Perioperative Low-Dose Ketamine for Postoperative Pain Management in Spine Surgery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

Lijin Zhou, Honghao Yang, Yong Hai, Yunzhong Cheng, Lijin Zhou, Honghao Yang, Yong Hai, Yunzhong Cheng

Abstract

Objective: Although low-dose ketamine has been shown to be generally beneficial in terms of pain control in a variety of major surgery, there is no consensus regarding the effectiveness of supplemental ketamine analgesic use exclusively in spine surgery. The objective of this systematic review and meta-analysis of randomized controlled trials (RCTs) was to assess the efficacy and safety of perioperative low-dose ketamine for pain management and analgesic consumption in patients undergoing spine surgery.

Methods: A comprehensive literature search was performed for relevant studies using PubMed, EMBASE, Web of Science, and Cochrane Library. Patients who received perioperative low-dose ketamine were compared to the control group in terms of postoperative pain intensity, opioid consumption, and adverse events. Patients were further categorized by ages and administration times for subgroup analysis.

Results: A total of 30 RCTs comprising 1,865 patients undergoing elective spine surgery were included. Significantly lower pain intensity and less opioid consumption at 12 h, 24 h, and 48 h postoperatively and lower incidence of postoperative nausea and vomiting (PONV) were observed in the ketamine group (all P < 0.05). There was no significant difference of central nervous system (CNS) adverse events between groups. However, different efficacy of low-dose ketamine was detected when patients were categorized by ages and administration times.

Conclusion: Perioperative low-dose ketamine demonstrated analgesic and morphine-sparing effect with no increased adverse events after spine surgery. However, this effect was not significant in pediatric patients. Only postoperative or intraoperative and postoperative administration could prolong the analgesic time up to 48 h postoperatively. Further studies should focus on the optimal protocol of ketamine administration and its effect on old age participants.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2022 Lijin Zhou et al.

Figures

Figure 1
Figure 1
Flow diagram depicting the literature review, search strategy, and selection process.
Figure 2
Figure 2
Risk of bias. (a) A summary table of each risk of bias item for each study; (b) a plot of the distribution of each risk of bias item. “+”: low risk of bias; “?”: unclear risk of bias; “–”: high risk of bias.
Figure 3
Figure 3
Forest plot of the pain intensity at rest for the ketamine group and control group. (a) 6 h; (b) 12 h; (c) 24 h; (d) 48 h.
Figure 4
Figure 4
Forest plot of the pain intensity during mobilization for the ketamine group and control group. (a) 6 h; (b) 12 h; (c) 24 h; (d) 48 h.
Figure 5
Figure 5
Forest plot of the cumulative opioid consumption for the ketamine group and control group. (a) First 12 h; (b) first 24 h; (c) first 48 h.
Figure 6
Figure 6
Forest plot of the time to first request for analgesic after surgery for the ketamine group and control group.
Figure 7
Figure 7
Forest plot of the incidence of adverse events for the ketamine group and control group. (a) CNS adverse events; (b) PONV.

References

    1. Cozowicz C., Bekeris J., Poeran J., et al. Multimodal pain management and postoperative outcomes in lumbar spine fusion surgery: a population-based cohort study. Spine . 2020;45(9):580–589. doi: 10.1097/brs.0000000000003320.
    1. García-Henares J. F., Moral-Munoz J. A., Salazar A., Del Pozo E. Effects of ketamine on postoperative pain after remifentanil-based anesthesia for major and minor surgery in adults: a systematic review and meta-analysis. Frontiers in Pharmacology . 2018;9:p. 921. doi: 10.3389/fphar.2018.00921.
    1. Park P. J., Makhni M. C., Cerpa M., Lehman R. A., Lenke L. G. The role of perioperative ketamine in postoperative pain control following spinal surgery. Journal of Spine Surgery . 2020;6(3):591–597. doi: 10.21037/jss-19-306.
    1. Bicket M. C., White E., Pronovost P. J., Wu C. L., Yaster M., Alexander G. C. Opioid oversupply after joint and spine surgery: a prospective cohort study. Anesthesia & Analgesia . 2019;128(2):358–364. doi: 10.1213/ane.0000000000003364.
    1. Sadhasivam S., Chidambaran V., Olbrecht V. A., et al. Opioid-related adverse effects in children undergoing surgery: unequal burden on younger girls with higher doses of opioids. Pain Medicine . 2015;16(5):985–997. doi: 10.1111/pme.12660.
    1. Kane-Gill S. L., Rubin E. C., Smithburger P. L., Buckley M. S., Dasta J. F. The cost of opioid-related adverse drug events. Journal of Pain & Palliative Care Pharmacotherapy . 2014;28(3):282–293. doi: 10.3109/15360288.2014.938889.
    1. Soni A. Medicaid expansion and rates of opioid-related hospital use-reply. JAMA Internal Medicine . 2020;180(10):1402–1403. doi: 10.1001/jamainternmed.2020.2737.
    1. Mercadante S., Arcuri E., Santoni A. Opioid-induced tolerance and hyperalgesia. CNS Drugs . 2019;33(10):943–955. doi: 10.1007/s40263-019-00660-0.
    1. Lyden J., Binswanger I. A. The United States opioid epidemic. Seminars in Perinatology . 2019;43(3):123–131. doi: 10.1053/j.semperi.2019.01.001.
    1. Yoo J. S., Ahn J., Buvanendran A., Singh K. Multimodal analgesia in pain management after spine surgery. Journal of Spine Surgery . 2019;5(S2):S154–s159. doi: 10.21037/jss.2019.05.04.
    1. Maheshwari K., Avitsian R., Sessler D. I., et al. Multimodal analgesic regimen for spine surgery: a randomized placebo-controlled trial. Anesthesiology . 2020;132(5):992–1002. doi: 10.1097/aln.0000000000003143.
    1. Haffner M., Saiz A. M., Jr., Nathe R., et al. Preoperative multimodal analgesia decreases 24-hour postoperative narcotic consumption in elective spinal fusion patients. The Spine Journal . 2019;19(11):1753–1763. doi: 10.1016/j.spinee.2019.07.005.
    1. Urman R., Vadivelu N., Schermer E., Kodumudi V., Belani K., Kaye A. Role of ketamine for analgesia in adults and children. Journal of Anaesthesiology Clinical Pharmacology . 2016;32(3):298–306. doi: 10.4103/0970-9185.168149.
    1. Gorlin A., Rosenfeld D., Ramakrishna H. Intravenous sub-anesthetic ketamine for perioperative analgesia. Journal of Anaesthesiology Clinical Pharmacology . 2016;32(2):160–167. doi: 10.4103/0970-9185.182085.
    1. Moher D., Liberati A., Tetzlaff J., Altman D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ . 2009;339(1):p. b2535. doi: 10.1136/bmj.b2535.
    1. Davies S. The importance of PROSPERO to the National Institute for Health Research. Systematic Reviews . 2012;1(1):p. 5. doi: 10.1186/2046-4053-1-5.
    1. Cumpston M., Li T., Page M. J., et al. Updated guidance for trusted systematic reviews: a new edition of the cochrane handbook for systematic reviews of Interventions. Cochrane Database of Systematic Reviews . 2019;10:p. Ed000142. doi: 10.1002/14651858.Ed000142.
    1. Brożek J. L., Akl E. A., Alonso-Coello P., et al. Grading quality of evidence and strength of recommendations in clinical practice guidelines. Part 1 of 3. An overview of the GRADE approach and grading quality of evidence about interventions. Allergy . 2009;64(5):669–677. doi: 10.1111/j.1398-9995.2009.01973.x.
    1. Salazar C. A., Basilio Flores J. E., Veramendi Espinoza L. E., Mejia Dolores J. W., Rey Rodriguez D. E., Loza Munárriz C. Ranolazine for stable angina pectoris. Cochrane Database of Systematic Reviews . 2017;2019(1):p. Cd011747. doi: 10.1002/14651858.CD011747.pub2.
    1. Brinck E., Tiippana E., Heesen M., et al. Perioperative intravenous ketamine for acute postoperative pain in adults. Cochrane Database of Systematic Reviews . 2018;12(12):p. Cd012033. doi: 10.1002/14651858.CD012033.pub4.
    1. Patanwala A. E., Duby J., Waters D., Erstad B. L. Opioid conversions in acute care. The Annals of Pharmacotherapy . 2007;41(2):255–267. doi: 10.1345/aph.1H421.
    1. Anderson R., Saiers J. H., Abram S., Schlicht C. Accuracy in equianalgesic dosing. Journal of Pain and Symptom Management . 2001;21(5):397–406. doi: 10.1016/s0885-3924(01)00271-8.
    1. Duval S., Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics . 2000;56(2):455–463. doi: 10.1111/j.0006-341x.2000.00455.x.
    1. Javery K. B., Ussery T. W., Steger H. G., Colclough G. W. Comparison of morphine and morphine with ketamine for postoperative analgesia. Canadian Journal of Anaesthesia . 1996;43(3):212–215. doi: 10.1007/bf03011736.
    1. Sahin A., Canbay O., Cuhadar A., Celebi N., Aypar U. Bolus ketamine does not decrease hyperalgesia after remifentanil infusion. The Pain Clinic . 2013;16(4):407–411. doi: 10.1163/1568569042664413.
    1. Aveline C., Hetet H., Vautier P., Gautier J. F., Bonnet F. Peroperative ketamine and morphine for postoperative pain control after lumbar disk surgery. European Journal of Pain . 2006;10(7):p. 653. doi: 10.1016/j.ejpain.2005.10.005.
    1. Engelhardt T., Zaarour C., Naser B., et al. Intraoperative low-dose ketamine does not prevent a remifentanil-induced increase in morphine requirement after pediatric scoliosis surgery. Anesthesia & Analgesia . 2008;107(4):1170–1175. doi: 10.1213/ane.0b013e318183919e.
    1. Moustafa A. M., Negmi H. H., Rabie M. E. The combined effect of ketamine and remifentanil infusions as total intravenous anesthesia for scoliosis surgery in children. Middle East Journal of Anesthesiology . 2008;19(5):1151–1168.
    1. Urban M. K., Ya Deau J. T., Wukovits B., Lipnitsky J. Y. Ketamine as an adjunct to postoperative pain management in opioid tolerant patients after spinal fusions: a prospective randomized trial. HSS Journal . 2008;4(1):62–65. doi: 10.1007/s11420-007-9069-9.
    1. Hadi B., Al Ramadani R., Daas R., Naylor I., Zelko R., Saleh M. The influence of anaesthetic drug selection for scoliosis surgery on the management of intraoperative haemodynamic stability and postoperative pain-pharmaceutical care programme. Southern African Journal of Anaesthesia and Analgesia . 2009;15(5):10–14. doi: 10.1080/22201173.2009.10872617.
    1. Hadi B. A., Ramadani R. A., Daas R., Naylor I., Zelkó R. Remifentanil in combination with ketamine versus remifentanil in spinal fusion surgery—a double blind study. International Journal of Clinical Pharmacology and Therapeutics . 2010;48(08):542–548. doi: 10.5414/cpp48542.
    1. Loftus R. W., Yeager M. P., Clark J. A., et al. Intraoperative ketamine reduces perioperative opiate consumption in opiate-dependent patients with chronic back pain undergoing back surgery. Anesthesiology . 2010;113(3):639–646. doi: 10.1097/ALN.0b013e3181e90914.
    1. Subramaniam K., Akhouri V., Glazer P. A., et al. Intra- and postoperative very low dose intravenous ketamine infusion does not increase pain relief after major spine surgery in patients with preoperative narcotic analgesic intake. Pain Medicine . 2011;12(8):1276–1283. doi: 10.1111/j.1526-4637.2011.01144.x.
    1. Abrishamkar S., Eshraghi N., Feizi A., Talakoub R., Rafiei A., Rahmani P. Analgesic effects of ketamine infusion on postoperative pain after fusion and instrumentation of the lumbar spine: a prospective randomized clinical trial. Medical Archives . 2012;66(2):107–110. doi: 10.5455/medarh.2012.66.107-110.
    1. Pacreu S., Fernández Candil J., Moltó L., Carazo J., Fernández Galinski S. The perioperative combination of methadone and ketamine reduces post-operative opioid usage compared with methadone alone. Acta Anaesthesiologica Scandinavica . 2012;56(10):1250–1256. doi: 10.1111/j.1399-6576.2012.02743.x.
    1. Yeom J. H., Chon M.-S., Jeon W. J., Shim J.-H. Peri-operative ketamine with the ambulatory elastometric infusion pump as an adjuvant to manage acute postoperative pain after spinal fusion in adults: a prospective randomized trial. Korean Journal of Anesthesiology . 2012;63(1):54–58. doi: 10.4097/kjae.2012.63.1.54.
    1. Hadi B. A., Daas R., Zelkó R. A randomized, controlled trial of a clinical pharmacist intervention in microdiscectomy surgery—low dose intravenous ketamine as an adjunct to standard therapy. Saudi Pharmaceutical Journal . 2013;21(2):169–175. doi: 10.1016/j.jsps.2012.08.002.
    1. Kim S. H., Kim S. I., Ok S. Y., et al. Opioid sparing effect of low dose ketamine in patients with intravenous patient-controlled analgesia using fentanyl after lumbar spinal fusion surgery. Korean Journal of Anesthesiology . 2013;64(6):524–528. doi: 10.4097/kjae.2013.64.6.524.
    1. Song J. W., Shim J. K., Song Y., Yang S. Y., Park S. J., Kwak Y. L. Effect of ketamine as an adjunct to intravenous patient-controlled analgesia, in patients at high risk of postoperative nausea and vomiting undergoing lumbar spinal surgery. British Journal of Anaesthesia . 2013;111(4):630–635. doi: 10.1093/bja/aet192.
    1. Pestieau S. R., Finkel J. C., Junqueira M. M., et al. Prolonged perioperative infusion of low-dose ketamine does not alter opioid use after pediatric scoliosis surgery. Pediatric Anesthesia . 2014;24(6):582–590. doi: 10.1111/pan.12417.
    1. Minoshima R., Kosugi S., Nishimura D., et al. Intra- and postoperative low-dose ketamine for adolescent idiopathic scoliosis surgery: a randomized controlled trial. Acta Anaesthesiologica Scandinavica . 2015;59(10):1260–1268. doi: 10.1111/aas.12571.
    1. Garg N., Panda N. B., Gandhi K. A., et al. Comparison of small dose ketamine and dexmedetomidine infusion for postoperative analgesia in spine surgery-A prospective randomized double-blind placebo controlled study. Journal of Neurosurgical Anesthesiology . 2016;28(1):27–31. doi: 10.1097/ana.0000000000000193.
    1. Mitra R., Prabhakar H., Rath G., Bithal P., Khandelwal A. A comparative study between intraoperativelow-dose ketamine and dexmedetomidine, as an anaesthetic adjuvant in lumbar spine instrumentation surgery for the post-operative analgesic requirement. Journal of Neuroanaesthesiology and Critical Care . 2017;4(2):091–098. doi: 10.4103/jnacc-jnacc-3.17.
    1. Nielsen R. V., Fomsgaard J. S., Siegel H., et al. Intraoperative ketamine reduces immediate postoperative opioid consumption after spinal fusion surgery in chronic pain patients with opioid dependency: a randomized, blinded trial. Pain . 2017;158(3):463–470. doi: 10.1097/j.pain.0000000000000782.
    1. Perelló M., Artés D., Pascuets C., Esteban E., Ey Batlle A. M. Prolonged perioperative low-dose ketamine does not improve short and long-term outcomes after pediatric idiopathic scoliosis surgery. Spine . 2017;42(5):E304–E312. doi: 10.1097/brs.0000000000001772.
    1. Boenigk K., Echevarria G. C., Nisimov E., et al. Low-dose ketamine infusion reduces postoperative hydromorphone requirements in opioid-tolerant patients following spinal fusion. European Journal of Anaesthesiology . 2019;36(1):8–15. doi: 10.1097/eja.0000000000000877.
    1. Czarnetzki C., Desmeules J., Tessitore E., et al. Perioperative intravenous low‐dose ketamine for neuropathic pain after major lower back surgery: a randomized, placebo-controlled study. European Journal of Pain . 2020;24(3):555–567. doi: 10.1002/ejp.1507.
    1. Brinck E. C. V., Maisniemi K., Kankare J., Tielinen L., Tarkkila P., Kontinen V. K. Analgesic effect of intraoperative intravenous S-ketamine in opioid-naïve patients after major lumbar fusion surgery is temporary and not dose-dependent: a randomized, double-blind, placebo-controlled clinical trial. Anesthesia & Analgesia . 2021;132(1):69–79. doi: 10.1213/ane.0000000000004729.
    1. Ricciardelli R. M., Walters N. M., Pomerantz M., et al. The efficacy of ketamine for postoperative pain control in adolescent patients undergoing spinal fusion surgery for idiopathic scoliosis. Spine Deformity . 2020;8(3):433–440. doi: 10.1007/s43390-020-00073-w.
    1. Andleeb R., Agrawal S., Gupta P. Evaluation of the effect of continuous infusion of dexmedetomidine or a subanesthetic dose ketamine on transcranial electrical motor evoked potentials in adult patients undergoing elective spine surgery under total intravenous anesthesia: a randomized controlled exploratory study. Asian Spine Journal . 2021 doi: 10.31616/asj.2021.0015. In press.
    1. Brinck E. C. V., Virtanen T., Mäkelä S., et al. S-ketamine in patient-controlled analgesia reduces opioid consumption in a dose-dependent manner after major lumbar fusion surgery: a randomized, double-blind, placebo-controlled clinical trial. PLoS One . 2021;16(6):p. e0252626. doi: 10.1371/journal.pone.0252626.
    1. Murphy G. S., Avram M. J., Greenberg S. B., et al. Perioperative methadone and ketamine for postoperative pain control in spinal surgical patients: a randomized, double-blind, placebo-controlled trial. Anesthesiology . 2021;134(5):697–708. doi: 10.1097/aln.0000000000003743.
    1. Nikoubakht N., Alimian M., Faiz S. H. R., Derakhshan P., Sadri M. S. Effects of ketamine versus dexmedetomidine maintenance infusion in posterior spinal fusion surgery on acute postoperative pain. Surgical Neurology International . 2021;12:p. 192. doi: 10.25259/sni_850_2020.
    1. Riddell J. M., Trummel J. M., Onakpoya I. J. Low-dose ketamine in painful orthopaedic surgery: a systematic review and meta-analysis. British Journal of Anaesthesia . 2019;123(3):325–334. doi: 10.1016/j.bja.2019.05.043.
    1. Pang L., Cui M., Dai W., Kong J., Chen H., Wu S. Can intraoperative low-dose R,S-ketamine prevent depressive symptoms after surgery? the first meta-analysis of clinical trials. Frontiers in Pharmacology . 2020;11:p. 586104. doi: 10.3389/fphar.2020.586104.
    1. Pendi A., Field R., Farhan S.-D., Eichler M., Bederman S. S. Perioperative ketamine for analgesia in spine surgery. Spine . 2018;43(5):E299–e307. doi: 10.1097/brs.0000000000002318.
    1. Lee C. S., Merchant S., Chidambaran V. Postoperative pain management in pediatric spinal fusion surgery for idiopathic scoliosis. Pediatric Drugs . 2020;22(6):575–601. doi: 10.1007/s40272-020-00423-1.
    1. Dahmani S., Michelet D., Abback P.-S., et al. Ketamine for perioperative pain management in children: a meta-analysis of published studies. Pediatric Anesthesia . 2011;21(6):636–652. doi: 10.1111/j.1460-9592.2011.03566.x.
    1. Dallimore D., Anderson B. J., Short T. G., Herd D. W. Ketamine anesthesia in children exploring infusion regimens. Pediatric Anesthesia . 2008;18(8):708–714. doi: 10.1111/j.1460-9592.2008.02665.x.
    1. Idvall J., Ahlgren I., Aronsen K. F., Stenberg P. Ketamine infusions: pharmacokinetics and clinical effects. British Journal of Anaesthesia . 1979;51(12):1167–1173. doi: 10.1093/bja/51.12.1167.
    1. Hood D. D., Curry R., Eisenach J. C. Intravenous remifentanil produces withdrawal hyperalgesia in volunteers with capsaicin-induced hyperalgesia. Anesthesia & Analgesia . 2003;97(3):810–815. doi: 10.1213/01.Ane.0000078811.80093.88.
    1. Wang X., Lin C., Lan L., Liu J. Perioperative intravenous S-ketamine for acute postoperative pain in adults: a systematic review and meta-analysis. Journal of Clinical Anesthesia . 2021;68:p. 110071. doi: 10.1016/j.jclinane.2020.110071.
    1. Allen C. A., Ivester J. R., Jr. Ketamine for pain management-side effects & potential adverse events. Pain Management Nursing . 2017;18(6):372–377. doi: 10.1016/j.pmn.2017.05.006.
    1. Barclay S. R., Stoltz K. B., Chung Y. B. Voluntary midlife career change: integrating the transtheoretical model and the life-span, life-space approach. The Career Development Quarterly . 2011;59(5):386–399. doi: 10.1002/j.2161-0045.2011.tb00966.x.
    1. Kertzner R. M. The adult life course and homosexual identity in midlife gay men. Annual Review of Sex Research . 2001;12:75–92.
    1. Sanderson W., Sherbov S. Rethinking age and aging. Population Bulletin . 2008;62(4):3–16.
    1. Mao C., Li M. Language bias among Chinese-sponsored randomized clinical trials in systematic reviews and meta-analyses-can anything Be done? JAMA Network Open . 2020;3(5):p. e206370. doi: 10.1001/jamanetworkopen.2020.6370.

Source: PubMed

3
구독하다