What Is Moderate to Vigorous Exercise Intensity?

Brian R MacIntosh, Juan M Murias, Daniel A Keir, Jamie M Weir, Brian R MacIntosh, Juan M Murias, Daniel A Keir, Jamie M Weir

Abstract

A variety of health benefits associated with physical activity depends upon the frequency, intensity, duration, and type of exercise. Intensity of exercise is the most elusive of these elements and yet has important implications for the health benefits and particularly cardiovascular outcomes elicited by regular physical activity. Authorities recommend that we obtain 150min of moderate to vigorous intensity physical activity (MVPA) each week. The current descriptions of moderate to vigorous intensity are not sufficient, and we wish to enhance understanding of MVPA by recognition of important boundaries that define these intensities. There are two key thresholds identified in incremental tests: ventilatory and lactate thresholds 1 and 2, which reflect boundaries related to individualized disturbance to homeostasis that are appropriate for prescribing exercise. VT2 and LT2 correspond with critical power/speed and respiratory compensation point. Moderate intensity physical activity approaches VT1 and LT1 and vigorous intensity physical activity is between the two thresholds (1 and 2). The common practice of prescribing exercise at a fixed metabolic rate (# of METs) or percentage of maximal heart rate or of maximal oxygen uptake (V̇O2max) does not acknowledge the individual variability of these metabolic boundaries. As training adaptations occur, these boundaries will change in absolute and relative terms. Reassessment is necessary to maintain regular exercise in the moderate to vigorous intensity domains. Future research should consider using these metabolic boundaries for exercise prescription, so we will gain a better understanding of the specific physical activity induced health benefits.

Keywords: exercise for health; exercise prescription; health benefits of exercise; lifestyle; physical activity.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 MacIntosh, Murias, Keir and Weir.

Figures

Figure 1
Figure 1
Incremental test for detection of thresholds. Pulmonary measurements and blood lactate concentration allow detection of boundary conditions known as first and second threshold (vertical dashed lines).

References

    1. Baron B., Noakes T. D., Dekerle J., Moullan F., Robin S., Matran R., et al. . (2008). Why does exercise terminate at the maximal lactate steady state intensity? Br. J. Sports Med. 42:828. doi: 10.1136/bjsm.2007.040444, PMID:
    1. Beaver W. L., Wasserman K., Whipp B. J. (1985). Improved detection of lactate threshold during exercise using a log-log transformation. J. Appl. Physiol. 59, 1936–1940. doi: 10.1152/jappl.1985.59.6.1936, PMID:
    1. Bishop D., Jenkins D. G., Mackinnon L. T. (1998). The relationship between plasma lactate parameters, WPeak and 1-h cycling performance in women. Med. Sci. Sports Exerc. 30, 1270–1275. doi: 10.1097/00005768-199808000-00014, PMID:
    1. Borgundvaag E., Janssen I. (2017). Objectively measured physical activity and mortality risk in American adults. Am. J. Prev. Med. 52, e25–e31. doi: 10.1016/j.amepre.2016.09.017, PMID:
    1. Caen K., Boone J., Bourgois J. G., Colosio A. L., Pogliaghi S. (2020). Translating ramp V̇O2 into constant power output: a novel strategy that minds the gap. Med. Sci. Sports Exerc. 52, 2020–2028. doi: 10.1249/MSS.0000000000002328, PMID:
    1. Caspersen C. J., Powell K. E., Christenson G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131. PMID:
    1. Creemers N., Foster C., Porcari J. P., Cress M. L., De Koning J. J. (2017). The physiological mechanism behind the talk test. Kinesiology 49, 3–8. doi: 10.26582/k.49.1.15
    1. Daussin F. N., Zoll J., Dufour S. P., Ponsot E., Lonsdorfer-Wolf E., Doutreleau S., et al. . (2008). Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects. Am. J. Phys. Regul. Integr. Comp. Phys. 295, R264–R272. doi: 10.1152/ajpregu.00875.2007, PMID:
    1. Fletcher J. R., Esau S. P., MacIntosh B. R. (2010). Changes in tendon stiffness and running economy in highly trained distance runners. Eur. J. Appl. Physiol. 110, 1037–1046. doi: 10.1007/s00421-010-1582-8, PMID:
    1. Hoogeveen A. R., Hoogsteen J., Schep G. (1997). The maximal lactate steady state in elite endurance athletes. Jpn. J. Physiol. 47, 481–485. doi: 10.2170/jjphysiol.47.481, PMID:
    1. Iannetta D., Azevedo R. D. A., Keir D. A., Murias J. M. (2019). Establishing the V̇O2 versus constant-work-rate relationship from ramp-incremental exercise: simple strategies for an unsolved problem. J. Appl. Physiol. 127, 1519–1527. doi: 10.1152/japplphysiol.00508.2019, PMID:
    1. Iannetta D., Inglis E. C., Mattu A. T., Fontana F. Y., Pogliaghi S., Keir D. A., et al. . (2020a). A critical evaluation of current methods for exercise prescription in women and men. Med. Sci. Sports Exerc. 52, 466–473. doi: 10.1249/MSS.0000000000002147, PMID:
    1. Iannetta D., Inglis E. C., Pogliaghi S., Murias J. M., Keir D. A. (2020b). A “step-ramp-step” protocol to identify the maximal metabolic steady state. Med. Sci. Sports Exerc. 52, 2011–2019. doi: 10.1249/MSS.0000000000002343, PMID:
    1. Iannetta D., Keir D. A., Fontana F. Y., Inglis E. C., Mattu A. T., Paterson D. H., et al. . (2021). Evaluating the accuracy of using fixed ranges of METs to categorize exertional intensity in a heterogeneous group of healthy individuals: implications for cardiorespiratory fitness and health outcomes. Sports Med. doi: 10.1007/s40279-021-01476-z, PMID: Epub ahead of print
    1. Jamnick N. A., Pettitt R. W., Granata C., Pyne D. B., Bishop D. J. (2020). An examination and critique of current methods to determine exercise intensity. Sports Med. 50, 1729–1756. doi: 10.1007/s40279-020-01322-8, PMID:
    1. Jules A. A., Heuberger C., Gal P., Stuurman F. E., de Muinck F. E. S., Miranda Y. M., et al. . (2018). Repeatability and predictive value of lactate threshold concept in endurance sports. PLoS ONE. 13:16. doi: 10.1371/journal.pone.0206846, PMID:
    1. Keir D. A., Fontana F. Y., Robertson T. C., Murias J. M., Paterson D. H., Kowalchuk J. M., et al. . (2015). Exercise intensity thresholds: identifying the boundaries of sustainable performance. Med. Sci. Sports Exerc. 47, 1932–1940. doi: 10.1249/MSS.0000000000000613, PMID:
    1. Keir D. A., Paterson D. H., Kowalchuk J. M., Murias J. M. (2018). Using ramp-incremental V̇O2 resopnses for constant-intensity exeerrcise selection. Appl. Physiol. Nutr. Metab. 43, 882–889. doi: 10.1139/apnm-2017-0826, PMID:
    1. Lee I. M., Paffenbarger R. S., Jr. (2000). Associations of light, moderate, and vigorous intensity physical activity with longevity: the Harvard alumni health study. Am. J. Epidemiol. 151, 293–299. doi: 10.1093/oxfordjournals.aje.a010205, PMID:
    1. MacIntosh B. R., Esau S., Svedahl K. (2002). The lactate minimum test for cycling: estimation of the maximal lactate steady state. Can. J. Appl. Physiol. 27, 232–249. doi: 10.1139/h02-014, PMID:
    1. Płoszczyca K., Jazic D., Piotrowicz Z., Chalimoniuk M., Langfort J., Czuba M. (2020). Comparison of maximal lactate steady state with anaerobic threshold determined by various methods based on graded exercise test with 3-minute stages in elite cyclists. BMC Sports Sci. Med. Rehabil. 12:70. doi: 10.1186/s13102-020-00219-3, PMID:
    1. Reed J. L., Pipe A. L. (2014). The talk test: a useful tool for prescribing and monitoring exercise intensity. Curr. Opin. Cardiol. 29, 475–480. doi: 10.1097/HCO.0000000000000097, PMID:
    1. Ross R., De Lannoy L., Stotz P. J.(2015). Separate effects of intensity and amount of exercise on interindividual cardiorespiratory fitness response. Mayo Clin. Proc. 90, 1506–1514. doi: 10.1016/j.mayocp.2015.07.024, PMID:
    1. Scherr J., Wolfarth B., Christle J. W., Pressler A., Wagenpfeil S., Halle M. (2013). Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 113, 147–155. doi: 10.1007/s00421-012-2421-x, PMID:
    1. Shephard R. J. (1968). Intensity, duration and frequency of exercise as determinants of the response to a training regime. Int. Z. Angew. Physiol. 26, 272–278. doi: 10.1007/BF00695115, PMID:
    1. Svedahl K., MacIntosh B. R. (2003). Anaerobic threshold: the concept and methods of measurement. Can. J. Appl. Physiol. 28, 299–323. doi: 10.1139/h03-023, PMID:
    1. Tremblay M. S., Warburton D. E. R., Janssen I., Paterson D. H., Latimer A. E., Rhodes R. E., et al. . (2011). New Canadian physical activity guidelines. Appl. Physiol. Nutr. Metab. 36, 36–46. doi: 10.1139/H11-009, PMID:
    1. Troiano R. P., Berrigan D., Dodd K. W., Masse L. C., Tilert T., Mcdowell M. (2008). Physical activity in the United States measured by accelerometer. Med. Sci. Sports Exerc. 40, 181–188. doi: 10.1249/mss.0b013e31815a51b3, PMID:
    1. Warburton D. E. R., Katzmarzyk P. T., Rhodes R. E., Shephard R. J. (2007). Evidence-informed physical activity guidelines for Canadian adults. Can. J. Public Health 98(Suppl. 2), S16–S68. PMID: , doi: 10.1139/H07-123
    1. Wen C. P., Wai J. P. M., Tsai M. K., Yang Y. C., Cheng T. Y. D., Lee M.-C., et al. . (2011). Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378, 1244–1253. PMID: , doi: 10.1016/S0140-6736(11)60749-6

Source: PubMed

3
구독하다