Reinducing Radioiodine-Sensitivity in Radioiodine-Refractory Thyroid Cancer Using Lenvatinib (RESET): Study Protocol for a Single-Center, Open Label Phase II Trial

Maaike Dotinga, Dennis Vriens, Floris H P van Velden, Mette K Stam, Jan W T Heemskerk, Petra Dibbets-Schneider, Martin Pool, Daphne D D Rietbergen, Lioe-Fee de Geus-Oei, Ellen Kapiteijn, Maaike Dotinga, Dennis Vriens, Floris H P van Velden, Mette K Stam, Jan W T Heemskerk, Petra Dibbets-Schneider, Martin Pool, Daphne D D Rietbergen, Lioe-Fee de Geus-Oei, Ellen Kapiteijn

Abstract

Background: Management of patients with radioiodine (RAI)-refractory differentiated thyroid cancer (DTC) is a challenge as I-131 therapy is deemed ineffective while standard-of-care systemic therapy with tyrosine kinase inhibitor (TKI) lenvatinib is associated with frequent toxicities leading to dose reductions and withdrawal. A potential new treatment approach is to use TKIs as redifferentiation agent to restore RAI uptake to an extent that I-131 therapy is warranted. Prior studies show that short-term treatment with other TKIs restores RAI uptake in 50-60% of radioiodine-refractory DTC patients, but this concept has not been investigated for lenvatinib. Furthermore, the optimal duration of treatment with TKIs for maximal redifferentiation has not been explored. Methods and Design: A total of 12 patients with RAI-refractory DTC with an indication for lenvatinib will undergo I-124 PET/CT to quantify RAI uptake. This process is repeated after 6 and 12 weeks post-initiating lenvatinib after which the prospective dose estimate to target lesions and organs at risk will be determined. Patients will subsequently stop lenvatinib and undergo I-131 treatment if it is deemed effective and safe by predefined norms. The I-124 PET/CT measurements after 6 and 12 weeks of the first six patients are compared and the optimal timepoint will be determined for the remaining patients. In all I-131 treated patients post-therapy SPECT/CT dosimetry verification will be performed. During follow-up, clinical response will be evaluated using serum thyroglobulin levels and F-18 FDG PET/CT imaging for 6 months. It is hypothesized that at least 40% of patients will show meaningful renewed RAI uptake after short-term lenvatinib treatment. Discussion: Shorter treatment duration of lenvatinib treatment is preferred because of frequent toxicity-related dose reductions and drug withdrawals in long-term lenvatinib treatment. Short-term treatment with lenvatinib with subsequent I-131 therapy poses a potential new management approach for these patients. Since treatment duration is reduced and I-131 therapy is more tolerable for most patients, this potentially leads to less toxicity and higher quality of life. Identifying RAI-refractory DTC patients who redifferentiate after lenvatinib therapy is therefore crucial. Trial Registration: ClinicalTrials.gov, NTC04858867.

Keywords: I-124 dosimetry; lenvatinib; radioiodine uptake; radioiodine-refractory DTC; redifferentiation; thyroid cancer.

Conflict of interest statement

E. Kapiteijn: prior thyroid cancer advisory boards Bayer AG, Eisai Co., Ltd. and Eli Lilly and Company. All other authors declare that they have no potential conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study for patients in cohort 1, including lenvatinib treatment, dosimetry procedures, I-131 therapy and response evaluation with F-18 FDG PET/CT and serum thyroglobulin levels.

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492.
    1. Lebastchi A., Callender G. Thyroid cancer. Curr. Probl. Cancer. 2014;38:48–74. doi: 10.1016/j.currproblcancer.2014.04.001.
    1. Schmidbauer B., Menhart K., Hellwig D., Grosse J. Differentiated Thyroid Cancer—Treatment: State of the Art. Int. J. Mol. Sci. 2017;18:1292. doi: 10.3390/ijms18061292.
    1. Aashiq M., Silverman D.A., Na’ara S., Takahashi H., Amit M. Radioiodine-refractory thryoid cancer: Molecular basis of redifferentation therapies, management and novel therapies. Cancers. 2019;11:1382. doi: 10.3390/cancers11091382.
    1. Liu J., Liu Y., Lin Y., Liang J. Radioactive iodine-refractory differentiated thryoid cancer and redifferentiation therapy. Endocrinol. Metab. 2019;34:215–225. doi: 10.3803/EnM.2019.34.3.215.
    1. Narayanan S., Colevas A.D. Current Standards in Treatment of Radioiodine Refractory Thyroid Cancer. Curr. Treat. Options Oncol. 2016;17:30. doi: 10.1007/s11864-016-0404-6.
    1. Berdelou A., Lamartina L., Klain M., Leboulleux S., Schlumberger M. Treatment of refractory thyroid cancer. Endocr.-Relat. Cancer. 2018;25:R209–R223. doi: 10.1530/ERC-17-0542.
    1. Vaisman F., Carvalho D., Vaisman M. A new appraisal of iodine refractory thyroid cancer. Endocr.-Relat. Cancer. 2015;22:R301–R310. doi: 10.1530/ERC-15-0300.
    1. Mu Z.-Z., Zhang X., Lin Y.-S. Identification of Radioactive Iodine Refractory Differentiated Thyroid Cancer. Chonnam Med. J. 2019;55:127–135. doi: 10.4068/cmj.2019.55.3.127.
    1. Filetti S., Durante C., Hartl D., Leboulleux S., Locati L.D., Newbold K., Berruti A. Thyroid cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019;30:1856–1883. doi: 10.1093/annonc/mdz400.
    1. Durante C., Haddy N., Baudin E., Leboulleux S., Hartl D., Travagli J.P., Caillou B., Ricard M., Lumbroso J.D., De Vathaire F., et al. Long-Term Outcome of 444 Patients with Distant Metastases from Papillary and Follicular Thyroid Carcinoma: Benefits and Limits of Radioiodine Therapy. J. Clin. Endocrinol. Metab. 2006;91:2892–2899. doi: 10.1210/jc.2005-2838.
    1. Schlumberger M., Tahara M., Wirth L.J., Robinson B., Brose M.S., Elisei R., Habra M.A., Newbold K., Shah M.H., Hoff A.O., et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015;372:621–630. doi: 10.1056/NEJMoa1406470.
    1. Resteghini C., Cavalieri S., Galbiati D., Granata R., Alfieri S., Bergamini C., Bossi P., Licitra L., Locati L. Management of tyrosine kinase inhibitors (TKI) side effects in differentiated and medullary thyroid cancer patients. Best Pract. Res. Clin. Endocrinol. Metab. 2017;31:349–361. doi: 10.1016/j.beem.2017.04.012.
    1. Aydemirli M., Kapiteijn E., Ferrier K.R.M., Ottevanger P.B., Links T.P., A Van Der Horst-Schrivers A.N., Broekman K., Groenwold R.H.H., Zwaveling J. Effectiveness and toxicity of lenvatinib in refractory thyroid cancer: Dutch real-life data. Eur. J. Endocrinol. 2020;182:131–138. doi: 10.1530/EJE-19-0763.
    1. Dotinga M., Vriens D., van Velden F., Heijmen L., Nagarajah J., Hicks R., Kapiteijn E., de Geus-Oei L.-F. Managing radioiodine refractory thyroid cancer: The role of dosimetry and redifferentiation on subsequent I-131 therapy. Q. J. Nucl. Med. Mol. Imaging. 2020;64:250–264. doi: 10.23736/S1824-4785.20.03264-1.
    1. Ho A.L., Grewal R.K., Leboeuf R., Sherman E.J., Pfister D.G., Deandreis D., Pentlow K.S., Zanzonico P.B., Haque S., Gavane S., et al. Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. N. Engl. J. Med. 2013;368:623–632. doi: 10.1056/NEJMoa1209288.
    1. Dunn L., Sherman E.J., Baxi S.S., Tchekmedyian V., Grewal R.K., Larson S.M., Pentlow K.S., Haque S., Tuttle R.M., Ho A.L., et al. Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancer. J. Clin. Endocrinol. Metab. 2019;104:1417–1428. doi: 10.1210/jc.2018-01478.
    1. Rothenberg S., McFadden D.G., Palmer E.L., Daniels G.H., Wirth L.J. Redifferentation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin. Cancer Res. 2014;21:1028–1035. doi: 10.1158/1078-0432.CCR-14-2915.
    1. Iravani A., Solomon B., Pattison D.A., Jackson P., Ravi Kumar A., Kong G., Hicks R.J., Hofman M.S., Akhurst T. Mitogen-activated protein kinase pathway inhibition for redifferentiation of radioiodine refractory differentiated thryoid cancer: An evolving protocol. Thyroid. Cancer Nodules. 2019;29:1634–1645. doi: 10.1089/thy.2019.0143.
    1. Jaber T., Waguespack S.G., Cabanillas M.E., Elbanan M., Vu T., Dadu R., Sherman S.I., Amit M., Santos E.B., Busaidy N.L., et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive radioiodine. J. Clin. Endocrinol. Metab. 2018;103:3698–3705. doi: 10.1210/jc.2018-00612.
    1. Groussin L., Theodon H., Bessiene L., Bricaire L., Bonnet-Serrano F., Cochand-Priollet B., Leroy K., Garinet S., Pasmant E., Zerbit J., et al. Redifferentiating Effect of Larotrectinib in NTRK-Rearranged Advanced Radioactive-Iodine Refractory Thyroid Cancer. Thyroid. 2022;32:594–598. doi: 10.1089/thy.2021.0524.
    1. Tchekmedyian V., Dunn L., Sherman E., Baxi S.S., Grewal R.K., Larson S.M., Ho A.L., Pentlow K.S., Haque S., Tuttle R.M., et al. Enhancing Radioiodine Incorporation in BRAF-Mutant, Radioiodine-Refractory Thyroid Cancers with Vemurafenib and the Anti-ErbB3 Monoclonal Antibody CDX-3379: Results of a Pilot Clinical Trial. Thyroid. 2022;32:273–282. doi: 10.1089/thy.2021.0565.
    1. Weber M., Kersting D., Riemann B., Brandenburg T., Führer-Sakel D., Grünwald F., Kreissl M.C., Dralle H., Weber F., Schmid K.W., et al. Enhancing Radioiodine Incorporation into Radioiodine-Refractory Thyroid Cancer with MAPK Inhibition (ERRITI): A Single-Center Prospective Two-Arm Study. Clin. Cancer Res. 2022;28:4194–4202. doi: 10.1158/1078-0432.CCR-22-0437.
    1. Suyama K., Iwase H. Lenvatinib: A Promising Molecular Targeted Agent for Multiple Cancers. Cancer Control. 2018;25:1073274818789361. doi: 10.1177/1073274818789361.
    1. Anschlag A., Greene B.H., Könneker L., Luster M., Nagarajah J., Wächter S., Wunderlich A., Pfestroff A. Effect of Kinase Inhibitors on the Technetium-99m Uptake into Thyroid Carcinoma Cells In Vitro. In Vivo. 2021;35:721–729. doi: 10.21873/invivo.12313.
    1. Jentzen W., Freudenberg L., Eising E.G., Sonnenschein W., Knust J., Bockisch A. Optimized 124I PET Dosimetry Protocol for Radioiodine Therapy of Differentiated Thyroid Cancer. J. Nucl. Med. 2008;49:1017–1023. doi: 10.2967/jnumed.107.047159.
    1. Jentzen W., Bockisch A., Ruhlmann M. Assessment of Simplified Blood Dose Protocols for the Estimation of the Maximum Tolerable Activity in Thyroid Cancer Patients Undergoing Radioiodine Therapy Using 124I. J. Nucl. Med. 2015;56:832–838. doi: 10.2967/jnumed.114.153031.
    1. Wadsley J., Gregory R., Flux G., Newbold K., Du Y., Moss L., Hall A., Flanagan L., Brown S.R. SELIMETRY—A multicentre I-131 dosimetry trial: A clinical perspective. Br. J. Radiol. 2017;90:20160637. doi: 10.1259/bjr.20160637.
    1. Lassmann M., Hänscheid H., Chiesa C., Hindorf C., Flux G., Luster M. EANM dosimetry committe series on standard operational procedures for pre-therapeutic dosimetry I: Blood and bone marrow dosimetry in differentiated thryoid cancer therapy. Eur. J. Nucl. Med. Mol. Imaging. 2008;35:1405–1412. doi: 10.1007/s00259-008-0761-x.
    1. Husson O., Haak H.R., Mols F., Nieuwenhuijzen G.A., Nieuwlaat W.A., Reemst P.H., Toorians A.W., van de Poll-Franse L.V. Development of a disease-specific health-related quality of life questionnaire (THYCA-QoL) for thyroid cancer survivors. Acta Oncol. 2013;52:447–454. doi: 10.3109/0284186X.2012.718445.
    1. Hays R.D., Sherbourne C.D., Mazel R.M. The rand 36-item health survey 1.0. Health Econ. 1993;2:217–227. doi: 10.1002/hec.4730020305.
    1. Herdman M., Gudex C., Lloyd A., Janssen M., Kind P., Parkin D., Bonsel G., Badia X. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L) Qual. Life Res. 2011;20:1727–1736. doi: 10.1007/s11136-011-9903-x.
    1. Riba M.B., Donovan K.A., Andersen B., Braun I., Breitbart W.S., Brewer B.W., Buchmann L.O., Clark M.M., Collins M., Darlow S.D., et al. Distress Management, Version 3. 2019, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2019;17:1229–1249.
    1. Boellaard R., Delgado-Bolton R., Oyen W.J.G., Giammarile F., Tatsch K., Eschner W., Verzijlbergen F.J., Barrington S.F., Pike L.C., Weber W.A., et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: Version 2.0. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:328–354. doi: 10.1007/s00259-014-2961-x.
    1. Lodge M.A., Wahl R.L. Practical PERCIST: A Simplified Guide to PET Response Criteria in Solid Tumors 1.0. Radiology. 2016;280:576–584. doi: 10.1148/radiol.2016142043.
    1. Karapanou O., Simeakis G., Vlassopoulou B., Alevizaki M., Saltiki K. Advanced RAI-refractory thyroid cancer: An update on treatment perspectives. Endocr.-Relat. Cancer. 2022;29:R57–R66. doi: 10.1530/ERC-22-0006.
    1. Kreissl M.C., Janssen M.J., Nagarajah J. Current Treatment Strategies in Metastasized Differentiated Thyroid Cancer. J. Nucl. Med. 2018;60:9–15. doi: 10.2967/jnumed.117.190819.
    1. Kuker R., Sztejnberg M., Gulec S. I-124 imaging and dosimetry. Mol. Imaging Radionucl. Ther. 2017;26:66–73. doi: 10.4274/2017.26.suppl.07.
    1. Konijnenberg M., Herrmann K., Kobe C., Verburg F., Hindorf C., Hustinx R., Lassmann M. EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy. Eur. J. Nucl. Med. Mol. Imaging. 2021;48:67–72. doi: 10.1007/s00259-020-05038-9.
    1. Luster M., Clarke S.E., Dietlein M., Lassmann M., Lind P., Oyen W.J.G., Tennvall J., Bombardieri E. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. 2008;35:1941–1949. doi: 10.1007/s00259-008-0883-1.
    1. Verburg F.A., Biko J., Diessl S., Demidchik Y., Drozd V., Rivkees S.A., Reiners C., Hänscheid H. I-131 Activities as High as Safely Administrable (AHASA) for the Treatment of Children and Adolescents with Advanced Differentiated Thyroid Cancer. J. Clin. Endocrinol. Metab. 2011;96:E1268–E1271. doi: 10.1210/jc.2011-0520.
    1. Chen M.K., Cheng D.W. What is the role of dosimetry in patients with advanced thyroid cancer? Curr. Opin. Oncol. 2015;27:33–37. doi: 10.1097/CCO.0000000000000145.
    1. Freudenberg L.S., Antoch G., Jentzen W., Pink R., Knust J., Bockisch A., Debatin J.F., Brandau W. Value of 124I-PET/CT in staging of patients with differentiated thyroid cancer. Eur. Radiol. 2004;14:2092–2098. doi: 10.1007/s00330-004-2350-0.
    1. Taprogge J., Leek F., Schurrat T., Tran-Gia J., Vallot D., Bardiès M., Eberlein U., Lassmann M., Schlögl S., Gil A.V., et al. Setting up a quantitative SPECT imaging network for a European multi-centre dosimetry study of radioiodine treatment for thyroid cancer as part of the MEDIRAD project. EJNMMI Phys. 2020;7:61. doi: 10.1186/s40658-020-00332-9.
    1. Gregory R.A., Murray I., Gear J., Leek F., Chittenden S.J., Fenwick A., Wevrett J., Scuffham J., Tipping J., Murby B., et al. Standardised quantitative radioiodine SPECT/CT Imaging for multicentre dosimetry trials in molecular radiotherapy. Phys. Med. Biol. 2019;64:245013. doi: 10.1088/1361-6560/ab5b6c.
    1. Valerio L., Guidoccio F., Giani C., Tardelli E., Puccini G., Puleo L., Minaldi E., Boni G., Elisei R., Volterrani D. [18F]-FDG-PET/CT Correlates With the Response of Radiorefractory Thyroid Cancer to Lenvatinib and Patient Survival. J. Clin. Endocrinol. Metab. 2021;106:2355–2366. doi: 10.1210/clinem/dgab278.

Source: PubMed

3
구독하다