30 with NAFLD). NAFLD was associated with higher serum TGF-β1 concentrations that increased with disease severity. Admission TGF-β1 concentrations showed good discriminative accuracy in predicting the development of critical disease and COVID-19 complications (need for advanced respiratory support, ICU admission, time to recovery, development of nosocomial infections and mortality). In conclusion, TGF-β1 could be an efficient biomarker for predicting COVID-19 severity and adverse outcomes in patients with NAFLD.

Keywords: COVID-19; NAFLD; SARS-CoV-2; TGF-β1; cytokines; inflammation; non-alcoholic fatty liver disease.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Figures

Figure 1
Figure 1
Serum concentrations of TGF-β1 in patients with and without NAFLD depending on the COVID-19 severity. Data are presented as medians with IQRs and analyzed via a Kruskal–Wallis test with Dunn’s multiple comparisons test.
Figure 2
Figure 2
The ROC curve analysis of serum TGF-β1 concentrations for discrimination of: (a) moderate COVID-19 and severe/critical COVID-19 patients; (b) critical COVID-19 and moderate/severe COVID-19. AUCs are shown with 95%CI.
Figure 3
Figure 3
Spearman’s correlation correlogram. The strength of the correlation between two variables is represented by the color at the intersection of those variables. Colors range from dark blue (strong negative correlation; r = −1.0) to red (strong positive correlation; r = 1.0). Results were not represented if p > 0.05.
Figure 4
Figure 4
TGF-β1 serum concentrations in COVID-19 patients according to the presence of type 2 diabetes mellitus (T2DM), obesity, dyslipidemia, sex, age group and duration of symptoms. Data are presented as medians with IQR, and p-values were calculated via the Mann–Whitney test or Kruskal–Wallis test.
Figure 5
Figure 5
Association of time to recovery with serum concentrations of TGF-β1 using Kaplan–Meier curves in patients with COVID-19. Hazard ratios with 95% confidence intervals and p-values were calculated using the log-rank test.
Figure 6
Figure 6
TGF-β1 serum concentrations in COVID-19 patients according to the level of respiratory support, ICU admission, development of nosocomial infections, and pulmonary thrombosis. Data are presented as medians with IQR, and p-values were calculated using the Mann–Whitney test.
Figure 7
Figure 7
ROC curve analysis of TGF-β1 and IL-6 with the corresponding AUCs for COVID-19 mortality.

References

    1. Younossi Z.M., Koenig A.B., Abdelatif D., Fazel Y., Henry L., Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64:73–84. doi: 10.1002/hep.28431.
    1. Foroughi M., Maghsoudi Z., Khayyatzadeh S., Ghiasvand R., Askari G., Iraj B. Relationship between non-alcoholic fatty liver disease and inflammation in patients with non-alcoholic fatty liver. Adv. Biomed. Res. 2016;5:28. doi: 10.4103/2277-9175.176368.
    1. Byrne C.D., Targher G. NAFLD: A multisystem disease. J. Hepatol. 2015;62:S47–S64. doi: 10.1016/j.jhep.2014.12.012.
    1. Tomeno W., Imajo K., Takayanagi T., Ebisawa Y., Seita K., Takimoto T., Honda K., Kobayashi T., Nogami A., Kato T., et al. Complications of Non-Alcoholic Fatty Liver Disease in Extrahepatic Organs. Diagnostics. 2020;10:912. doi: 10.3390/diagnostics10110912.
    1. Krznaric J., Vince A. The Role of Non-Alcoholic Fatty Liver Disease in Infections. Life. 2022;12:2052. doi: 10.3390/life12122052.
    1. Gjurasin B., Jelicic M., Kutlesa M., Papic N. The Impact of Nonalcoholic Fatty Liver Disease on Severe Community-Acquired Pneumonia Outcomes. Life. 2022;13:36. doi: 10.3390/life13010036.
    1. Yoo H.W., Jin H.Y., Yon D.K., Effenberger M., Shin Y.H., Kim S.Y., Yang J.M., Kim M.S., Koyanagi A., Jacob L., et al. Non-alcoholic Fatty Liver Disease and COVID-19 Susceptibility and Outcomes: A Korean Nationwide Cohort. J. Korean Med. Sci. 2021;36:e291. doi: 10.3346/jkms.2021.36.e291.
    1. Singh A., Hussain S., Antony B. Non-alcoholic fatty liver disease and clinical outcomes in patients with COVID-19: A comprehensive systematic review and meta-analysis. Diabetes Metab. Syndr. 2021;15:813–822. doi: 10.1016/j.dsx.2021.03.019.
    1. Hegyi P.J., Vancsa S., Ocskay K., Dembrovszky F., Kiss S., Farkas N., Eross B., Szakacs Z., Hegyi P., Par G. Metabolic Associated Fatty Liver Disease Is Associated With an Increased Risk of Severe COVID-19: A Systematic Review With Meta-Analysis. Front. Med. 2021;8:626425. doi: 10.3389/fmed.2021.626425.
    1. Pan L., Huang P., Xie X., Xu J., Guo D., Jiang Y. Metabolic associated fatty liver disease increases the severity of COVID-19: A meta-analysis. Dig. Liver Dis. 2021;53:153–157. doi: 10.1016/j.dld.2020.09.007.
    1. Vrsaljko N., Samadan L., Viskovic K., Mehmedovic A., Budimir J., Vince A., Papic N. Association of Nonalcoholic Fatty Liver Disease with COVID-19 Severity and Pulmonary Thrombosis: CovidFAT, a Prospective, Observational Cohort Study. Open. Forum Infect. Dis. 2022;9:ofac073. doi: 10.1093/ofid/ofac073.
    1. Forlano R., Mullish B.H., Mukherjee S.K., Nathwani R., Harlow C., Crook P., Judge R., Soubieres A., Middleton P., Daunt A., et al. In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19. PLoS ONE. 2020;15:e0240400. doi: 10.1371/journal.pone.0240400.
    1. Mather M.W., Jardine L., Talks B., Gardner L., Haniffa M. Complexity of immune responses in COVID-19. Semin. Immunol. 2021;55:101545. doi: 10.1016/j.smim.2021.101545.
    1. Del Valle D.M., Kim-Schulze S., Huang H.H., Beckmann N.D., Nirenberg S., Wang B., Lavin Y., Swartz T.H., Madduri D., Stock A., et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat. Med. 2020;26:1636–1643. doi: 10.1038/s41591-020-1051-9.
    1. Halim C., Mirza A.F., Sari M.I. The Association between TNF-alpha, IL-6, and Vitamin D Levels and COVID-19 Severity and Mortality: A Systematic Review and Meta-Analysis. Pathogens. 2022;11:195. doi: 10.3390/pathogens11020195.
    1. Papic N., Samadan L., Vrsaljko N., Radmanic L., Jelicic K., Simicic P., Svoboda P., Lepej S.Z., Vince A. Distinct Cytokine Profiles in Severe COVID-19 and Non-Alcoholic Fatty Liver Disease. Life. 2022;12:795. doi: 10.3390/life12060795.
    1. Gao F., Zheng K.I., Yan H.D., Sun Q.F., Pan K.H., Wang T.Y., Chen Y.P., Targher G., Byrne C.D., George J., et al. Association and Interaction Between Serum Interleukin-6 Levels and Metabolic Dysfunction-Associated Fatty Liver Disease in Patients With Severe Coronavirus Disease 2019. Front. Endocrinol. 2021;12:604100. doi: 10.3389/fendo.2021.604100.
    1. Nolte M., Margadant C. Controlling Immunity and Inflammation through Integrin-Dependent Regulation of TGF-beta. Trends Cell. Biol. 2020;30:49–59. doi: 10.1016/j.tcb.2019.10.002.
    1. Mantel P.Y., Schmidt-Weber C.B. Transforming growth factor-beta: Recent advances on its role in immune tolerance. Methods Mol. Biol. 2011;677:303–338. doi: 10.1007/978-1-60761-869-0_21.
    1. Fabregat I., Moreno-Caceres J., Sanchez A., Dooley S., Dewidar B., Giannelli G., Ten Dijke P., Consortium I.-L. TGF-beta signalling and liver disease. FEBS J. 2016;283:2219–2232. doi: 10.1111/febs.13665.
    1. Brianso-Llort L., Fuertes-Rioja L., Ramos-Perez L., Salcedo-Allende M.T., Hernandez C., Simo R., Selva D.M. Transforming growth factor-beta 1: A new factor reducing hepatic SHBG production in liver fibrosis. J. Cell. Physiol. 2022;237:3598–3613. doi: 10.1002/jcp.30818.
    1. Ahmed H., Umar M.I., Imran S., Javaid F., Syed S.K., Riaz R., Hassan W. TGF-beta1 signaling can worsen NAFLD with liver fibrosis backdrop. Exp. Mol. Pathol. 2022;124:104733. doi: 10.1016/j.yexmp.2021.104733.
    1. Nair B., Nath L.R. Inevitable role of TGF-beta1 in progression of nonalcoholic fatty liver disease. J. Recept. Signal. Transduct. Res. 2020;40:195–200. doi: 10.1080/10799893.2020.1726952.
    1. Vaz de Paula C.B., Nagashima S., Liberalesso V., Collete M., da Silva F.P.G., Oricil A.G.G., Barbosa G.S., da Silva G.V.C., Wiedmer D.B., da Silva Deziderio F., et al. COVID-19: Immunohistochemical Analysis of TGF-beta Signaling Pathways in Pulmonary Fibrosis. Int. J. Mol. Sci. 2021;23:168. doi: 10.3390/ijms23010168.
    1. Wang E.Y., Chen H., Sun B.Q., Wang H., Qu H.Q., Liu Y., Sun X.Z., Qu J., Fang Z.F., Tian L., et al. Serum levels of the IgA isotype switch factor TGF-beta1 are elevated in patients with COVID-19. FEBS Lett. 2021;595:1819–1824. doi: 10.1002/1873-3468.14104.
    1. Ferreira-Gomes M., Kruglov A., Durek P., Heinrich F., Tizian C., Heinz G.A., Pascual-Reguant A., Du W., Mothes R., Fan C., et al. SARS-CoV-2 in severe COVID-19 induces a TGF-beta-dominated chronic immune response that does not target itself. Nat. Commun. 2021;12:1961. doi: 10.1038/s41467-021-22210-3.
    1. Karadeniz H., Avanoglu Guler A., Ozger H.S., Yildiz P.A., Erbas G., Bozdayi G., Deveci Bulut T., Gulbahar O., Yapar D., Kucuk H., et al. The Prognostic Value of Lung Injury and Fibrosis Markers, KL-6, TGF-beta1, FGF-2 in COVID-19 Patients. Biomark. Insights. 2022;17:11772719221135443. doi: 10.1177/11772719221135443.
    1. Rubina K., Shmakova A., Shabanov A., Andreev Y., Borovkova N., Kulabukhov V., Evseev A., Popugaev K., Petrikov S., Semina E. Novel prognostic determinants of COVID-19-related mortality: A pilot study on severely-ill patients in Russia. PLoS ONE. 2022;17:e0264072. doi: 10.1371/journal.pone.0264072.
    1. National Institutes of Health COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. [(accessed on 19 May 2023)]; Available online:
    1. Ferraioli G., Soares Monteiro L.B. Ultrasound-based techniques for the diagnosis of liver steatosis. World J. Gastroenterol. 2019;25:6053–6062. doi: 10.3748/wjg.v25.i40.6053.
    1. Rinella M.E., Neuschwander-Tetri B.A., Siddiqui M.S., Abdelmalek M.F., Caldwell S., Barb D., Kleiner D.E., Loomba R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology. 2023;77:1797–1835. doi: 10.1097/HEP.0000000000000323.
    1. European Association for the Study of the Liver. European Association for the Study of Diabetes. European Association for the Study of Obesity EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016;64:1388–1402. doi: 10.1016/j.jhep.2015.11.004.
    1. Kawasaki S., Aoki K., Hasegawa O., Numata K., Tanaka K., Shibata N., Shimada S., Okamura A., Terauchi Y. Sonographic evaluation of visceral fat by measuring para- and perirenal fat. J. Clin. Ultrasound. 2008;36:129–133. doi: 10.1002/jcu.20426.
    1. Kubiczkova L., Sedlarikova L., Hajek R., Sevcikova S. TGF-beta—An excellent servant but a bad master. J. Transl. Med. 2012;10:183. doi: 10.1186/1479-5876-10-183.
    1. Lodyga M., Hinz B. TGF-beta1—A truly transforming growth factor in fibrosis and immunity. Semin. Cell. Dev. Biol. 2020;101:123–139. doi: 10.1016/j.semcdb.2019.12.010.
    1. Rendon-Ramirez E.J., Ortiz-Stern A., Martinez-Mejia C., Salinas-Carmona M.C., Rendon A., Mata-Tijerina V.L., Rosas-Taraco A.G. TGF-beta Blood Levels Distinguish Between Influenza A (H1N1)pdm09 Virus Sepsis and Sepsis due to Other Forms of Community-Acquired Pneumonia. Viral Immunol. 2015;28:248–254. doi: 10.1089/vim.2014.0123.
    1. Denney L., Branchett W., Gregory L.G., Oliver R.A., Lloyd C.M. Epithelial-derived TGF-beta1 acts as a pro-viral factor in the lung during influenza A infection. Mucosal Immunol. 2018;11:523–535. doi: 10.1038/mi.2017.77.
    1. Li N., Ren A., Wang X., Fan X., Zhao Y., Gao G.F., Cleary P., Wang B. Influenza viral neuraminidase primes bacterial coinfection through TGF-beta-mediated expression of host cell receptors. Proc. Natl. Acad. Sci. USA. 2015;112:238–243. doi: 10.1073/pnas.1414422112.
    1. Beijing Group of National Research Project for SARS Dynamic changes in blood cytokine levels as clinical indicators in severe acute respiratory syndrome. Chin. Med. J. 2003;116:1283–1287.
    1. Lee C.H., Chen R.F., Liu J.W., Yeh W.T., Chang J.C., Liu P.M., Eng H.L., Lin M.C., Yang K.D. Altered p38 mitogen-activated protein kinase expression in different leukocytes with increment of immunosuppressive mediators in patients with severe acute respiratory syndrome. J. Immunol. 2004;172:7841–7847. doi: 10.4049/jimmunol.172.12.7841.
    1. Ghazavi A., Ganji A., Keshavarzian N., Rabiemajd S., Mosayebi G. Cytokine profile and disease severity in patients with COVID-19. Cytokine. 2021;137:155323. doi: 10.1016/j.cyto.2020.155323.
    1. Laloglu E., Alay H. Role of transforming growth factor-beta 1 and connective tissue growth factor levels in coronavirus disease-2019-related lung Injury: A prospective, observational, cohort study. Rev. Soc. Bras. Med. Trop. 2022;55:e06152021. doi: 10.1590/0037-8682-0615-2021.
    1. Zivancevic-Simonovic S., Minic R., Cupurdija V., Stanojevic-Pirkovic M., Milosevic-Djordjevic O., Jakovljevic V., Mihaljevic O. Transforming growth factor beta 1 (TGF-beta1) in COVID-19 patients: Relation to platelets and association with the disease outcome. Mol. Cell. Biochem. 2023:1–11. doi: 10.1007/s11010-023-04674-7.
    1. Colarusso C., Maglio A., Terlizzi M., Vitale C., Molino A., Pinto A., Vatrella A., Sorrentino R. Post-COVID-19 Patients Who Develop Lung Fibrotic-like Changes Have Lower Circulating Levels of IFN-beta but Higher Levels of IL-1alpha and TGF-beta. Biomedicines. 2021;9:1931. doi: 10.3390/biomedicines9121931.
    1. Lin E., Kuo P.H., Liu Y.L., Yang A.C., Tsai S.J. Transforming growth factor-beta signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population. Sci. Rep. 2017;7:13589. doi: 10.1038/s41598-017-14025-4.
    1. Nasr El-Din A., Ata K.A.E., Abdel-Gawad A.R., Fahmy N.F. Impact of High Serum Levels of MMP-7, MMP-9, TGF-beta and PDGF Macrophage Activation Markers on Severity of COVID-19 in Obese-Diabetic Patients. Infect. Drug. Resist. 2021;14:4015–4025. doi: 10.2147/IDR.S329004.
    1. Guo S.A., Bowyer G.S., Ferdinand J.R., Maes M., Tuong Z.K., Gillman E., Liao M., Lindeboom R.G.H., Yoshida M., Worlock K., et al. Obesity Is Associated with Attenuated Tissue Immunity in COVID-19. Am. J. Respir. Crit. Care Med. 2023;207:566–576. doi: 10.1164/rccm.202204-0751OC.
    1. Witkowski M., Tizian C., Ferreira-Gomes M., Niemeyer D., Jones T.C., Heinrich F., Frischbutter S., Angermair S., Hohnstein T., Mattiola I., et al. Untimely TGFbeta responses in COVID-19 limit antiviral functions of NK cells. Nature. 2021;600:295–301. doi: 10.1038/s41586-021-04142-6.
    1. Peters D.M., Vadasz I., Wujak L., Wygrecka M., Olschewski A., Becker C., Herold S., Papp R., Mayer K., Rummel S., et al. TGF-beta directs trafficking of the epithelial sodium channel ENaC which has implications for ion and fluid transport in acute lung injury. Proc. Natl. Acad. Sci. USA. 2014;111:E374–E383. doi: 10.1073/pnas.1306798111.
    1. Kumar S., Duan Q., Wu R., Harris E.N., Su Q. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis. Adv. Drug. Deliv. Rev. 2021;176:113869. doi: 10.1016/j.addr.2021.113869.
    1. Nasiri-Ansari N., Androutsakos T., Flessa C.M., Kyrou I., Siasos G., Randeva H.S., Kassi E., Papavassiliou A.G. Endothelial Cell Dysfunction and Nonalcoholic Fatty Liver Disease (NAFLD): A Concise Review. Cells. 2022;11:2511. doi: 10.3390/cells11162511.

Source: PubMed

3
구독하다