Biostimulatory Effects of Low-Intensity Pulsed Ultrasound on Rate of Orthodontic Tooth Movement and Associated Pain, Applied at 3-Week Intervals: A Split-Mouth Study

Irfan Qamruddin, Mohammad Khursheed Alam, Verda Mahroof, Meenaz Karim, Mubassar Fida, Mohd Fadhli Khamis, Adam Husein, Irfan Qamruddin, Mohammad Khursheed Alam, Verda Mahroof, Meenaz Karim, Mubassar Fida, Mohd Fadhli Khamis, Adam Husein

Abstract

Objective: Low-intensity pulsed ultrasound (LIPUS) is a noninvasive modality to stimulate bone remodeling (BR) and the healing of hard and soft tissues. This research evaluates the biostimulatory effect of LIPUS on the rate of orthodontic tooth movement (OTM) and associated pain, when applied at 3-week intervals.

Methods: Twenty-two patients (11 males and 11 females; mean age 19.18 ± 2.00 years) having Angle's Class II division 1 malocclusion needing bilateral extractions of maxillary first bicuspids were recruited for this split-mouth randomized clinical trial. After the initial stage of alignment and leveling with contemporary edgewise MBT (McLaughlin-Bennett-Trevisi) prescription brackets (Ortho Organizers, Carlsbad, Calif) of 22 mil, followed by extractions of premolars bilaterally, 6 mm nickel-titanium spring was used to retract the canines separately by applying 150 g force on 0.019 × 0.025-in stainless steel working archwires. LIPUS (1.1 MHz frequency and 30 mW/cm2 intensity output) was applied for 20 minutes extraorally and reapplied after 3 weeks for 2 more successive visits over the root of maxillary canine on the experimental side whereas the other side was placebo. A numerical rating scale- (NRS-) based questionnaire was given to the patients on each visit to record their weekly pain experience. Impressions were also made at each visit before the application of LIPUS (T1, T2, and T3). Models were scanned with a CAD/CAM scanner (Planmeca, Helsinki, Finland). Mann-Whitney U test was applied for comparison of canine movement and pain intensity between both the groups.

Results: No significant difference in the rate of canine movement was found among the experimental (0.90 mm ± 0.33 mm) and placebo groups (0.81 mm ± 0.32 mm). There was no difference in pain reduction between experimental and placebo groups (p > 0.05).

Conclusion: Single-dose application of LIPUS at 3-week intervals is ineffective in stimulating the OTM and reducing associated treatment pain.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Irfan Qamruddin et al.

Figures

Figure 1
Figure 1
LIPUS application.
Figure 2
Figure 2
Comparison of pain among the experimental side and placebo side in group A at T1, T2, and T3.

References

    1. Girón F. H., Fernández S. T. Ortodoncia en un paciente adulto mayor. Revista Mexicana de Ortodoncia. 2014;2(3):196–203. doi: 10.1016/s2395-9215(16)30035-6.
    1. Li Y., Jacox L. A., Little S. H., Ko C.-C. Orthodontic tooth movement: the biology and clinical implications. The Kaohsiung Journal of Medical Sciences. 2018;34(4):207–214. doi: 10.1016/j.kjms.2018.01.007.
    1. Saito M., Saito S., Ngan P. W., Shanfeld J., Davidovitch Z. Interleukin 1 beta and prostaglandin E are involved in the response of periodontal cells to mechanical stress in vivo and in vitro. American Journal of Orthodontics and Dentofacial Orthopedics. 1991;99(3):226–240. doi: 10.1016/0889-5406(91)70005-h.
    1. Garlet T. P., Coelho U., Silva J. S., Garlet G. P. Cytokine expression pattern in compression and tension sides of the periodontal ligament during orthodontic tooth movement in humans. European Journal of Oral Sciences. 2007;115(5):355–362. doi: 10.1111/j.1600-0722.2007.00469.x.
    1. Long H., Pyakurel U., Wang Y., Liao L., Zhou Y., Lai W. Interventions for accelerating orthodontic tooth movement. The Angle Orthodontist. 2012;83(1):164–171. doi: 10.2319/031512-224.1.
    1. Gantes B., Rathbun E., Anholm M. Effects on the periodontium following corticotomy-facilitated orthodontics. Case reports. Journal of Periodontology. 1990;61(4):234–238. doi: 10.1902/jop.1990.61.4.234.
    1. Shingade M., Maurya R., Mishra H., Singh H., Agrawal K. Accelerated Orthodontics: a paradigm shift. IP Indian Journal of Orthodontics and Dentofacial Research. 2017;3:64–68.
    1. Qamruddin I., Alam M. K., Abdullah H., Kamran M. A., Jawaid N., Mahroof V. Effects of single-dose, low-level laser therapy on pain associated with the initial stage of fixed orthodontic treatment: a randomized clinical trial. The Korean Journal of Orthodontics. 2018;48(2):90–97. doi: 10.4041/kjod.2018.48.2.90.
    1. Qamruddin I., Alam M. K., Mahroof V., Fida M., Khamis M. F., Husein A. Effects of low-level laser irradiation on the rate of orthodontic tooth movement and associated pain with self-ligating brackets. American Journal of Orthodontics and Dentofacial Orthopedics. 2017;152(5):622–630. doi: 10.1016/j.ajodo.2017.03.023.
    1. Qamruddin I., Alam M. K., Khamis M. F., Husein A. Minimally invasive techniques to accelerate the orthodontic tooth movement: a systematic review of animal studies. BioMed Research International. 2015;2015:10. doi: 10.1155/2015/608530.608530
    1. Yadav S., Dobie T., Assefnia A., Gupta H., Kalajzic Z., Nanda R. Effect of low-frequency mechanical vibration on orthodontic tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics. 2015;148(3):440–449. doi: 10.1016/j.ajodo.2015.03.031.
    1. Rego E. B., Takata T., Tanne K., Tanaka E. Current status of low intensity pulsed ultrasound for dental purposes. The Open Dentistry Journal. 2012;6(1):220–225. doi: 10.2174/1874210601206010220.
    1. Jawad M. M., Husein A., Alam M. K., Hassan R., Shaari R. Overview of non-invasive factors (low level laser and low intensity pulsed ultrasound) accelerating tooth movement during orthodontic treatment. Lasers in Medical Science. 2014;29(1):367–372. doi: 10.1007/s10103-012-1199-8.
    1. Young S. R., Gerard-O’Riley R., Kim J.-B., Pavalko F. M. Focal adhesion kinase is important for fluid shear stress-induced mechanotransduction in osteoblasts. Journal of Bone and Mineral Research. 2009;24(3):411–424. doi: 10.1359/jbmr.081102.
    1. Claes L., Willie B. The enhancement of bone regeneration by ultrasound. Progress in Biophysics and Molecular Biology. 2007;93(1-3):384–398. doi: 10.1016/j.pbiomolbio.2006.07.021.
    1. Xue H., Zheng J., Cui Z., Bai X., Li G., Zhang C. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway. PloS One. 2013;8(7) doi: 10.1371/journal.pone.0068926.e68926
    1. Parada A. Efecto del ultrasonido Pulsátil de baja intensidad en la resorción radicular de molares de ratas adultas bajo fuerza ortodoncica. 2015.
    1. Bains V., Mohan R., Bains R. Application of ultrasound in periodontics: Part II. Journal of Indian Society of Periodontology. 2008;12(3):p. 55. doi: 10.4103/0972-124x.44096.
    1. Rafeeq R. A., Saleem A. I., Hassan A. F. A., Nahidh M. Orthodontic pain (causes and current management) a review article. International Medical Journal. 2020;25(3):1071–1080.
    1. El-Bialy T., El-Shamy I., Graber T. M. Repair of orthodontically induced root resorption by ultrasound in humans. American Journal of Orthodontics and Dentofacial Orthopedics. 2004;126(2):186–193. doi: 10.1016/j.ajodo.2004.02.010.
    1. Li J., Waugh L. J., Hui S. L., Burr D. B., Warden S. J. Low-intensity pulsed ultrasound and nonsteroidal anti-inflammatory drugs have opposing effects during stress fracture repair. Journal of Orthopaedic Research. 2007;25(12):1559–1567. doi: 10.1002/jor.20461.
    1. Häsler R., Schmid G., Ingervall B., Gebauer U. A clinical comparison of the rate of maxillary canine retraction into healed and recent extraction sites--a pilot study. The European Journal of Orthodontics. 1997;19(6):711–719. doi: 10.1093/ejo/19.6.711.
    1. Ter Haar G., Dyson M., Oakley E. The use of ultrasound by physiotherapists in Britain. Ultrasound in Medicine & Biology. 1987;13(10):659–663. doi: 10.1016/0301-5629(87)90064-0.
    1. Kristiansen T. K., Ryaby J. P., McCABE J., Frey J. J., Roe L. R. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study∗. The Journal of Bone & Joint Surgery. 1997;79(7):961–973. doi: 10.2106/00004623-199707000-00002.
    1. Dalla-Bona D. A., Tanaka E., Inubushi T., et al. Cementoblast response to low- and high-intensity ultrasound. Archives of Oral Biology. 2008;53(4):318–323. doi: 10.1016/j.archoralbio.2007.11.006.
    1. Harle J., Salih V., Mayia F., Knowles J. C., Olsen I. Effects of ultrasound on the growth and function of bone and periodontal ligament cells in vitro. Ultrasound in Medicine & Biology. 2001;27(4):579–586. doi: 10.1016/s0301-5629(00)00326-4.
    1. Dahhas F. Y., El-Bialy T., Afify A. R., Hassan A. H. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats. Ultrasound in Medicine & Biology. 2015;42(3):808–814. doi: 10.1016/j.ultrasmedbio.2015.11.018.
    1. Xue H., Zheng J., Chou M. Y., Zhou H., Duan Y. Seminars in Orthodontics. Amsterdam, Netherlands: Elsevier; 2015. The effects of low-intensity pulsed ultrasound on the rate of orthodontic tooth movement.
    1. Al-Daghreer S., Doschak M., Sloan A. J., et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs. Ultrasound in Medicine & Biology. 2014;40(6):1187–1196. doi: 10.1016/j.ultrasmedbio.2013.12.016.
    1. El-Bialy T., Lam B., Aldaghreer S., Sloan A. J. The effect of low intensity pulsed ultrasound in a 3D ex vivo orthodontic model. Journal of Dentistry. 2011;39(10):693–699. doi: 10.1016/j.jdent.2011.08.001.
    1. Naruse K., Miyauchi A., Itoman M., Mikuni-Takagaki Y. Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. Journal of Bone and Mineral Research. 2003;18(2):360–369. doi: 10.1359/jbmr.2003.18.2.360.
    1. Kusuyama J., Bandow K., Shamoto M., Kakimoto K., Ohnishi T., Matsuguchi T. Low intensity pulsed ultrasound (LIPUS) influences the multilineage differentiation of mesenchymal stem and progenitor cell lines through ROCK-Cot/Tpl2-MEK-ERK signaling pathway. Journal of Biological Chemistry. 2014;289(15):10330–10344. doi: 10.1074/jbc.m113.546382.
    1. Mitsui N., Suzuki N., Maeno M., et al. Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sciences. 2006;78(23):2697–2706. doi: 10.1016/j.lfs.2005.10.024.
    1. Hsieh P. C. H., Kenagy R. D., Mulvihill E. R., et al. Bone morphogenetic protein 4: potential regulator of shear stress-induced graft neointimal atrophy. Journal of Vascular Surgery. 2006;43(1):150–158. doi: 10.1016/j.jvs.2005.08.008.
    1. Dalla-Bona D. A., Tanaka E., Oka H., et al. Effects of ultrasound on cementoblast metabolism in vitro. Ultrasound in Medicine & Biology. 2006;32(6):943–948. doi: 10.1016/j.ultrasmedbio.2006.01.015.
    1. Ansari N. N., Ebadi S., Talebian S., et al. A randomized, single blind placebo controlled clinical trial on the effect of continuous ultrasound on low back pain. Electromyography and Clinical Neurophysiology. 2006;46(6):329–336.
    1. Ebadi S., Henschke N., Nakhostin Ansari N., Fallah E., Van Tulder M. W. Therapeutic ultrasound for chronic low‐back pain. The Cochrane Library. 2014;3 doi: 10.1002/14651858.CD009169.pub2.

Source: PubMed

3
구독하다