Structure, function, and allosteric modulation of NMDA receptors

Kasper B Hansen, Feng Yi, Riley E Perszyk, Hiro Furukawa, Lonnie P Wollmuth, Alasdair J Gibb, Stephen F Traynelis, Kasper B Hansen, Feng Yi, Riley E Perszyk, Hiro Furukawa, Lonnie P Wollmuth, Alasdair J Gibb, Stephen F Traynelis

Abstract

NMDA-type glutamate receptors are ligand-gated ion channels that mediate a Ca2+-permeable component of excitatory neurotransmission in the central nervous system (CNS). They are expressed throughout the CNS and play key physiological roles in synaptic function, such as synaptic plasticity, learning, and memory. NMDA receptors are also implicated in the pathophysiology of several CNS disorders and more recently have been identified as a locus for disease-associated genomic variation. NMDA receptors exist as a diverse array of subtypes formed by variation in assembly of seven subunits (GluN1, GluN2A-D, and GluN3A-B) into tetrameric receptor complexes. These NMDA receptor subtypes show unique structural features that account for their distinct functional and pharmacological properties allowing precise tuning of their physiological roles. Here, we review the relationship between NMDA receptor structure and function with an emphasis on emerging atomic resolution structures, which begin to explain unique features of this receptor.

© 2018 Hansen et al.

Figures

Figure 1.
Figure 1.
Functional classes of iGluRs. (A) iGluRs are divided into AMPA, kainate, and NMDA receptors with multiple subunits cloned in each of these functional classes. (B) EPSCs from central synapses can be divided into fast AMPA or slow NMDA receptor–mediated components in the absence of Mg2+ using the AMPA receptor antagonist CNQX or the NMDA receptor antagonist AP5. The figure is adapted from Traynelis et al. (2010). (C) The relationships between NMDA receptor current response and membrane potential (i.e., holding potential) in the presence and absence of 100 µM extracellular Mg2+ reveal the voltage-dependent Mg2+ block, which is relieved as the membrane potential approaches 0 mV (i.e., with depolarization). Data are from Yi et al. (2018).
Figure 2.
Figure 2.
Subunit stoichiometry and subunit arrangement of GluN1/2 NMDA receptors. The crystal structure of the intact GluN1/2B NMDA receptor (the intracellular CTD omitted from structure; Protein Data Bank accession no. 4PE5; Karakas and Furukawa, 2014) definitively demonstrated that GluN1 and GluN2 subunits assemble as heterotetramers with an alternating pattern (i.e., 1-2-1-2). The NMDA receptor is therefore comprised of two glycine-binding GluN1 and two glutamate-binding GluN2 subunits (i.e., GluN1/2 receptors) that form a central cation-permeable channel pore.
Figure 3.
Figure 3.
Expression and functional properties of NMDA receptor subtypes determined by the GluN2 subunit. (A) Autoradiograms obtained by in situ hybridizations of oligonucleotide probes to parasagittal sections of rat brain at indicated postnatal (P) days reveal distinct regional and developmental expression of GluN2 subunits. Fig. 3 A is modified from Akazawa et al., 1994 with permission from the Journal of Comparative Neurology. (B) Whole-cell patch-clamp recordings of responses from recombinant diheteromeric NMDA receptor subtypes expressed in HEK293 cells. The receptors are activated by a brief application of glutamate (1 ms of 1 mM glutamate) indicated by the open tip current in the upper trace. Fig. 3 B is adapted from Vicini et al. (1998) with permission from the Journal of Neurophysiology. (C) Single-channel recordings of currents from outside-out membrane patches obtained from HEK293 cells expressing recombinant NMDA receptor subtypes. The single-channel recordings demonstrate distinct open probabilities and channel conductances depending on the GluN2 subunit in the diheteromeric NMDA receptor. Highlights of individual openings are shown on the left. Adapted from Yuan et al. (2008).
Figure 4.
Figure 4.
Domain organization and ligand-binding sites in NMDA receptors. (A) The linear representation of the polypeptide chain illustrates the segments that form the four semiautonomous subunit domains shown in the cartoon, which are the extracellular ATD, the ABD, the TMD formed by three transmembrane helices (M1, M2, and M4) and a membrane reentrant loop (M2), and the intracellular CTD. The ABD is formed by two polypeptide segments (S1 and S2) that fold into a bilobed structure with an upper lobe (D1) and lower lobe (D2). The agonist-binding site is located in the cleft between the two lobes. (B) The crystal structure of the GluN1/2B NMDA receptor (Protein Data Bank accession no. 4PE5; Karakas and Furukawa, 2014) shows the subunit arrangement and the layered domain organization. The binding sites for agonists (and competitive antagonists) as well as predicted and known binding sites for PAMs and NAMs are highlighted. The figure is adapted from Hansen et al. (2017).
Figure 5.
Figure 5.
Crystal structures of NMDA receptor ABDs. (A) Structures of the soluble GluN1/2 ABD heterodimers reveal the subunit interface and back-to-back dimer arrangement of the ABDs. The structure shown here is for the GluN1/2A ABD heterodimer with bound glutamate and glycine shown as spheres (Protein Data Bank accession no. 5I57; Yi et al., 2016). The top view of the structure highlights sites I–III at the subunit interface. (B) Overlay of crystal structures of GluN1/2A ABD heterodimers in complex with glycine and either glutamate agonist (Protein Data Bank accession no. 5I57; Yi et al., 2016) or a competitive glutamate site antagonist (Protein Data Bank accession no. 5U8C; Romero-Hernandez and Furukawa, 2017). Activation of NMDA receptors requires agonist-induced ABD closure. Competitive antagonists bind the ABD without inducing domain closure, thereby preventing receptor activation. (C) Magnified views of the glutamate-binding site with bound GluN2A-preferring antagonists NVP-AAM077 (Protein Data Bank accession no. 5U8C; Romero-Hernandez and Furukawa, 2017) or ST3 (Protein Data Bank accession no. 5VII; Lind et al., 2017). Schild analyses demonstrated that NVP-AAM077 has 11-fold and ST3 has 15-fold preference for GluN1/2A over GluN1/2B receptors (data adapted from Lind et al., 2017). The crystal structures reveal a binding mode in which NVP-AAM077 and ST3 occupy a cavity that extends toward GluN1 at the subunit interface, and mutational analyses show that the GluN2A preference of these antagonists is primarily mediated by four nonconserved residues (Lys738, Tyr754, Ile755, and Thr758) that do not directly contact the ligand but are positioned within 12 Å of the glutamate-binding site. (D) Structure of the agonist-bound GluN1/2A ABD heterodimer with the NAM MPX-007 bound at site II in the subunit interface (Protein Data Bank accession no. 5I59; Yi et al., 2016). (E) Magnified views of site II in GluN1/2A ABD heterodimer with bound MPX-007 (NAM; Protein Data Bank accession no. 5I59; Yi et al., 2016) or PAM GNE-8324 (Protein Data Bank accession no. 5H8Q; Hackos et al., 2016). The overlay illustrates the distinct effects of NAM and PAM binding on Val783 in GluN2A and Tyr535 in GluN1. The GluN2A selectivity of the NAMs and PAMs binding at this modulatory site is mediated by Val783 in GluN2A, which is nonconserved among GluN2 subunits (Phe in GluN2B and Leu in GluN2C/GluN2D).
Figure 6.
Figure 6.
Structure of the intact NMDA receptors. (A) Structure of the glycine- and glutamate-bound GluN1-1b/2B NMDA receptor without CTDs (Protein Data Bank accession no. 5FXI; Tajima et al., 2016). (B) The GluN1 (1) and GluN2 (2) subunits are arranged as a dimer of heterodimers at the ATD and ABD layers in a 1-2-1-2 fashion. Note that the heterodimer pairs are interchanged between the ATD and ABD layers (i.e., subunit crossover). In the TMD layer, the GluN1 and GluN2 subunits are arranged as a tetramer with pseudo-fourfold symmetry. (C) Comparison of the two major conformational states observed in the presence of glycine and glutamate by cryo-EM/single-particle analysis. Shown in spheres are the Cα of the gating ring residues, GluN1-1b Arg684 and GluN2B Glu658, which are adjacent to the pore-forming M3 transmembrane helices. In the nonactive (Protein Data Bank accession no. 5FXI; Tajima et al., 2016) and active (Protein Data Bank accession no. 5FXG; Tajima et al., 2016) conformations, the distances between the two GluN2B Glu658 Cα atoms are ∼29 Å and ∼45 Å, respectively, indicating that degrees of tension in the ABD–TMD loops are different.
Figure 7.
Figure 7.
Single-channel recordings of NMDA receptor gating. Recording of receptor activation (i.e., channel gating or pore dilation) in an excised outside-out membrane patch containing a single GluN1/2B receptor exposed to 1 mM glutamate plus 30 µM glycine for 1 ms as indicated. In this example, receptor activation results in a characteristically long burst of channel openings and closings (duration 128 ms). Evaluation of closed periods within the GluN1/2B activation suggests that two kinetically distinct pregating steps exist (i.e., fast and slow steps; see Fig. 8 D for model). Some (but not all) closures within the activation will reflect reversal of pore dilation, reversal of a single pregating step, followed by forward movement back through the pregating step and pore dilation. Two possible closures that might reflect the slow and fast pregating components are highlighted in red. Data are from Banke and Traynelis (2003).
Figure 8.
Figure 8.
Application of a gating reaction mechanism of NMDA receptors. (A) Individual responses from a recombinant GluN1/2B channel in an excised outside-out patch activated by 1 ms application of maximally effective glutamate and glycine (indicated by the gray vertical bar and the open tip recording above the channel recordings). The patch contained a single active channel, which allowed analysis of the variable delay before channel opening. NMDA receptors bind agonist rapidly and subsequently open after a multimillisecond delay that reflects transition through kinetically distinct protein conformations before pore dilation (i.e., channel gating). Note that although application of maximal glutamate and glycine always produces a binding event, not all binding events lead to channel opening. Reproduced from Erreger et al. (2005a). (B) The cumulative plot of latency to opening after application of 1 mM glutamate for 1 ms. (C) The average of all individual recordings of single activations produced a macroscopic waveform with a characteristic rise time. (D) Evaluation of closed periods within the GluN1/2B activation suggested a model where two pregating steps can occur in any order and explosive opening of the pore, which occurs faster than the resolution of the recordings, is assumed to happen instantaneously once both pregating steps have been traversed. (E) Simulation of a single activation for a GluN1/2B channel (using the model in D) illustrates how brief gaps can contain information about forward rates for the fast kinetically distinct pregating step. The color above the simulation indicates occupancy in the corresponding closed state of the model in D. The slow step often reverses again through the fast state (green) before reopening.
Figure 9.
Figure 9.
General pore structure of NMDA receptors. (A) Pore-lining elements contributed by the GluN1 subunit (blue; Protein Data Bank accession no. 5UN1; Song et al., 2018). The M3 transmembrane segment lines the extracellular part of the permeation pathway, whereas the M2 pore loop lines the intracellular part with the N site asparagine (red circle) positioned at the tip of the M2 pore loop. The channel is in the closed conformation. (B) The narrow constriction is formed by nonhomologous asparagine residues, the GluN1 N site and the GluN2 N+1 site (Wollmuth et al., 1996; Song et al., 2018). The GluN2B subunit is colored orange. For both GluN1 and GluN2, the N site asparagine residue is positioned at the tip of the M2 loop.

References

    1. Abdallah C.G., Sanacora G., Duman R.S., and Krystal J.H.. 2015. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med. 66:509–523. 10.1146/annurev-med-053013-062946
    1. Ahmadi S., Muth-Selbach U., Lauterbach A., Lipfert P., Neuhuber W.L., and Zeilhofer H.U.. 2003. Facilitation of spinal NMDA receptor currents by spillover of synaptically released glycine. Science. 300:2094–2097. 10.1126/science.1083970
    1. Aizenman E., Lipton S.A., and Loring R.H.. 1989. Selective modulation of NMDA responses by reduction and oxidation. Neuron. 2:1257–1263. 10.1016/0896-6273(89)90310-3
    1. Akazawa C., Shigemoto R., Bessho Y., Nakanishi S., and Mizuno N.. 1994. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J. Comp. Neurol. 347:150–160. 10.1002/cne.903470112
    1. Al-Hallaq R.A., Conrads T.P., Veenstra T.D., and Wenthold R.J.. 2007. NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J. Neurosci. 27:8334–8343. 10.1523/JNEUROSCI.2155-07.2007
    1. Alsaloum M., Kazi R., Gan Q., Amin J., and Wollmuth L.P.. 2016. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors. J. Neurosci. 36:2617–2622. 10.1523/JNEUROSCI.2667-15.2016
    1. Aman T.K., Maki B.A., Ruffino T.J., Kasperek E.M., and Popescu G.K.. 2014. Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability. J. Biol. Chem. 289:18805–18817. 10.1074/jbc.M113.537282
    1. Amico-Ruvio S.A., and Popescu G.K.. 2010. Stationary gating of GluN1/GluN2B receptors in intact membrane patches. Biophys. J. 98:1160–1169. 10.1016/j.bpj.2009.12.4276
    1. Amico-Ruvio S.A., Murthy S.E., Smith T.P., and Popescu G.K.. 2011. Zinc effects on NMDA receptor gating kinetics. Biophys. J. 100:1910–1918. 10.1016/j.bpj.2011.02.042
    1. Anderson C.T., Radford R.J., Zastrow M.L., Zhang D.Y., Apfel U.P., Lippard S.J., and Tzounopoulos T.. 2015. Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc. Proc. Natl. Acad. Sci. USA. 112:E2705–E2714. 10.1073/pnas.1503348112
    1. Antonov S.M., and Johnson J.W.. 1999. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg(2+). Proc. Natl. Acad. Sci. USA. 96:14571–14576. 10.1073/pnas.96.25.14571
    1. Armstrong N., and Gouaux E.. 2000. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron. 28:165–181. 10.1016/S0896-6273(00)00094-5
    1. Armstrong N., Sun Y., Chen G.Q., and Gouaux E.. 1998. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature. 395:913–917. 10.1038/27692
    1. Arvola M., and Keinänen K.. 1996. Characterization of the ligand-binding domains of glutamate receptor (GluR)-B and GluR-D subunits expressed in Escherichia coli as periplasmic proteins. J. Biol. Chem. 271:15527–15532. 10.1074/jbc.271.26.15527
    1. Ascher P., Bregestovski P., and Nowak L.. 1988. N-methyl-D-aspartate-activated channels of mouse central neurones in magnesium-free solutions. J. Physiol. 399:207–226. 10.1113/jphysiol.1988.sp017076
    1. Atlason P.T., Garside M.L., Meddows E., Whiting P., and McIlhinney R.A.. 2007. N-Methyl-D-aspartate (NMDA) receptor subunit NR1 forms the substrate for oligomeric assembly of the NMDA receptor. J. Biol. Chem. 282:25299–25307. 10.1074/jbc.M702778200
    1. Auerbach A., and Zhou Y.. 2005. Gating reaction mechanisms for NMDA receptor channels. J. Neurosci. 25:7914–7923. 10.1523/JNEUROSCI.1471-05.2005
    1. Banke T.G., and Traynelis S.F.. 2003. Activation of NR1/NR2B NMDA receptors. Nat. Neurosci. 6:144–152. 10.1038/nn1000
    1. Banke T.G., Dravid S.M., and Traynelis S.F.. 2005. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25:42–51. 10.1523/JNEUROSCI.3154-04.2005
    1. Barygin O.I., Gmiro V.E., Kim ., Magazanik L.G., and Tikhonov D.B.. 2009. Blockade of NMDA receptor channels by 9-aminoacridine and its derivatives. Neurosci. Lett. 451:29–33. 10.1016/j.neulet.2008.12.036
    1. Beck C., Wollmuth L.P., Seeburg P.H., Sakmann B., and Kuner T.. 1999. NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron. 22:559–570. 10.1016/S0896-6273(00)80710-2
    1. Benveniste M., and Mayer M.L.. 1991. Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys. J. 59:560–573. 10.1016/S0006-3495(91)82272-X
    1. Benveniste M., and Mayer M.L.. 1995. Trapping of glutamate and glycine during open channel block of rat hippocampal neuron NMDA receptors by 9-aminoacridine. J. Physiol. 483:367–384. 10.1113/jphysiol.1995.sp020591
    1. Benveniste M., Clements J., Vyklický L. Jr., and Mayer M.L.. 1990. A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurones. J. Physiol. 428:333–357. 10.1113/jphysiol.1990.sp018215
    1. Berger A.J., Dieudonné S., and Ascher P.. 1998. Glycine uptake governs glycine site occupancy at NMDA receptors of excitatory synapses. J. Neurophysiol. 80:3336–3340. 10.1152/jn.1998.80.6.3336
    1. Bergeron R., Meyer T.M., Coyle J.T., and Greene R.W.. 1998. Modulation of N-methyl-D-aspartate receptor function by glycine transport. Proc. Natl. Acad. Sci. USA. 95:15730–15734. 10.1073/pnas.95.26.15730
    1. Bhatt J.M., Prakash A., Suryavanshi P.S., and Dravid S.M.. 2013. Effect of ifenprodil on GluN1/GluN2B N-methyl-D-aspartate receptor gating. Mol. Pharmacol. 83:9–21. 10.1124/mol.112.080952
    1. Billups D., and Attwell D.. 2003. Active release of glycine or D-serine saturates the glycine site of NMDA receptors at the cerebellar mossy fibre to granule cell synapse. Eur. J. Neurosci. 18:2975–2980. 10.1111/j.1460-9568.2003.02996.x
    1. Blanpied T.A., Boeckman F.A., Aizenman E., and Johnson J.W.. 1997. Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 77:309–323. 10.1152/jn.1997.77.1.309
    1. Blanpied T.A., Clarke R.J., and Johnson J.W.. 2005. Amantadine inhibits NMDA receptors by accelerating channel closure during channel block. J. Neurosci. 25:3312–3322. 10.1523/JNEUROSCI.4262-04.2005
    1. Bolshakov K.V., Gmiro V.E., Tikhonov D.B., and Magazanik L.G.. 2003. Determinants of trapping block of N-methyl-d-aspartate receptor channels. J. Neurochem. 87:56–65. 10.1046/j.1471-4159.2003.01956.x
    1. Borovska J., Vyklicky V., Stastna E., Kapras V., Slavikova B., Horak M., Chodounska H., and Vyklicky L. Jr. 2012. Access of inhibitory neurosteroids to the NMDA receptor. Br. J. Pharmacol. 166:1069–1083. 10.1111/j.1476-5381.2011.01816.x
    1. Borschel W.F., Cummings K.A., Tindell L.K., and Popescu G.K.. 2015. Kinetic contributions to gating by interactions unique to N-methyl-D-aspartate (NMDA) receptors. J. Biol. Chem. 290:26846–26855. 10.1074/jbc.M115.678656
    1. Bourne H.R., and Nicoll R.. 1993. Molecular machines integrate coincident synaptic signals. Cell. 72(Suppl):65–75. 10.1016/S0092-8674(05)80029-7
    1. Brackley P.T., Bell D.R., Choi S.K., Nakanishi K., and Usherwood P.N.. 1993. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J. Pharmacol. Exp. Ther. 266:1573–1580.
    1. Brickley S.G., Misra C., Mok M.H., Mishina M., and Cull-Candy S.G.. 2003. NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J. Neurosci. 23:4958–4966. 10.1523/JNEUROSCI.23-12-04958.2003
    1. Brimecombe J.C., Boeckman F.A., and Aizenman E.. 1997. Functional consequences of NR2 subunit composition in single recombinant N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA. 94:11019–11024. 10.1073/pnas.94.20.11019
    1. Brothwell S.L., Barber J.L., Monaghan D.T., Jane D.E., Gibb A.J., and Jones S.. 2008. NR2B- and NR2D-containing synaptic NMDA receptors in developing rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 586:739–750. 10.1113/jphysiol.2007.144618
    1. Burger P.B., Yuan H., Karakas E., Geballe M., Furukawa H., Liotta D.C., Snyder J.P., and Traynelis S.F.. 2012. Mapping the binding of GluN2B-selective N-methyl-D-aspartate receptor negative allosteric modulators. Mol. Pharmacol. 82:344–359. 10.1124/mol.112.078568
    1. Burnashev N., Schoepfer R., Monyer H., Ruppersberg J.P., Günther W., Seeburg P.H., and Sakmann B.. 1992. Control by asparagine residues of calcium permeability and magnesium blockade in the NMDA receptor. Science. 257:1415–1419. 10.1126/science.1382314
    1. Burnashev N., Zhou Z., Neher E., and Sakmann B.. 1995. Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485:403–418. 10.1113/jphysiol.1995.sp020738
    1. Burnell E.S., Irvine M., Fang G., Sapkota K., Jane D.E., and Monaghan D.T.. 2018. Positive and Negative Allosteric Modulators of N-Methyl-d-aspartate (NMDA) Receptors: Structure-Activity Relationships and Mechanisms of Action. J. Med. Chem. 10.1021/acs.jmedchem.7b01640
    1. Carter B.C., and Jahr C.E.. 2016. Postsynaptic, not presynaptic NMDA receptors are required for spike-timing-dependent LTD induction. Nat. Neurosci. 19:1218–1224. 10.1038/nn.4343
    1. Cathala L., Misra C., and Cull-Candy S.. 2000. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J. Neurosci. 20:5899–5905. 10.1523/JNEUROSCI.20-16-05899.2000
    1. Cavara N.A., and Hollmann M.. 2008. Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol. Neurobiol. 38:16–26. 10.1007/s12035-008-8029-9
    1. Chang H.R., and Kuo C.C.. 2008. The activation gate and gating mechanism of the NMDA receptor. J. Neurosci. 28:1546–1556. 10.1523/JNEUROSCI.3485-07.2008
    1. Chazot P.L., and Stephenson F.A.. 1997. Molecular dissection of native mammalian forebrain NMDA receptors containing the NR1 C2 exon: direct demonstration of NMDA receptors comprising NR1, NR2A, and NR2B subunits within the same complex. J. Neurochem. 69:2138–2144. 10.1046/j.1471-4159.1997.69052138.x
    1. Chazot P.L., Coleman S.K., Cik M., and Stephenson F.A.. 1994. Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J. Biol. Chem. 269:24403–24409.
    1. Chen H.S., and Lipton S.A.. 1997. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. 499:27–46. 10.1113/jphysiol.1997.sp021909
    1. Chen H.S., and Lipton S.A.. 2006. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97:1611–1626. 10.1111/j.1471-4159.2006.03991.x
    1. Chen N., Moshaver A., and Raymond L.A.. 1997. Differential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition. Mol. Pharmacol. 51:1015–1023. 10.1124/mol.51.6.1015
    1. Chen N., Li B., Murphy T.H., and Raymond L.A.. 2004. Site within N-Methyl-D-aspartate receptor pore modulates channel gating. Mol. Pharmacol. 65:157–164. 10.1124/mol.65.1.157
    1. Chen P.E., Geballe M.T., Katz E., Erreger K., Livesey M.R., O’Toole K.K., Le P., Lee C.J., Snyder J.P., Traynelis S.F., and Wyllie D.J.. 2008. Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes. J. Physiol. 586:227–245. 10.1113/jphysiol.2007.143172
    1. Chen W., Tankovic A., Burger P.B., Kusumoto H., Traynelis S.F., and Yuan H.. 2017. Functional Evaluation of a De Novo GRIN2A Mutation Identified in a Patient with Profound Global Developmental Delay and Refractory Epilepsy. Mol. Pharmacol. 91:317–330. 10.1124/mol.116.106781
    1. Cheriyan J., Balsara R.D., Hansen K.B., and Castellino F.J.. 2016. Pharmacology of triheteromeric N-Methyl-D-Aspartate Receptors. Neurosci. Lett. 617:240–246. 10.1016/j.neulet.2016.02.032
    1. Chesler M. 2003. Regulation and modulation of pH in the brain. Physiol. Rev. 83:1183–1221. 10.1152/physrev.00010.2003
    1. Choi Y.B., and Lipton S.A.. 1999. Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron. 23:171–180. 10.1016/S0896-6273(00)80763-1
    1. Choi Y.B., and Lipton S.A.. 2000. Redox modulation of the NMDA receptor. Cell. Mol. Life Sci. 57:1535–1541. 10.1007/PL00000638
    1. Choi Y., Chen H.V., and Lipton S.A.. 2001. Three pairs of cysteine residues mediate both redox and zn2+ modulation of the nmda receptor. J. Neurosci. 21:392–400. 10.1523/JNEUROSCI.21-02-00392.2001
    1. Citri A., and Malenka R.C.. 2008. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 33:18–41. 10.1038/sj.npp.1301559
    1. Clark G.D., Clifford D.B., and Zorumski C.F.. 1990. The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization. Neuroscience. 39:787–797. 10.1016/0306-4522(90)90261-2
    1. Clarke R.J., and Johnson J.W.. 2006. NMDA receptor NR2 subunit dependence of the slow component of magnesium unblock. J. Neurosci. 26:5825–5834. 10.1523/JNEUROSCI.0577-06.2006
    1. Clements J.D., and Westbrook G.L.. 1991. Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron. 7:605–613. 10.1016/0896-6273(91)90373-8
    1. Clements J.D., and Westbrook G.L.. 1994. Kinetics of AP5 dissociation from NMDA receptors: evidence for two identical cooperative binding sites. J. Neurophysiol. 71:2566–2569. 10.1152/jn.1994.71.6.2566
    1. Clements J.D., Lester R.A., Tong G., Jahr C.E., and Westbrook G.L.. 1992. The time course of glutamate in the synaptic cleft. Science. 258:1498–1501. 10.1126/science.1359647
    1. Dai J., and Zhou H.X.. 2015. Reduced curvature of ligand-binding domain free-energy surface underlies partial agonism at NMDA receptors. Structure. 23:228–236. 10.1016/j.str.2014.11.012
    1. Dai J., Wollmuth L.P., and Zhou H.X.. 2015. Mechanism-Based Mathematical Model for Gating of Ionotropic Glutamate Receptors. J. Phys. Chem. B. 119:10934–10940. 10.1021/acs.jpcb.5b00521
    1. Divito C.B., and Underhill S.M.. 2014. Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem. Int. 73:172–180. 10.1016/j.neuint.2013.12.008
    1. Dolino D.M., Cooper D., Ramaswamy S., Jaurich H., Landes C.F., and Jayaraman V.. 2015. Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor. J. Biol. Chem. 290:797–804. 10.1074/jbc.M114.605436
    1. Dolino D.M., Rezaei Adariani S., Shaikh S.A., Jayaraman V., and Sanabria H.. 2016. Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor. J. Biol. Chem. 291:16175–16185. 10.1074/jbc.M116.721274
    1. Dravid S.M., Erreger K., Yuan H., Nicholson K., Le P., Lyuboslavsky P., Almonte A., Murray E., Mosely C., Barber J., et al. . 2007. Subunit-specific mechanisms and proton sensitivity of NMDA receptor channel block. J. Physiol. 581:107–128. 10.1113/jphysiol.2006.124958
    1. Dravid S.M., Prakash A., and Traynelis S.F.. 2008. Activation of recombinant NR1/NR2C NMDA receptors. J. Physiol. 586:4425–4439. 10.1113/jphysiol.2008.158634
    1. Dravid S.M., Burger P.B., Prakash A., Geballe M.T., Yadav R., Le P., Vellano K., Snyder J.P., and Traynelis S.F.. 2010. Structural determinants of D-cycloserine efficacy at the NR1/NR2C NMDA receptors. J. Neurosci. 30:2741–2754. 10.1523/JNEUROSCI.5390-09.2010
    1. Dunah A.W., and Standaert D.G.. 2003. Subcellular segregation of distinct heteromeric NMDA glutamate receptors in the striatum. J. Neurochem. 85:935–943. 10.1046/j.1471-4159.2003.01744.x
    1. Dunah A.W., Luo J., Wang Y.H., Yasuda R.P., and Wolfe B.B.. 1998. Subunit composition of N-methyl-D-aspartate receptors in the central nervous system that contain the NR2D subunit. Mol. Pharmacol. 53:429–437. 10.1124/mol.53.3.429
    1. Durand G.M., Gregor P., Zheng X., Bennett M.V., Uhl G.R., and Zukin R.S.. 1992. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc. Natl. Acad. Sci. USA. 89:9359–9363. 10.1073/pnas.89.19.9359
    1. Durand G.M., Bennett M.V., and Zukin R.S.. 1993. Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc. Natl. Acad. Sci. USA. 90:6731–6735. 10.1073/pnas.90.14.6731
    1. Ehlers M.D., Zhang S., Bernhadt J.P., and Huganir R.L.. 1996. Inactivation of NMDA receptors by direct interaction of calmodulin with the NR1 subunit. Cell. 84:745–755. 10.1016/S0092-8674(00)81052-1
    1. Ehlers M.D., Fung E.T., O’Brien R.J., and Huganir R.L.. 1998. Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J. Neurosci. 18:720–730. 10.1523/JNEUROSCI.18-02-00720.1998
    1. Erreger K., and Traynelis S.F.. 2005. Allosteric interaction between zinc and glutamate binding domains on NR2A causes desensitization of NMDA receptors. J. Physiol. 569:381–393. 10.1113/jphysiol.2005.095497
    1. Erreger K., and Traynelis S.F.. 2008. Zinc inhibition of rat NR1/NR2A N-methyl-D-aspartate receptors. J. Physiol. 586:763–778. 10.1113/jphysiol.2007.143941
    1. Erreger K., Chen P.E., Wyllie D.J., and Traynelis S.F.. 2004. Glutamate receptor gating. Crit. Rev. Neurobiol. 16:187–224. 10.1615/CritRevNeurobiol.v16.i3.10
    1. Erreger K., Dravid S.M., Banke T.G., Wyllie D.J., and Traynelis S.F.. 2005a Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J. Physiol. 563:345–358. 10.1113/jphysiol.2004.080028
    1. Erreger K., Geballe M.T., Dravid S.M., Snyder J.P., Wyllie D.J., and Traynelis S.F.. 2005b Mechanism of partial agonism at NMDA receptors for a conformationally restricted glutamate analog. J. Neurosci. 25:7858–7866. 10.1523/JNEUROSCI.1613-05.2005
    1. Erreger K., Geballe M.T., Kristensen A., Chen P.E., Hansen K.B., Lee C.J., Yuan H., Le P., Lyuboslavsky P.N., Micale N., et al. . 2007. Subunit-specific agonist activity at NR2A-, NR2B-, NR2C-, and NR2D-containing N-methyl-D-aspartate glutamate receptors. Mol. Pharmacol. 72:907–920. 10.1124/mol.107.037333
    1. Farin A., and Marshall L.F.. 2004. Lessons from epidemiologic studies in clinical trials of traumatic brain injury. Acta Neurochir. Suppl. (Wien). 89:101–107.
    1. Farina A.N., Blain K.Y., Maruo T., Kwiatkowski W., Choe S., and Nakagawa T.. 2011. Separation of domain contacts is required for heterotetrameric assembly of functional NMDA receptors. J. Neurosci. 31:3565–3579. 10.1523/JNEUROSCI.6041-10.2011
    1. Fayyazuddin A., Villarroel A., Le Goff A., Lerma J., and Neyton J.. 2000. Four residues of the extracellular N-terminal domain of the NR2A subunit control high-affinity Zn2+ binding to NMDA receptors. Neuron. 25:683–694. 10.1016/S0896-6273(00)81070-3
    1. Furukawa H., and Gouaux E.. 2003. Mechanisms of activation, inhibition and specificity: crystal structures of the NMDA receptor NR1 ligand-binding core. EMBO J. 22:2873–2885. 10.1093/emboj/cdg303
    1. Furukawa H., Singh S.K., Mancusso R., and Gouaux E.. 2005. Subunit arrangement and function in NMDA receptors. Nature. 438:185–192. 10.1038/nature04089
    1. Geiger J.R.P., Lübke J., Roth A., Frotscher M., and Jonas P.. 1997. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron. 18:1009–1023. 10.1016/S0896-6273(00)80339-6
    1. Gibb A.J., and Colquhoun D.. 1992. Activation of N-methyl-D-aspartate receptors by L-glutamate in cells dissociated from adult rat hippocampus. J. Physiol. 456:143–179. 10.1113/jphysiol.1992.sp019331
    1. Gibb A., Ogden K.K., McDaniel M.J., Vance K.M., Kell S.A., Butch C., Burger P., Liotta D.C., and Traynelis S.F.. 2018. A structurally-derived model of subunit-dependent NMDA receptor function. J. Physiol. 10.1113/JP276093
    1. Gielen M., Le Goff A., Stroebel D., Johnson J.W., Neyton J., and Paoletti P.. 2008. Structural rearrangements of NR1/NR2A NMDA receptors during allosteric inhibition. Neuron. 57:80–93. 10.1016/j.neuron.2007.11.021
    1. Gielen M., Siegler Retchless B., Mony L., Johnson J.W., and Paoletti P.. 2009. Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature. 459:703–707. 10.1038/nature07993
    1. Giffard R.G., Monyer H., Christine C.W., and Choi D.W.. 1990. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506:339–342. 10.1016/0006-8993(90)91276-M
    1. Glasgow N.G., Siegler Retchless B., and Johnson J.W.. 2015. Molecular bases of NMDA receptor subtype-dependent properties. J. Physiol. 593:83–95. 10.1113/jphysiol.2014.273763
    1. Glasgow N.G., Povysheva N.V., Azofeifa A.M., and Johnson J.W.. 2017. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization. J. Neurosci. 37:9686–9704. 10.1523/JNEUROSCI.1173-17.2017
    1. Granger A.J., and Nicoll R.A.. 2013. Expression mechanisms underlying long-term potentiation: a postsynaptic view, 10 years on. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369:20130136 10.1098/rstb.2013.0136
    1. Gray J.A., Shi Y., Usui H., During M.J., Sakimura K., and Nicoll R.A.. 2011. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron. 71:1085–1101. 10.1016/j.neuron.2011.08.007
    1. Hackos D.H., and Hanson J.E.. 2017. Diverse modes of NMDA receptor positive allosteric modulation: Mechanisms and consequences. Neuropharmacology. 112(Pt A):34–45. 10.1016/j.neuropharm.2016.07.037
    1. Hackos D.H., Lupardus P.J., Grand T., Chen Y., Wang T.M., Reynen P., Gustafson A., Wallweber H.J., Volgraf M., Sellers B.D., et al. . 2016. Positive Allosteric Modulators of GluN2A-Containing NMDARs with Distinct Modes of Action and Impacts on Circuit Function. Neuron. 89:983–999. 10.1016/j.neuron.2016.01.016
    1. Hansen K.B., Bräuner-Osborne H., and Egebjerg J.. 2008. Pharmacological characterization of ligands at recombinant NMDA receptor subtypes by electrophysiological recordings and intracellular calcium measurements. Comb. Chem. High Throughput Screen. 11:304–315. 10.2174/138620708784246040
    1. Hansen K.B., Tajima N., Risgaard R., Perszyk R.E., Jørgensen L., Vance K.M., Ogden K.K., Clausen R.P., Furukawa H., and Traynelis S.F.. 2013. Structural determinants of agonist efficacy at the glutamate binding site of N-methyl-D-aspartate receptors. Mol. Pharmacol. 84:114–127. 10.1124/mol.113.085803
    1. Hansen K.B., Ogden K.K., Yuan H., and Traynelis S.F.. 2014. Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron. 81:1084–1096. 10.1016/j.neuron.2014.01.035
    1. Hansen K.B., Yi F., Perszyk R.E., Menniti F.S., and Traynelis S.F.. 2017. NMDA Receptors in the Central Nervous System. Methods Mol. Biol. 1677:1–80. 10.1007/978-1-4939-7321-7_1
    1. Hatton C.J., and Paoletti P.. 2005. Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron. 46:261–274. 10.1016/j.neuron.2005.03.005
    1. Henson M.A., Roberts A.C., Pérez-Otaño I., and Philpot B.D.. 2010. Influence of the NR3A subunit on NMDA receptor functions. Prog. Neurobiol. 91:23–37. 10.1016/j.pneurobio.2010.01.004
    1. Hestrin S., Nicoll R.A., Perkel D.J., and Sah P.. 1990. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. 422:203–225. 10.1113/jphysiol.1990.sp017980
    1. Higley M.J., and Sabatini B.L.. 2012. Calcium signaling in dendritic spines. Cold Spring Harb. Perspect. Biol. 4:a005686 10.1101/cshperspect.a005686
    1. Hollmann M., Boulter J., Maron C., Beasley L., Sullivan J., Pecht G., and Heinemann S.. 1993. Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron. 10:943–954. 10.1016/0896-6273(93)90209-A
    1. Holtmaat A., and Svoboda K.. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10:647–658. 10.1038/nrn2699
    1. Horak M., Vlcek K., Chodounska H., and Vyklicky L. Jr. 2006. Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience. 137:93–102. 10.1016/j.neuroscience.2005.08.058
    1. Howe J.R., Cull-Candy S.G., and Colquhoun D.. 1991. Currents through single glutamate receptor channels in outside-out patches from rat cerebellar granule cells. J. Physiol. 432:143–202. 10.1113/jphysiol.1991.sp018381
    1. Hu B., and Zheng F.. 2005. Molecular determinants of glycine-independent desensitization of NR1/NR2A receptors. J. Pharmacol. Exp. Ther. 313:563–569. 10.1124/jpet.104.080168
    1. Huang Z., and Gibb A.J.. 2014. Mg2+ block properties of triheteromeric GluN1-GluN2B-GluN2D NMDA receptors on neonatal rat substantia nigra pars compacta dopaminergic neurones. J. Physiol. 592:2059–2078. 10.1113/jphysiol.2013.267864
    1. Huettner J.E., and Bean B.P.. 1988. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl. Acad. Sci. USA. 85:1307–1311. 10.1073/pnas.85.4.1307
    1. Hunt D.L., and Castillo P.E.. 2012. Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr. Opin. Neurobiol. 22:496–508. 10.1016/j.conb.2012.01.007
    1. Iacobucci G.J., and Popescu G.K.. 2017a NMDA receptors: linking physiological output to biophysical operation. Nat. Rev. Neurosci. 18:236–249. 10.1038/nrn.2017.24
    1. Iacobucci G.J., and Popescu G.K.. 2017b Resident Calmodulin Primes NMDA Receptors for Ca2+-Dependent Inactivation. Biophys. J. 113:2236–2248. 10.1016/j.bpj.2017.06.035
    1. Ikonomidou C., and Turski L.. 2002. Why did NMDA receptor antagonists fail clinical trials for stroke and traumatic brain injury? Lancet Neurol. 1:383–386. 10.1016/S1474-4422(02)00164-3
    1. Inanobe A., Furukawa H., and Gouaux E.. 2005. Mechanism of partial agonist action at the NR1 subunit of NMDA receptors. Neuron. 47:71–84. 10.1016/j.neuron.2005.05.022
    1. Ishii T., Moriyoshi K., Sugihara H., Sakurada K., Kadotani H., Yokoi M., Akazawa C., Shigemoto R., Mizuno N., Masu M., et al. . 1993. Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268:2836–2843.
    1. Jatzke C., Watanabe J., and Wollmuth L.P.. 2002. Voltage and concentration dependence of Ca(2+) permeability in recombinant glutamate receptor subtypes. J. Physiol. 538:25–39. 10.1113/jphysiol.2001.012897
    1. Jespersen A., Tajima N., Fernandez-Cuervo G., Garnier-Amblard E.C., and Furukawa H.. 2014. Structural insights into competitive antagonism in NMDA receptors. Neuron. 81:366–378. 10.1016/j.neuron.2013.11.033
    1. Jessen M., Frederiksen K., Yi F., Clausen R.P., Hansen K.B., Bräuner-Osborne H., Kilburn P., and Damholt A.. 2017. Identification of AICP as a GluN2C-Selective N-Methyl-d-Aspartate Receptor Superagonist at the GluN1 Glycine Site. Mol. Pharmacol. 92:151–161. 10.1124/mol.117.108944
    1. Jin R., Banke T.G., Mayer M.L., Traynelis S.F., and Gouaux E.. 2003. Structural basis for partial agonist action at ionotropic glutamate receptors. Nat. Neurosci. 6:803–810. 10.1038/nn1091
    1. Jin R., Clark S., Weeks A.M., Dudman J.T., Gouaux E., and Partin K.M.. 2005. Mechanism of positive allosteric modulators acting on AMPA receptors. J. Neurosci. 25:9027–9036. 10.1523/JNEUROSCI.2567-05.2005
    1. Johnson J.W., and Ascher P.. 1987. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 325:529–531. 10.1038/325529a0
    1. Johnson J.W., Glasgow N.G., and Povysheva N.V.. 2015. Recent insights into the mode of action of memantine and ketamine. Curr. Opin. Pharmacol. 20:54–63. 10.1016/j.coph.2014.11.006
    1. Jones S., and Gibb A.J.. 2005. Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J. Physiol. 569:209–221. 10.1113/jphysiol.2005.095554
    1. Jones K.S., VanDongen H.M.A., and VanDongen A.M.J.. 2002. The NMDA receptor M3 segment is a conserved transduction element coupling ligand binding to channel opening. J. Neurosci. 22:2044–2053. 10.1523/JNEUROSCI.22-06-02044.2002
    1. Kaiser T.M., Kell S.A., Kusumoto H., Shaulsky G., Bhattacharya S., Epplin M.P., Strong K.L., Miller E.J., Cox B.D., Menaldino D.S., et al. . 2018. The Bioactive Protein-Ligand Conformation of GluN2C-Selective Positive Allosteric Modulators Bound to the NMDA Receptor. Mol. Pharmacol. 93:141–156. 10.1124/mol.117.110940
    1. Kalbaugh T.L., VanDongen H.M., and VanDongen A.M.. 2004. Ligand-binding residues integrate affinity and efficacy in the NMDA receptor. Mol. Pharmacol. 66:209–219. 10.1124/mol.66.2.209
    1. Karakas E., and Furukawa H.. 2014. Crystal structure of a heterotetrameric NMDA receptor ion channel. Science. 344:992–997. 10.1126/science.1251915
    1. Karakas E., Simorowski N., and Furukawa H.. 2009. Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J. 28:3910–3920. 10.1038/emboj.2009.338
    1. Karakas E., Simorowski N., and Furukawa H.. 2011. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 475:249–253. 10.1038/nature10180
    1. Karakas E., Regan M.C., and Furukawa H.. 2015. Emerging structural insights into the function of ionotropic glutamate receptors. Trends Biochem. Sci. 40:328–337. 10.1016/j.tibs.2015.04.002
    1. Kashiwagi K., Fukuchi J., Chao J., Igarashi K., and Williams K.. 1996. An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol. 49:1131–1141.
    1. Kashiwagi K., Pahk A.J., Masuko T., Igarashi K., and Williams K.. 1997. Block and modulation of N-methyl-D-aspartate receptors by polyamines and protons: role of amino acid residues in the transmembrane and pore-forming regions of NR1 and NR2 subunits. Mol. Pharmacol. 52:701–713. 10.1124/mol.52.4.701
    1. Kazi R., Gan Q., Talukder I., Markowitz M., Salussolia C.L., and Wollmuth L.P.. 2013. Asynchronous movements prior to pore opening in NMDA receptors. J. Neurosci. 33:12052–12066. 10.1523/JNEUROSCI.5780-12.2013
    1. Kazi R., Dai J., Sweeney C., Zhou H.X., and Wollmuth L.P.. 2014. Mechanical coupling maintains the fidelity of NMDA receptor-mediated currents. Nat. Neurosci. 17:914–922. 10.1038/nn.3724
    1. Kehoe L.A., Bernardinelli Y., and Muller D.. 2013. GluN3A: an NMDA receptor subunit with exquisite properties and functions. Neural Plast. 2013:145387 10.1155/2013/145387
    1. Khatri A., Burger P.B., Swanger S.A., Hansen K.B., Zimmerman S., Karakas E., Liotta D.C., Furukawa H., Snyder J.P., and Traynelis S.F.. 2014. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol. Pharmacol. 86:548–560. 10.1124/mol.114.094516
    1. Kleckner N.W., and Dingledine R.. 1988. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 241:835–837. 10.1126/science.2841759
    1. Köhr G., Eckardt S., Lüddens H., Monyer H., and Seeburg P.H.. 1994. NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron. 12:1031–1040. 10.1016/0896-6273(94)90311-5
    1. Korinek M., Vyklicky V., Borovska J., Lichnerova K., Kaniakova M., Krausova B., Krusek J., Balik A., Smejkalova T., Horak M., and Vyklicky L.. 2015. Cholesterol modulates open probability and desensitization of NMDA receptors. J. Physiol. 593:2279–2293. 10.1113/jphysiol.2014.288209
    1. Kotermanski S.E., and Johnson J.W.. 2009. Mg2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J. Neurosci. 29:2774–2779. 10.1523/JNEUROSCI.3703-08.2009
    1. Kotermanski S.E., Wood J.T., and Johnson J.W.. 2009. Memantine binding to a superficial site on NMDA receptors contributes to partial trapping. J. Physiol. 587:4589–4604. 10.1113/jphysiol.2009.176297
    1. Kristensen A.S., Jenkins M.A., Banke T.G., Schousboe A., Makino Y., Johnson R.C., Huganir R., and Traynelis S.F.. 2011. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14:727–735. 10.1038/nn.2804
    1. Krupp J.J., Vissel B., Heinemann S.F., and Westbrook G.L.. 1996. Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2 subunit specific. Mol. Pharmacol. 50:1680–1688.
    1. Krupp J.J., Vissel B., Heinemann S.F., and Westbrook G.L.. 1998. N-terminal domains in the NR2 subunit control desensitization of NMDA receptors. Neuron. 20:317–327. 10.1016/S0896-6273(00)80459-6
    1. Krupp J.J., Vissel B., Thomas C.G., Heinemann S.F., and Westbrook G.L.. 1999. Interactions of calmodulin and alpha-actinin with the NR1 subunit modulate Ca2+-dependent inactivation of NMDA receptors. J. Neurosci. 19:1165–1178. 10.1523/JNEUROSCI.19-04-01165.1999
    1. Kumar J., and Mayer M.L.. 2013. Functional insights from glutamate receptor ion channel structures. Annu. Rev. Physiol. 75:313–337. 10.1146/annurev-physiol-030212-183711
    1. Kuner T., and Schoepfer R.. 1996. Multiple structural elements determine subunit specificity of Mg2+ block in NMDA receptor channels. J. Neurosci. 16:3549–3558. 10.1523/JNEUROSCI.16-11-03549.1996
    1. Kussius C.L., and Popescu G.K.. 2009. Kinetic basis of partial agonism at NMDA receptors. Nat. Neurosci. 12:1114–1120. 10.1038/nn.2361
    1. Kussius C.L., Kaur N., and Popescu G.K.. 2009. Pregnanolone sulfate promotes desensitization of activated NMDA receptors. J. Neurosci. 29:6819–6827. 10.1523/JNEUROSCI.0281-09.2009
    1. Kussius C.L., Popescu A.M., and Popescu G.K.. 2010. Agonist-specific gating of NMDA receptors. Channels (Austin). 4:78–82. 10.4161/chan.4.2.10523
    1. Kuusinen A., Arvola M., and Keinänen K.. 1995. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14:6327–6332.
    1. Kvist T., Steffensen T.B., Greenwood J.R., Mehrzad Tabrizi F., Hansen K.B., Gajhede M., Pickering D.S., Traynelis S.F., Kastrup J.S., and Bräuner-Osborne H.. 2013. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site. J. Biol. Chem. 288:33124–33135. 10.1074/jbc.M113.480210
    1. Lau C.G., and Zukin R.S.. 2007. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8:413–426. 10.1038/nrn2153
    1. Laurie D.J., and Seeburg P.H.. 1994. Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J. Neurosci. 14:3180–3194. 10.1523/JNEUROSCI.14-05-03180.1994
    1. Lee C.H., Lü W., Michel J.C., Goehring A., Du J., Song X., and Gouaux E.. 2014. NMDA receptor structures reveal subunit arrangement and pore architecture. Nature. 511:191–197. 10.1038/nature13548
    1. Legendre P., Rosenmund C., and Westbrook G.L.. 1993. Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. J. Neurosci. 13:674–684. 10.1523/JNEUROSCI.13-02-00674.1993
    1. Lester R.A., and Jahr C.E.. 1992. NMDA channel behavior depends on agonist affinity. J. Neurosci. 12:635–643. 10.1523/JNEUROSCI.12-02-00635.1992
    1. Lester R.A., Clements J.D., Westbrook G.L., and Jahr C.E.. 1990. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature. 346:565–567. 10.1038/346565a0
    1. Lester R.A.J., Tong G., and Jahr C.E.. 1993. Interactions between the glycine and glutamate binding sites of the NMDA receptor. J. Neurosci. 13:1088–1096. 10.1523/JNEUROSCI.13-03-01088.1993
    1. Lind G.E., Mou T.C., Tamborini L., Pomper M.G., De Micheli C., Conti P., Pinto A., and Hansen K.B.. 2017. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proc. Natl. Acad. Sci. USA. 114:E6942–E6951. 10.1073/pnas.1707752114
    1. Linsenbardt A.J., Taylor A., Emnett C.M., Doherty J.J., Krishnan K., Covey D.F., Paul S.M., Zorumski C.F., and Mennerick S.. 2014. Different oxysterols have opposing actions at N-methyl-D-aspartate receptors. Neuropharmacology. 85:232–242. 10.1016/j.neuropharm.2014.05.027
    1. Low C.M., and Wee K.S.. 2010. New insights into the not-so-new NR3 subunits of N-methyl-D-aspartate receptor: localization, structure, and function. Mol. Pharmacol. 78:1–11. 10.1124/mol.110.064006
    1. Low C.M., Zheng F., Lyuboslavsky P., and Traynelis S.F.. 2000. Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors. Proc. Natl. Acad. Sci. USA. 97:11062–11067. 10.1073/pnas.180307497
    1. Low C.M., Lyuboslavsky P., French A., Le P., Wyatte K., Thiel W.H., Marchan E.M., Igarashi K., Kashiwagi K., Gernert K., et al. . 2003. Molecular determinants of proton-sensitive N-methyl-D-aspartate receptor gating. Mol. Pharmacol. 63:1212–1222. 10.1124/mol.63.6.1212
    1. Lu C., Fu Z., Karavanov I., Yasuda R.P., Wolfe B.B., Buonanno A., and Vicini S.. 2006. NMDA receptor subtypes at autaptic synapses of cerebellar granule neurons. J. Neurophysiol. 96:2282–2294. 10.1152/jn.00078.2006
    1. Lü W., Du J., Goehring A., and Gouaux E.. 2017. Cryo-EM structures of the triheteromeric NMDA receptor and its allosteric modulation. Science. 355:355 10.1126/science.aal3729
    1. Luo J., Wang Y., Yasuda R.P., Dunah A.W., and Wolfe B.B.. 1997. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol. Pharmacol. 51:79–86. 10.1124/mol.51.1.79
    1. Lussier M.P., Sanz-Clemente A., and Roche K.W.. 2015. Dynamic Regulation of N-Methyl-d-aspartate (NMDA) and α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors by Posttranslational Modifications. J. Biol. Chem. 290:28596–28603. 10.1074/jbc.R115.652750
    1. MacDonald J.F., Bartlett M.C., Mody I., Pahapill P., Reynolds J.N., Salter M.W., Schneiderman J.H., and Pennefather P.S.. 1991. Actions of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampal neurones. J. Physiol. 432:483–508. 10.1113/jphysiol.1991.sp018396
    1. Malayev A., Gibbs T.T., and Farb D.H.. 2002. Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br. J. Pharmacol. 135:901–909. 10.1038/sj.bjp.0704543
    1. Maolanon A.R., Risgaard R., Wang S.Y., Snoep Y., Papangelis A., Yi F., Holley D., Barslund A.F., Svenstrup N., Hansen K.B., and Clausen R.P.. 2017. Subtype-Specific Agonists for NMDA Receptor Glycine Binding Sites. ACS Chem. Neurosci. 8:1681–1687. 10.1021/acschemneuro.7b00117
    1. Mayer M.L., Vyklicky L. Jr., and Clements J.. 1989. Regulation of NMDA receptor desensitization in mouse hippocampal neurons by glycine. Nature. 338:425–427. 10.1038/338425a0
    1. Mealing G.A., Lanthorn T.H., Murray C.L., Small D.L., and Morley P.. 1999. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J. Pharmacol. Exp. Ther. 288:204–210.
    1. Medina I., Filippova N., Charton G., Rougeole S., Ben-Ari Y., Khrestchatisky M., and Bregestovski P.. 1995. Calcium-dependent inactivation of heteromeric NMDA receptor-channels expressed in human embryonic kidney cells. J. Physiol. 482:567–573. 10.1113/jphysiol.1995.sp020540
    1. Meunier C., Wang N., Yi C., Dallerac G., Ezan P., Koulakoff A., Leybaert L., and Giaume C.. 2017. Contribution of Astroglial Cx43 Hemichannels to the Modulation of Glutamatergic Currents by D-Serine in the Mouse Prefrontal Cortex. J. Neurosci. 37:9064–9075. 10.1523/JNEUROSCI.2204-16.2017
    1. Meyerson J.R., Kumar J., Chittori S., Rao P., Pierson J., Bartesaghi A., Mayer M.L., and Subramaniam S.. 2014. Structural mechanism of glutamate receptor activation and desensitization. Nature. 514:328–334. 10.1038/nature13603
    1. Monyer H., Sprengel R., Schoepfer R., Herb A., Higuchi M., Lomeli H., Burnashev N., Sakmann B., and Seeburg P.H.. 1992. Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science. 256:1217–1221. 10.1126/science.256.5060.1217
    1. Monyer H., Burnashev N., Laurie D.J., Sakmann B., and Seeburg P.H.. 1994. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 12:529–540. 10.1016/0896-6273(94)90210-0
    1. Morris R.G. 2013. NMDA receptors and memory encoding. Neuropharmacology. 74:32–40. 10.1016/j.neuropharm.2013.04.014
    1. Mothet J.P., Le Bail M., and Billard J.M.. 2015. Time and space profiling of NMDA receptor co-agonist functions. J. Neurochem. 135:210–225. 10.1111/jnc.13204
    1. Mott D.D., Doherty J.J., Zhang S., Washburn M.S., Fendley M.J., Lyuboslavsky P., Traynelis S.F., and Dingledine R.. 1998. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat. Neurosci. 1:659–667. 10.1038/3661
    1. Mu Y., Otsuka T., Horton A.C., Scott D.B., and Ehlers M.D.. 2003. Activity-dependent mRNA splicing controls ER export and synaptic delivery of NMDA receptors. Neuron. 40:581–594. 10.1016/S0896-6273(03)00676-7
    1. Muir K.W. 2006. Glutamate-based therapeutic approaches: clinical trials with NMDA antagonists. Curr. Opin. Pharmacol. 6:53–60. 10.1016/j.coph.2005.12.002
    1. Nakanishi N., Axel R., and Shneider N.A.. 1992. Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc. Natl. Acad. Sci. USA. 89:8552–8556. 10.1073/pnas.89.18.8552
    1. Nevian T., and Sakmann B.. 2004. Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex. J. Neurosci. 24:1689–1699. 10.1523/JNEUROSCI.3332-03.2004
    1. Nevian T., and Sakmann B.. 2006. Spine Ca2+ signaling in spike-timing-dependent plasticity. J. Neurosci. 26:11001–11013. 10.1523/JNEUROSCI.1749-06.2006
    1. Niciu M.J., Henter I.D., Luckenbaugh D.A., Zarate C.A. Jr., and Charney D.S.. 2014. Glutamate receptor antagonists as fast-acting therapeutic alternatives for the treatment of depression: ketamine and other compounds. Annu. Rev. Pharmacol. Toxicol. 54:119–139. 10.1146/annurev-pharmtox-011613-135950
    1. Ogden K.K., and Traynelis S.F.. 2011. New advances in NMDA receptor pharmacology. Trends Pharmacol. Sci. 32:726–733. 10.1016/j.tips.2011.08.003
    1. Ogden K.K., and Traynelis S.F.. 2013. Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol. Pharmacol. 83:1045–1056. 10.1124/mol.113.085209
    1. Ogden K.K., Chen W., Swanger S.A., McDaniel M.J., Fan L.Z., Hu C., Tankovic A., Kusumoto H., Kosobucki G.J., Schulien A.J., et al. . 2017. Molecular Mechanism of Disease-Associated Mutations in the Pre-M1 Helix of NMDA Receptors and Potential Rescue Pharmacology. PLoS Genet. 13:e1006536 10.1371/journal.pgen.1006536
    1. Oliet S.H., and Mothet J.P.. 2009. Regulation of N-methyl-D-aspartate receptors by astrocytic D-serine. Neuroscience. 158:275–283. 10.1016/j.neuroscience.2008.01.071
    1. Pachernegg S., Strutz-Seebohm N., and Hollmann M.. 2012. GluN3 subunit-containing NMDA receptors: not just one-trick ponies. Trends Neurosci. 35:240–249. 10.1016/j.tins.2011.11.010
    1. Paganelli M.A., and Popescu G.K.. 2015. Actions of bupivacaine, a widely used local anesthetic, on NMDA receptor responses. J. Neurosci. 35:831–842. 10.1523/JNEUROSCI.3578-14.2015
    1. Paganelli M.A., Kussius C.L., and Popescu G.K.. 2013. Role of cross-cleft contacts in NMDA receptor gating. PLoS One. 8:e80953 10.1371/journal.pone.0080953
    1. Pahk A.J., and Williams K.. 1997. Influence of extracellular pH on inhibition by ifenprodil at N-methyl-D-aspartate receptors in Xenopus oocytes. Neurosci. Lett. 225:29–32. 10.1016/S0304-3940(97)00176-6
    1. Paoletti P., Ascher P., and Neyton J.. 1997. High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J. Neurosci. 17:5711–5725. 10.1523/JNEUROSCI.17-15-05711.1997
    1. Paoletti P., Perin-Dureau F., Fayyazuddin A., Le Goff A., Callebaut I., and Neyton J.. 2000. Molecular organization of a zinc binding n-terminal modulatory domain in a NMDA receptor subunit. Neuron. 28:911–925. 10.1016/S0896-6273(00)00163-X
    1. Paoletti P., Bellone C., and Zhou Q.. 2013. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat. Rev. Neurosci. 14:383–400. 10.1038/nrn3504
    1. Papouin T., Ladépêche L., Ruel J., Sacchi S., Labasque M., Hanini M., Groc L., Pollegioni L., Mothet J.P., and Oliet S.H.. 2012. Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell. 150:633–646. 10.1016/j.cell.2012.06.029
    1. Parsons C.G., Gruner R., Rozental J., Millar J., and Lodge D.. 1993. Patch clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology. 32:1337–1350. 10.1016/0028-3908(93)90029-3
    1. Parsons C.G., Quack G., Bresink I., Baran L., Przegalinski E., Kostowski W., Krzascik P., Hartmann S., and Danysz W.. 1995. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology. 34:1239–1258. 10.1016/0028-3908(95)00092-K
    1. Paul S.M., Doherty J.J., Robichaud A.J., Belfort G.M., Chow B.Y., Hammond R.S., Crawford D.C., Linsenbardt A.J., Shu H.J., Izumi Y., et al. . 2013. The major brain cholesterol metabolite 24(S)-hydroxycholesterol is a potent allosteric modulator of N-methyl-D-aspartate receptors. J. Neurosci. 33:17290–17300. 10.1523/JNEUROSCI.2619-13.2013
    1. Paupard M.C., Friedman L.K., and Zukin R.S.. 1997. Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus. Neuroscience. 79:399–409. 10.1016/S0306-4522(96)00677-X
    1. Pérez-Otaño I., Larsen R.S., and Wesseling J.F.. 2016. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat. Rev. Neurosci. 17:623–635. 10.1038/nrn.2016.92
    1. Piña-Crespo J.C., and Gibb A.J.. 2002. Subtypes of NMDA receptors in new-born rat hippocampal granule cells. J. Physiol. 541:41–64. 10.1113/jphysiol.2001.014001
    1. Pøhlsgaard J., Frydenvang K., Madsen U., and Kastrup J.S.. 2011. Lessons from more than 80 structures of the GluA2 ligand-binding domain in complex with agonists, antagonists and allosteric modulators. Neuropharmacology. 60:135–150. 10.1016/j.neuropharm.2010.08.004
    1. Popescu G.K. 2012. Modes of glutamate receptor gating. J. Physiol. 590:73–91. 10.1113/jphysiol.2011.223750
    1. Popescu G., and Auerbach A.. 2003. Modal gating of NMDA receptors and the shape of their synaptic response. Nat. Neurosci. 6:476–483. 10.1038/nn1044
    1. Popescu G., Robert A., Howe J.R., and Auerbach A.. 2004. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature. 430:790–793. 10.1038/nature02775
    1. Poulsen M.H., Andersen J., Christensen R., Hansen K.B., Traynelis S.F., Strømgaard K., and Kristensen A.S.. 2015. Binding of ArgTX-636 in the NMDA receptor ion channel. J. Mol. Biol. 427:176–189. 10.1016/j.jmb.2014.05.017
    1. Premkumar L.S., and Auerbach A.. 1996. Identification of a high affinity divalent cation binding site near the entrance of the NMDA receptor channel. Neuron. 16:869–880. 10.1016/S0896-6273(00)80107-5
    1. Premkumar L.S., Qin F., and Auerbach A.. 1997. Subconductance states of a mutant NMDA receptor channel kinetics, calcium, and voltage dependence. J. Gen. Physiol. 109:181–189. 10.1085/jgp.109.2.181
    1. Qian A., and Johnson J.W.. 2006. Permeant ion effects on external Mg2+ block of NR1/2D NMDA receptors. J. Neurosci. 26:10899–10910. 10.1523/JNEUROSCI.3453-06.2006
    1. Qian A., Antonov S.M., and Johnson J.W.. 2002. Modulation by permeant ions of Mg(2+) inhibition of NMDA-activated whole-cell currents in rat cortical neurons. J. Physiol. 538:65–77. 10.1113/jphysiol.2001.012685
    1. Qian A., Buller A.L., and Johnson J.W.. 2005. NR2 subunit-dependence of NMDA receptor channel block by external Mg2+. J. Physiol. 562:319–331. 10.1113/jphysiol.2004.076737
    1. Rachline J., Perin-Dureau F., Le Goff A., Neyton J., and Paoletti P.. 2005. The micromolar zinc-binding domain on the NMDA receptor subunit NR2B. J. Neurosci. 25:308–317. 10.1523/JNEUROSCI.3967-04.2005
    1. Rauner C., and Köhr G.. 2011. Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J. Biol. Chem. 286:7558–7566. 10.1074/jbc.M110.182600
    1. Regan M.C., Grant T., McDaniel M.J., Karakas E., Zhang J., Traynelis S.F., Grigorieff N., and Furukawa H.. 2018. Structural Mechanism of Functional Modulation by Gene Splicing in NMDA Receptors. Neuron. 98:521–529.e523.
    1. Ren H., Honse Y., Karp B.J., Lipsky R.H., and Peoples R.W.. 2003. A site in the fourth membrane-associated domain of the N-methyl-D-aspartate receptor regulates desensitization and ion channel gating. J. Biol. Chem. 278:276–283. 10.1074/jbc.M209486200
    1. Romero-Hernandez A., and Furukawa H.. 2017. Novel Mode of Antagonist Binding in NMDA Receptors Revealed by the Crystal Structure of the GluN1-GluN2A Ligand-Binding Domain Complexed to NVP-AAM077. Mol. Pharmacol. 92:22–29. 10.1124/mol.116.107912
    1. Romero-Hernandez A., Simorowski N., Karakas E., and Furukawa H.. 2016. Molecular Basis for Subtype Specificity and High-Affinity Zinc Inhibition in the GluN1-GluN2A NMDA Receptor Amino-Terminal Domain. Neuron. 92:1324–1336. 10.1016/j.neuron.2016.11.006
    1. Rosenmund C., and Westbrook G.L.. 1993. Calcium-induced actin depolymerization reduces NMDA channel activity. Neuron. 10:805–814. 10.1016/0896-6273(93)90197-Y
    1. Rosenmund C., Feltz A., and Westbrook G.L.. 1995. Calcium-dependent inactivation of synaptic NMDA receptors in hippocampal neurons. J. Neurophysiol. 73:427–430. 10.1152/jn.1995.73.1.427
    1. Rosenmund C., Stern-Bach Y., and Stevens C.F.. 1998. The tetrameric structure of a glutamate receptor channel. Science. 280:1596–1599. 10.1126/science.280.5369.1596
    1. Rumbaugh G., Prybylowski K., Wang J.F., and Vicini S.. 2000. Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J. Neurophysiol. 83:1300–1306. 10.1152/jn.2000.83.3.1300
    1. Rycroft B.K., and Gibb A.J.. 2002. Direct effects of calmodulin on NMDA receptor single-channel gating in rat hippocampal granule cells. J. Neurosci. 22:8860–8868. 10.1523/JNEUROSCI.22-20-08860.2002
    1. Sah P., Hestrin S., and Nicoll R.A.. 1990. Properties of excitatory postsynaptic currents recorded in vitro from rat hippocampal interneurones. J. Physiol. 430:605–616. 10.1113/jphysiol.1990.sp018310
    1. Sanz-Clemente A., Nicoll R.A., and Roche K.W.. 2013. Diversity in NMDA receptor composition: many regulators, many consequences. Neuroscientist. 19:62–75. 10.1177/1073858411435129
    1. Sather W., Johnson J.W., Henderson G., and Ascher P.. 1990. Glycine-insensitive desensitization of NMDA responses in cultured mouse embryonic neurons. Neuron. 4:725–731. 10.1016/0896-6273(90)90198-O
    1. Sather W., Dieudonné S., MacDonald J.F., and Ascher P.. 1992. Activation and desensitization of N-methyl-D-aspartate receptors in nucleated outside-out patches from mouse neurones. J. Physiol. 450:643–672. 10.1113/jphysiol.1992.sp019148
    1. Schneggenburger R. 1996. Simultaneous measurement of Ca2+ influx and reversal potentials in recombinant N-methyl-D-aspartate receptor channels. Biophys. J. 70:2165–2174. 10.1016/S0006-3495(96)79782-5
    1. Schneggenburger R. 1998. Altered voltage dependence of fractional Ca2+ current in N-methyl-D-aspartate channel pore mutants with a decreased Ca2+ permeability. Biophys. J. 74:1790–1794. 10.1016/S0006-3495(98)77889-0
    1. Schneggenburger R., and Ascher P.. 1997. Coupling of permeation and gating in an NMDA-channel pore mutant. Neuron. 18:167–177. 10.1016/S0896-6273(01)80055-6
    1. Schorge S., Elenes S., and Colquhoun D.. 2005. Maximum likelihood fitting of single channel NMDA activity with a mechanism composed of independent dimers of subunits. J. Physiol. 569:395–418. 10.1113/jphysiol.2005.095349
    1. Scott D.B., Blanpied T.A., Swanson G.T., Zhang C., and Ehlers M.D.. 2001. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J. Neurosci. 21:3063–3072. 10.1523/JNEUROSCI.21-09-03063.2001
    1. Scott D.B., Blanpied T.A., and Ehlers M.D.. 2003. Coordinated PKA and PKC phosphorylation suppresses RXR-mediated ER retention and regulates the surface delivery of NMDA receptors. Neuropharmacology. 45:755–767. 10.1016/S0028-3908(03)00250-8
    1. Seeburg P.H., Burnashev N., Köhr G., Kuner T., Sprengel R., and Monyer H.. 1995. The NMDA receptor channel: molecular design of a coincidence detector. Recent Prog. Horm. Res. 50:19–34.
    1. Serraz B., Grand T., and Paoletti P.. 2016. Altered zinc sensitivity of NMDA receptors harboring clinically-relevant mutations. Neuropharmacology. 109:196–204. 10.1016/j.neuropharm.2016.06.008
    1. Sharma G., and Stevens C.F.. 1996. Interactions between two divalent ion binding sites in N-methyl-D-aspartate receptor channels. Proc. Natl. Acad. Sci. USA. 93:14170–14175. 10.1073/pnas.93.24.14170
    1. Sheinin A., Shavit S., and Benveniste M.. 2001. Subunit specificity and mechanism of action of NMDA partial agonist D-cycloserine. Neuropharmacology. 41:151–158. 10.1016/S0028-3908(01)00073-9
    1. Sheng M., Cummings J., Roldan L.A., Jan Y.N., and Jan L.Y.. 1994. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 368:144–147. 10.1038/368144a0
    1. Siegler Retchless B., Gao W., and Johnson J.W.. 2012. A single GluN2 subunit residue controls NMDA receptor channel properties via intersubunit interaction. Nat. Neurosci. 15:406–413.
    1. Sirrieh R.E., MacLean D.M., and Jayaraman V.. 2013. Amino-terminal domain tetramer organization and structural effects of zinc binding in the N-methyl-D-aspartate (NMDA) receptor. J. Biol. Chem. 288:22555–22564. 10.1074/jbc.M113.482356
    1. Sirrieh R.E., MacLean D.M., and Jayaraman V.. 2015a A conserved structural mechanism of NMDA receptor inhibition: A comparison of ifenprodil and zinc. J. Gen. Physiol. 146:173–181. 10.1085/jgp.201511422
    1. Sirrieh R.E., MacLean D.M., and Jayaraman V.. 2015b Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine. J. Biol. Chem. 290:12812–12820. 10.1074/jbc.M115.649723
    1. Sobolevsky A.I. 1999. Two-component blocking kinetics of open NMDA channels by organic cations. Biochim. Biophys. Acta. 1416:69–91. 10.1016/S0005-2736(98)00211-9
    1. Sobolevsky A.I. 2015. Structure and gating of tetrameric glutamate receptors. J. Physiol. 593:29–38. 10.1113/jphysiol.2013.264911
    1. Sobolevsky A.I., and Yelshansky M.V.. 2000. The trapping block of NMDA receptor channels in acutely isolated rat hippocampal neurones. J. Physiol. 526:493–506. 10.1111/j.1469-7793.2000.t01-2-00493.x
    1. Sobolevsky A.I., Koshelev S.G., and Khodorov B.I.. 1999. Probing of NMDA channels with fast blockers. J. Neurosci. 19:10611–10626. 10.1523/JNEUROSCI.19-24-10611.1999
    1. Sobolevsky A.I., Beck C., and Wollmuth L.P.. 2002a Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron. 33:75–85. 10.1016/S0896-6273(01)00560-8
    1. Sobolevsky A.I., Rooney L., and Wollmuth L.P.. 2002b Staggering of subunits in NMDAR channels. Biophys. J. 83:3304–3314. 10.1016/S0006-3495(02)75331-9
    1. Song X., Jensen M.O., Jogini V., Stein R.A., Lee C.H., Mchaourab H.S., Shaw D.E., and Gouaux E.. 2018. Mechanism of NMDA receptor channel block by MK-801 and memantine. Nature. 556:515–519. 10.1038/s41586-018-0039-9
    1. Stroebel D., Carvalho S., Grand T., Zhu S., and Paoletti P.. 2014. Controlling NMDA receptor subunit composition using ectopic retention signals. J. Neurosci. 34:16630–16636. 10.1523/JNEUROSCI.2736-14.2014
    1. Stroebel D., Buhl D.L., Knafels J.D., Chanda P.K., Green M., Sciabola S., Mony L., Paoletti P., and Pandit J.. 2016. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists. Mol. Pharmacol. 89:541–551. 10.1124/mol.115.103036
    1. Strong K.L., Jing Y., Prosser A.R., Traynelis S.F., and Liotta D.C.. 2014. NMDA receptor modulators: an updated patent review (2013-2014). Expert Opin. Ther. Pat. 24:1349–1366. 10.1517/13543776.2014.972938
    1. Sugihara H., Moriyoshi K., Ishii T., Masu M., and Nakanishi S.. 1992. Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem. Biophys. Res. Commun. 185:826–832. 10.1016/0006-291X(92)91701-Q
    1. Sullivan S.J., and Miller R.F.. 2012. AMPA receptor-dependent, light-evoked D-serine release acts on retinal ganglion cell NMDA receptors. J. Neurophysiol. 108:1044–1051. 10.1152/jn.00264.2012
    1. Sullivan J.M., Traynelis S.F., Chen H.S., Escobar W., Heinemann S.F., and Lipton S.A.. 1994. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron. 13:929–936. 10.1016/0896-6273(94)90258-5
    1. Sun W., Hansen K.B., and Jahr C.E.. 2017. Allosteric Interactions between NMDA Receptor Subunits Shape the Developmental Shift in Channel Properties. Neuron. 94:58–64.e53.
    1. Sun Y., Olson R., Horning M., Armstrong N., Mayer M., and Gouaux E.. 2002. Mechanism of glutamate receptor desensitization. Nature. 417:245–253. 10.1038/417245a
    1. Sundström E., Whittemore S., Mo L.L., and Seiger A.. 1997. Analysis of NMDA receptors in the human spinal cord. Exp. Neurol. 148:407–413. 10.1006/exnr.1997.6691
    1. Swanger S.A., Vance K.M., Pare J.F., Sotty F., Fog K., Smith Y., and Traynelis S.F.. 2015. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus. J. Neurosci. 35:15971–15983. 10.1523/JNEUROSCI.1702-15.2015
    1. Swanger S.A., Vance K.M., Acker T.M., Zimmerman S.S., DiRaddo J.O., Myers S.J., Bundgaard C., Mosley C.A., Summer S.L., Menaldino D.S., et al. . 2018. A Novel Negative Allosteric Modulator Selective for GluN2C/2D-Containing NMDA Receptors Inhibits Synaptic Transmission in Hippocampal Interneurons. ACS Chem. Neurosci. 9:306–319. 10.1021/acschemneuro.7b00329
    1. Tajima N., Karakas E., Grant T., Simorowski N., Diaz-Avalos R., Grigorieff N., and Furukawa H.. 2016. Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature. 534:63–68. 10.1038/nature17679
    1. Takahashi H., Xia P., Cui J., Talantova M., Bodhinathan K., Li W., Saleem S., Holland E.A., Tong G., Piña-Crespo J., et al. . 2015. Pharmacologically targeted NMDA receptor antagonism by NitroMemantine for cerebrovascular disease. Sci. Rep. 5:14781 10.1038/srep14781
    1. Takahashi T., Feldmeyer D., Suzuki N., Onodera K., Cull-Candy S.G., Sakimura K., and Mishina M.. 1996. Functional correlation of NMDA receptor epsilon subunits expression with the properties of single-channel and synaptic currents in the developing cerebellum. J. Neurosci. 16:4376–4382. 10.1523/JNEUROSCI.16-14-04376.1996
    1. Talukder I., Borker P., and Wollmuth L.P.. 2010. Specific sites within the ligand-binding domain and ion channel linkers modulate NMDA receptor gating. J. Neurosci. 30:11792–11804. 10.1523/JNEUROSCI.5382-09.2010
    1. Talukder I., Kazi R., and Wollmuth L.P.. 2011. GluN1-specific redox effects on the kinetic mechanism of NMDA receptor activation. Biophys. J. 101:2389–2398. 10.1016/j.bpj.2011.10.015
    1. Tang L.H., and Aizenman E.. 1993. The modulation of N-methyl-D-aspartate receptors by redox and alkylating reagents in rat cortical neurones in vitro. J. Physiol. 465:303–323. 10.1113/jphysiol.1993.sp019678
    1. Tang C.M., Dichter M., and Morad M.. 1990. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. USA. 87:6445–6449. 10.1073/pnas.87.16.6445
    1. Tang T.T., Badger J.D. II, Roche P.A., and Roche K.W.. 2010. Novel approach to probe subunit-specific contributions to N-methyl-D-aspartate (NMDA) receptor trafficking reveals a dominant role for NR2B in receptor recycling. J. Biol. Chem. 285:20975–20981. 10.1074/jbc.M110.102210
    1. Tingley W.G., Roche K.W., Thompson A.K., and Huganir R.L.. 1993. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature. 364:70–73. 10.1038/364070a0
    1. Tingley W.G., Ehlers M.D., Kameyama K., Doherty C., Ptak J.B., Riley C.T., and Huganir R.L.. 1997. Characterization of protein kinase A and protein kinase C phosphorylation of the N-methyl-D-aspartate receptor NR1 subunit using phosphorylation site-specific antibodies. J. Biol. Chem. 272:5157–5166. 10.1074/jbc.272.8.5157
    1. Tovar K.R., and Westbrook G.L.. 1999. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19:4180–4188. 10.1523/JNEUROSCI.19-10-04180.1999
    1. Tovar K.R., McGinley M.J., and Westbrook G.L.. 2013. Triheteromeric NMDA receptors at hippocampal synapses. J. Neurosci. 33:9150–9160. 10.1523/JNEUROSCI.0829-13.2013
    1. Traynelis S.F., and Cull-Candy S.G.. 1990. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature. 345:347–350. 10.1038/345347a0
    1. Traynelis S.F., and Cull-Candy S.G.. 1991. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol. 433:727–763. 10.1113/jphysiol.1991.sp018453
    1. Traynelis S.F., Hartley M., and Heinemann S.F.. 1995. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science. 268:873–876. 10.1126/science.7754371
    1. Traynelis S.F., Burgess M.F., Zheng F., Lyuboslavsky P., and Powers J.L.. 1998. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18:6163–6175. 10.1523/JNEUROSCI.18-16-06163.1998
    1. Traynelis S.F., Wollmuth L.P., McBain C.J., Menniti F.S., Vance K.M., Ogden K.K., Hansen K.B., Yuan H., Myers S.J., and Dingledine R.. 2010. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62:405–496. 10.1124/pr.109.002451
    1. Trussell L.O., Zhang S., and Raman I.M.. 1993. Desensitization of AMPA receptors upon multiquantal neurotransmitter release. Neuron. 10:1185–1196. 10.1016/0896-6273(93)90066-Z
    1. Twomey E.C., and Sobolevsky A.I.. 2018. Structural Mechanisms of Gating in Ionotropic Glutamate Receptors. Biochemistry. 57:267–276. 10.1021/acs.biochem.7b00891
    1. Twomey E.C., Yelshanskaya M.V., Grassucci R.A., Frank J., and Sobolevsky A.I.. 2017. Channel opening and gating mechanism in AMPA-subtype glutamate receptors. Nature. 549:60–65. 10.1038/nature23479
    1. Ulbrich M.H., and Isacoff E.Y.. 2007. Subunit counting in membrane-bound proteins. Nat. Methods. 4:319–321. 10.1038/nmeth1024
    1. Vance K.M., Simorowski N., Traynelis S.F., and Furukawa H.. 2011. Ligand-specific deactivation time course of GluN1/GluN2D NMDA receptors. Nat. Commun. 2:294 10.1038/ncomms1295
    1. Vance K.M., Hansen K.B., and Traynelis S.F.. 2012. GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J. Physiol. 590:3857–3875. 10.1113/jphysiol.2012.234062
    1. Vance K.M., Hansen K.B., and Traynelis S.F.. 2013. Modal gating of GluN1/GluN2D NMDA receptors. Neuropharmacology. 71:184–190. 10.1016/j.neuropharm.2013.03.018
    1. Vicini S., Wang J.F., Li J.H., Zhu W.J., Wang Y.H., Luo J.H., Wolfe B.B., and Grayson D.R.. 1998. Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J. Neurophysiol. 79:555–566. 10.1152/jn.1998.79.2.555
    1. Villarroel A., Regalado M.P., and Lerma J.. 1998. Glycine-independent NMDA receptor desensitization: localization of structural determinants. Neuron. 20:329–339. 10.1016/S0896-6273(00)80460-2
    1. Vogt K., Mellor J., Tong G., and Nicoll R.. 2000. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 26:187–196. 10.1016/S0896-6273(00)81149-6
    1. Volgraf M., Sellers B.D., Jiang Y., Wu G., Ly C.Q., Villemure E., Pastor R.M., Yuen P.W., Lu A., Luo X., et al. . 2016. Discovery of GluN2A-Selective NMDA Receptor Positive Allosteric Modulators (PAMs): Tuning Deactivation Kinetics via Structure-Based Design. J. Med. Chem. 59:2760–2779. 10.1021/acs.jmedchem.5b02010
    1. Volianskis A., France G., Jensen M.S., Bortolotto Z.A., Jane D.E., and Collingridge G.L.. 2015. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res. 1621:5–16. 10.1016/j.brainres.2015.01.016
    1. Vyklicky V., Korinek M., Smejkalova T., Balik A., Krausova B., Kaniakova M., Lichnerova K., Cerny J., Krusek J., Dittert I., et al. . 2014. Structure, function, and pharmacology of NMDA receptor channels. Physiol. Res. 63(Suppl 1):S191–S203.
    1. Vyklicky V., Krausova B., Cerny J., Balik A., Zapotocky M., Novotny M., Lichnerova K., Smejkalova T., Kaniakova M., Korinek M., et al. . 2015. Block of NMDA receptor channels by endogenous neurosteroids: implications for the agonist induced conformational states of the channel vestibule. Sci. Rep. 5:10935 10.1038/srep10935
    1. Vyklický L., Jr 1993. Calcium-mediated modulation of N-methyl-D-aspartate (NMDA) responses in cultured rat hippocampal neurones. J. Physiol. 470:575–600. 10.1113/jphysiol.1993.sp019876
    1. Vyklický L. Jr., Vlachová V., and Krůsek J.. 1990. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. 430:497–517. 10.1113/jphysiol.1990.sp018304
    1. Watanabe J., Beck C., Kuner T., Premkumar L.S., and Wollmuth L.P.. 2002. DRPEER: a motif in the extracellular vestibule conferring high Ca2+ flux rates in NMDA receptor channels. J. Neurosci. 22:10209–10216. 10.1523/JNEUROSCI.22-23-10209.2002
    1. Watanabe M., Inoue Y., Sakimura K., and Mishina M.. 1992. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport. 3:1138–1140. 10.1097/00001756-199212000-00027
    1. Wenthold R.J., Prybylowski K., Standley S., Sans N., and Petralia R.S.. 2003. Trafficking of NMDA receptors. Annu. Rev. Pharmacol. Toxicol. 43:335–358. 10.1146/annurev.pharmtox.43.100901.135803
    1. Williams K. 1996. Separating dual effects of zinc at recombinant N-methyl-D-aspartate receptors. Neurosci. Lett. 215:9–12. 10.1016/S0304-3940(96)12924-4
    1. Wollmuth L.P. 2018. Ion permeation in ionotropic glutamate receptors: Still dynamic after all these years. Curr Opin Physiol. 2:36–41. 10.1016/j.cophys.2017.12.003
    1. Wollmuth L.P., and Sobolevsky A.I.. 2004. Structure and gating of the glutamate receptor ion channel. Trends Neurosci. 27:321–328. 10.1016/j.tins.2004.04.005
    1. Wollmuth L.P., Kuner T., Seeburg P.H., and Sakmann B.. 1996. Differential contribution of the NR1- and NR2A-subunits to the selectivity filter of recombinant NMDA receptor channels. J. Physiol. 491:779–797. 10.1113/jphysiol.1996.sp021257
    1. Wollmuth L.P., Kuner T., and Sakmann B.. 1998. Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+. J. Physiol. 506:13–32. 10.1111/j.1469-7793.1998.013bx.x
    1. Wolosker H. 2007. NMDA receptor regulation by D-serine: new findings and perspectives. Mol. Neurobiol. 36:152–164. 10.1007/s12035-007-0038-6
    1. Wyllie D.J., Béhé P., Nassar M., Schoepfer R., and Colquhoun D.. 1996. Single-channel currents from recombinant NMDA NR1a/NR2D receptors expressed in Xenopus oocytes. Proc. Biol. Sci. 263:1079–1086. 10.1098/rspb.1996.0159
    1. Wyllie D.J., Béhé P., and Colquhoun D.. 1998. Single-channel activations and concentration jumps: comparison of recombinant NR1a/NR2A and NR1a/NR2D NMDA receptors. J. Physiol. 510:1–18. 10.1111/j.1469-7793.1998.001bz.x
    1. Wyllie D.J., Livesey M.R., and Hardingham G.E.. 2013. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology. 74:4–17. 10.1016/j.neuropharm.2013.01.016
    1. Yao Y., and Mayer M.L.. 2006. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J. Neurosci. 26:4559–4566. 10.1523/JNEUROSCI.0560-06.2006
    1. Yao Y., Harrison C.B., Freddolino P.L., Schulten K., and Mayer M.L.. 2008. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors. EMBO J. 27:2158–2170. 10.1038/emboj.2008.140
    1. Yao Y., Belcher J., Berger A.J., Mayer M.L., and Lau A.Y.. 2013. Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure. 21:1788–1799. 10.1016/j.str.2013.07.011
    1. Yi F., Mou T.C., Dorsett K.N., Volkmann R.A., Menniti F.S., Sprang S.R., and Hansen K.B.. 2016. Structural Basis for Negative Allosteric Modulation of GluN2A-Containing NMDA Receptors. Neuron. 91:1316–1329. 10.1016/j.neuron.2016.08.014
    1. Yi F., Traynelis S.F., and Hansen K.B.. 2017. Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. Methods Mol. Biol. 1677:145–162. 10.1007/978-1-4939-7321-7_7
    1. Yi F., Zachariassen L.G., Dorsett K.N., and Hansen K.B.. 2018. Properties of Triheteromeric N-Methyl-d-Aspartate Receptors Containing Two Distinct GluN1 Isoforms. Mol. Pharmacol. 93:453–467. 10.1124/mol.117.111427
    1. Yuan H., Erreger K., Dravid S.M., and Traynelis S.F.. 2005. Conserved structural and functional control of N-methyl-D-aspartate receptor gating by transmembrane domain M3. J. Biol. Chem. 280:29708–29716. 10.1074/jbc.M414215200
    1. Yuan H., Geballe M.T., Hansen K.B., and Traynelis S.F.. 2008. Structure and function of the NMDA receptor. In Structural and Functional Organization of the Synapse. Hell J.W., and Ehlers M.D., editors. Springer, New York: 289–316. 10.1007/978-0-387-77232-5_11
    1. Yuan H., Hansen K.B., Vance K.M., Ogden K.K., and Traynelis S.F.. 2009. Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J. Neurosci. 29:12045–12058. 10.1523/JNEUROSCI.1365-09.2009
    1. Yuan H., Hansen K.B., Zhang J., Pierson T.M., Markello T.C., Fajardo K.V., Holloman C.M., Golas G., Adams D.R., Boerkoel C.F., et al. . 2014. Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat. Commun. 5:3251 10.1038/ncomms4251
    1. Yuan H., Myers S.J., Wells G., Nicholson K.L., Swanger S.A., Lyuboslavsky P., Tahirovic Y.A., Menaldino D.S., Ganesh T., Wilson L.J., et al. . 2015. Context-dependent GluN2B-selective inhibitors of NMDA receptor function are neuroprotective with minimal side effects. Neuron. 85:1305–1318. 10.1016/j.neuron.2015.02.008
    1. Yuzaki M., and Aricescu A.R.. 2017. A GluD Coming-Of-Age Story. Trends Neurosci. 40:138–150. 10.1016/j.tins.2016.12.004
    1. Zanos P., Thompson S.M., Duman R.S., Zarate C.A. Jr., and Gould T.D.. 2018. Convergent Mechanisms Underlying Rapid Antidepressant Action. CNS Drugs. 32:197–227. 10.1007/s40263-018-0492-x
    1. Zhang L., Zheng X., Paupard M.C., Wang A.P., Santchi L., Friedman L.K., Zukin R.S., and Bennett M.V.. 1994. Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc. Natl. Acad. Sci. USA. 91:10883–10887. 10.1073/pnas.91.23.10883
    1. Zhang S., Ehlers M.D., Bernhardt J.P., Su C.T., and Huganir R.L.. 1998. Calmodulin mediates calcium-dependent inactivation of N-methyl-D-aspartate receptors. Neuron. 21:443–453. 10.1016/S0896-6273(00)80553-X
    1. Zhang W., Howe J.R., and Popescu G.K.. 2008. Distinct gating modes determine the biphasic relaxation of NMDA receptor currents. Nat. Neurosci. 11:1373–1375. 10.1038/nn.2214
    1. Zheng F., Erreger K., Low C.M., Banke T., Lee C.J., Conn P.J., and Traynelis S.F.. 2001. Allosteric interaction between the amino terminal domain and the ligand binding domain of NR2A. Nat. Neurosci. 4:894–901. 10.1038/nn0901-894
    1. Zhong J., Carrozza D.P., Williams K., Pritchett D.B., and Molinoff P.B.. 1995. Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J. Neurochem. 64:531–539. 10.1046/j.1471-4159.1995.64020531.x
    1. Zhu S., and Paoletti P.. 2015. Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr. Opin. Pharmacol. 20:14–23. 10.1016/j.coph.2014.10.009
    1. Zhu Y., and Auerbach A.. 2001a K(+) occupancy of the N-methyl-d-aspartate receptor channel probed by Mg(2+) block. J. Gen. Physiol. 117:287–298. 10.1085/jgp.117.3.287
    1. Zhu Y., and Auerbach A.. 2001b Na(+) occupancy and Mg(2+) block of the N-methyl-d-aspartate receptor channel. J. Gen. Physiol. 117:275–286. 10.1085/jgp.117.3.275
    1. Zhu S., Stroebel D., Yao C.A., Taly A., and Paoletti P.. 2013. Allosteric signaling and dynamics of the clamshell-like NMDA receptor GluN1 N-terminal domain. Nat. Struct. Mol. Biol. 20:477–485. 10.1038/nsmb.2522
    1. Zhu S., Riou M., Yao C.A., Carvalho S., Rodriguez P.C., Bensaude O., Paoletti P., and Ye S.. 2014. Genetically encoding a light switch in an ionotropic glutamate receptor reveals subunit-specific interfaces. Proc. Natl. Acad. Sci. USA. 111:6081–6086. 10.1073/pnas.1318808111
    1. Zhu S., Stein R.A., Yoshioka C., Lee C.H., Goehring A., Mchaourab H.S., and Gouaux E.. 2016. Mechanism of NMDA Receptor Inhibition and Activation. Cell. 165:704–714. 10.1016/j.cell.2016.03.028
    1. Zorumski C.F., and Izumi Y.. 2012. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci. Biobehav. Rev. 36:989–1000. 10.1016/j.neubiorev.2011.12.011

Source: PubMed

3
구독하다