Relationship Between L4/5 Lumbar Multifidus Cross-Sectional Area Ratio and Fall Risk in Older Adults with Lumbar Spinal Stenosis: A Retrospective Study

Tadashi Ito, Yoshihito Sakai, Kazunori Yamazaki, Makoto Oikawa, Yoshifumi Morita, Tadashi Ito, Yoshihito Sakai, Kazunori Yamazaki, Makoto Oikawa, Yoshifumi Morita

Abstract

Various factors, including spinal deformities and trunk muscle atrophy, greatly affect the fall risk among older adults with lumbar spinal stenosis (LSS). However, the etiology of falls in older adults with degenerative LSS and trunk muscle atrophy is poorly understood. We investigated the association between trunk muscle atrophy and falls in older LSS patients. This retrospective study included 99 hospitalized older adults with LSS. Participants completed self-reported fall score questionnaires and were divided into the fall risk (n = 30) and non-fall risk (n = 69) groups. The patients' low back pain visual analog scale score, Geriatric Depression Scale score, sagittal vertical axis, L4/5 lumbar multifidus cross-sectional area ratio (LMCSAR), and center of pressure (COP) values during quiet standing were evaluated. The fall risk group had a lower L4/5 LMCSAR (p = 0.002) and increased COP excursion (p = 0.034) than the non-fall risk group. No significant differences were observed in the other measured variables between the two groups. The L4/5 LMCSAR (p < 0.001) and COP (p = 0.024) were related to fall risk and may be useful in fall risk assessment in such populations. Strategies aimed at enhancing controlled lumbar segmental motion and improving trunk muscle stability or mass may decrease the fall risk in this cohort.

Keywords: fall risk; falls; lumbar multifidus; lumbar spinal stenosis.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
L4/5 lumbar multifidus cross-sectional area ratio for magnetic resonance imaging data and the center of pressure displacement for trials on the balance board. * p < 0.05, ** p < 0.005.

References

    1. Kreiner D.S., Shaffer W.O., Baisden J.L., Gilbert T.J., Summers J.T., Toton J.F., Hwang S.W., Mendel R.C., Reitman C.A. North American Spine Society. An evidence-based clinical guideline for the diagnosis and treatment of degenerative lumbar spinal stenosis (update) Spine J. 2013;13:734–743. doi: 10.1016/j.spinee.2012.11.059.
    1. Kim H.J., Chun H.J., Han C.D., Moon S.H., Kang K.T., Kim H.S., Park J.O., Moon E.S., Kim B.R., Sohn J.S., et al. The risk assessment of a fall in individual with lumbar spinal stenosis. Spine (Phila Pa 1976) 2011;36:E588–E592. doi: 10.1097/BRS.0b013e3181f92d8e.
    1. Thomas D.R. Loss of skeletal muscle mass in aging: Examining the relationship of starvation, sarcopenia and cachexia. Clin. Nutr. 2007;26:389–399. doi: 10.1016/j.clnu.2007.03.008.
    1. Liu-Ambrose T., Davis J.C., Hsu C.L., Gomez C., Vertes K., Marra C., Brasher P.M., Dao E., Khan K.M., Cook W., et al. Action Seniors!-secondary falls prevention in community-dwelling senior fallers: Study protocol for a randomized controlled trial. Trials. 2015;16:144. doi: 10.1186/s13063-015-0648-7.
    1. Mohler M.J., Wendel C.S., Taylor-Piliae R.E., Toosizadeh N., Najafi B. Motor performance and physical activity as predictors of prospective falls in community-dwelling older adults by frailty level: Application of wearable technology. Gerontology. 2016;62:654–664. doi: 10.1159/000445889.
    1. Sturnieks D.L., Tiedemann A., Chapman K., Munro B., Murray S.M., Lord S.R. Physiological risk factors for falls in elderly people with lower limb arthritis. J. Rheumatol. 2004;31:2272–2279.
    1. Zhang X., Huang P., Dou Q., Wang C., Zhang W., Yang Y., Wang J., Xie X., Zhou J., Zeng Y. Falls among older adults with sarcopenia dwelling in nursing home or community: A meta-analysis. Clin. Nutr. 2019 doi: 10.1016/j.clnu.2019.01.002.
    1. Leveille S.G., Jones R.N., Kiely D.K., Hausdorff J.M., Shmerling R.H., Guralnik J.M., Kiel D.P., Lipsitz L.A., Bean J.F. Chronic musculoskeletal pain and the occurrence of falls in an older population. JAMA. 2009;302:2214–2221. doi: 10.1001/jama.2009.1738.
    1. Morris R. Predicting falls in elderly women. Menopause. Int. 2007;13:170–177. doi: 10.1258/175404507783004131.
    1. Oleksik A., Lips P., Dawson A., Minshall M.E., Shen W., Cooper C., Kanis J. Health-related quality of life in postmenopausal women with low BMD with or without prevalent vertebral fractures. J. Bone. Miner. Res. 2000;15:1384–1392. doi: 10.1359/jbmr.2000.15.7.1384.
    1. Miyakoshi N., Itoi E., Kobayashi M., Kodama H. Impact of postural deformities and spinal mobility on quality of life in postmenopausal osteoporosis. Osteoporos. Int. 2003;14:1007–1012. doi: 10.1007/s00198-003-1510-4.
    1. Ishikawa Y., Miyakoshi N., Kasukawa Y., Hongo. M., Shimada Y. Spinal sagittal contour affecting falls: Cut-off value of the lumbar spine for falls. Gait Posture. 2013;38:260–263. doi: 10.1016/j.gaitpost.2012.11.024.
    1. Kim J., Hwang J.Y., Oh J.K., Park M.S., Kim S.W., Chang H., Kim T.-H. The association between whole body sagittal balance and risk of falls among elderly patients seeking treatment for back pain. Bone. Joint. Res. 2017;6:337–344. doi: 10.1302/2046-3758.65.BJR-2016-0271.R2.
    1. Richardson C., Hodges P.W., Hides J. Therapeutic Exercise for Lumbopelvic Stabilization: A Motor Control Approach for the Treatment and Prevention of Low Back Pain. 2nd ed. Churchill Livingstone; New York, NY, USA: 2004. pp. 185–219.
    1. O’Sullivan P.B., Dankaerts W., Burnett A.F., Farrell G.T., Jefford E., Naylor C.S., O’Sullivan K.J. Effect of different upright sitting postures on spinal-pelvic curvature and trunk muscle activation in a pain-free population. Spine (Phila Pa 1976) 2006;31:E707–E712.
    1. Okochi J., Toba K., Takahashi T., Matsubayashi K., Nishinaga M., Takahashi R., Ohru T. Simple screening test for risk of falls in the elderly. Geriatr. Gerontol. Int. 2006;6:223–227. doi: 10.1111/j.1447-0594.2006.00352.x.
    1. Ito T., Sakai Y., Yamazaki K., Igarashi K., Sato N., Yokoyama K., Morita Y. Proprioceptive change impairs balance control in older patients with low back pain. J. Phys. Ther. Sci. 2017;29:1788–1792. doi: 10.1589/jpts.29.1788.
    1. Jackson R.P., McManus A.C. Radiographic analysis of sagittal plane alignment and balance in standing volunteers and individual with low back pain matched for age, sex, and size. A prospective controlled clinical study. Spine (Phila Pa 1976) 1994;19:1611–1618. doi: 10.1097/00007632-199407001-00010.
    1. Clark R.A., Bryant A.L., Pua Y., McCrory P., Bennell K., Hunt M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture. 2010;31:307–310. doi: 10.1016/j.gaitpost.2009.11.012.
    1. Young W., Ferguson S., Brault S., Craig C. Assessing and training standing balance in elderly adults: A novel approach using the ‘Nintendo Wii’ Balance Board. Gait Posture. 2011;33:303–305. doi: 10.1016/j.gaitpost.2010.10.089.
    1. Bacciu D., Chessa S., Gallicchio C., Micheli A., Pedrelli L., Ferro E., Fortunati L., La Rosa D., Palumbo F., Vozzi F., et al. A learning system for automatic Berg Balance Scale score estimation. Eng. Appl. Artif. Intell. 2017;66:60–74. doi: 10.1016/j.engappai.2017.08.018.
    1. Ito T., Sakai Y., Morita Y., Yamazaki K., Igarashi K., Nishio R., Sato N. Proprioceptive weighting ratio for balance control in static standing is reduced in elderly patients with non-specific low back pain. Spine (Phila Pa 1976) 2018;43:1704–1709. doi: 10.1097/BRS.0000000000002817.
    1. Howcroft J., Lemaire E.D., Kofman J., McIlroy W.E. Elderly fall risk prediction using static posturography. PLoS ONE. 2017;12:e0172398. doi: 10.1371/journal.pone.0172398.
    1. Boonstra A., Schiphorst Preuper H.R., Balk G.A., Stewart R.E. Cut-off points for mild, moderate, and severe pain on the visual analogue scale for pain in patients with chronic musculoskeletal pain. Pain. 2014;155:2545–2550. doi: 10.1016/j.pain.2014.09.014.
    1. Sugishita K., Sugishita M., Hemmi I., Asada T., Tanigawa T. A validity and reliability study of the Japanese version of the Geriatric Depression Scale 15 (GDS-15-J) Clin. Gerontol. 2017;40:233–240. doi: 10.1080/07317115.2016.1199452.
    1. Friedman B., Heisel M.J., Delavan R.L. Psychometric properties of the 15-item Geriatric Depression Scale in functionally impaired, cognitively intact, community-dwelling elderly primary care patients. J. Am. Geriatr. Soc. 2005;53:1570–1576. doi: 10.1111/j.1532-5415.2005.53461.x.
    1. Masi A.T., Nair K., Evans T., Ghandour Y. Clinical, biomechanical, and physiological translational interpretations of human resting myofascial tone or tension. Int. J. Ther. Massage Bodyw. 2010;3:16–28.
    1. Ward S.R., Kim C.W., Eng C.M., Gottschalk L.J., Tomiya A., Garfin S.R., Lieber R.L. Architectural analysis and intraoperative measurements demonstrate the unique design of the multifidus muscle for lumbar spine stability. J. Bone. Joint. Surg. Am. 2009;91:176–185. doi: 10.2106/JBJS.G.01311.
    1. Kado D.M., Huang M.H., Nguyen C.B., Barrett-Connor E., Greendale G.A. Hyperkyphotic posture and risk of injurious falls in elderly persons: The Rancho Bernardo Study. J. Gerontol. A Biol. Sci. Med. Sci. 2007;62:652–657. doi: 10.1093/gerona/62.6.652.
    1. Ishikawa Y., Miyakoshi N., Hongo M., Shimada Y. Spinal curvature and postural balance in individual with osteoporosis. Osteoporos. Int. 2009;20:2049–2053. doi: 10.1007/s00198-009-0919-9.
    1. Kasukawa Y., Miyakoshi N., Hongo M., Ishikawa Y., Noguchi H., Kamo K., Sasaki H., Murata K., Shimada Y. Relationships between falls, spinal curvature, spinal mobility and back extensor strength in elderly people. J. Bone Miner. Metab. 2010;28:82–87. doi: 10.1007/s00774-009-0107-1.
    1. Choi C.J., Lim H.W., Park M.K., Cho J.G., Im G.J., Chae S.W. Does the kyphotic change decrease the risk of fall? Clin. Exp. Otorhinolaryngol. 2011;4:118–121. doi: 10.3342/ceo.2011.4.3.118.
    1. Imagama S., Ito Z., Wakao N., Seki T., Hirano K., Muramoto A., Sakai Y., Matsuyama Y., Hamajima N., Ishiguro N., et al. Influence of spinal sagittal alignment, body balance, muscle strength, and physical ability on falling of middle-aged and elderly males. Eur. Spine J. 2013;22:1346–1353. doi: 10.1007/s00586-013-2721-9.
    1. Rosa N.M., Queiroz B.Z., Lopes R.A., Sampaio N.R., Pereira D.S., Pereira L.S.M. Risk of falls in Brazilian elders with and without low back pain assessed using the Physiological Profile Assessment: BACE study. Braz. J. Phys. Ther. 2016;20:502–509. doi: 10.1590/bjpt-rbf.2014.0183.
    1. Ishikawa Y., Miyakoshi N., Hongo M., Kasukawa Y., Kudo D., Shimada Y. Relationships among spinal mobility and sagittal alignment of spine and lower extremity to quality of life and risk of falls. Gait Posture. 2017;53:98–103. doi: 10.1016/j.gaitpost.2017.01.011.
    1. Marshall L.M., Litwack-Harrison S., Makris U.E., Kado D.M., Cawthon P.M., Deyo R.A., Carlson N.L., Nevitt M.C. Osteoporotic Fractures in Men Study (MrOS) Research Group. A prospective study of back pain and risk of falls among older community-dwelling men. J. Gerontol. A Biol. Sci. Med. Sci. 2017;72:1264–1269.
    1. Masud T., Morris R.O. Epidemiology of falls. Age. Ageing. 2001;30:3–7. doi: 10.1093/ageing/30.suppl_4.3.
    1. Somadder M., Mondal S., Kersh R., Abdelhafiz A.H. Are recurrent fallers depressed? J. Am. Geriatr. Soc. 2007;55:2097–2099. doi: 10.1111/j.1532-5415.2007.01449.x.
    1. Kvelde T., Lord S.R., Close J.C., Reppermund S., Kochan N.A., Sachdev P., Brodaty H., Delbaere K. Depressive symptoms increase fall risk in older people, independent of antidepressant use, and reduced executive and physical functioning. Arch. Gerontol. Geriatr. 2015;60:190–195. doi: 10.1016/j.archger.2014.09.003.
    1. Hill K.D., Williams S.B., Chen J., Moran H., Hunt S., Brand C. Balance and falls risk in women with lower limb osteoarthritis or rheumatoid arthritis. J. Clin. Gerontol. Geriatr. 2013;4:22–28. doi: 10.1016/j.jcgg.2012.10.003.
    1. Kamińska M., Brodowski J., Karakiewicz B. Fall risk factors in community-dwelling elderly depending on their physical function, cognitive status and symptoms of depression. Int. J. Environ. Res. Public. Health. 2015;12:3406–3416. doi: 10.3390/ijerph120403406.
    1. Stanmore E.K., Oldham J., Skelton D.A., O’Neill T., Pilling M., Campbell A.J., Todd C. Risk factors for falls in adults with rheumatoid arthritis: A prospective study. Arthritis. Care. Res. (Hoboken) 2013;65:1251–1258. doi: 10.1002/acr.21987.
    1. Ikezoe T., Mori N., Nakamura M., Ichihashi N. Effects of age and inactivity due to prolonged bed rest on atrophy of trunk muscles. Eur. J. Appl. Physiol. 2012;112:43–48. doi: 10.1007/s00421-011-1952-x.
    1. Anderson D.E., Quinn E., Parker E., Allaire B.T., Muir J.W., Rubin C.T., Magaziner J., Hannan M.T., Bouxsein M.L., Kiel D.P. Associations of computed tomography-based trunk muscle size and density with balance and falls in older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2016;71:811–816. doi: 10.1093/gerona/glv185.
    1. Zhou J., Habtemariam D., Iloputaife I., Lipsitz L.A., Manor B. The complexity of standing postural sway associates with future falls in community-dwelling older adults: The MOBILIZE Boston Study. Sci. Rep. 2017;7:2924. doi: 10.1038/s41598-017-03422-4.
    1. Abe T., Loenneke J.P., Thiebaud R.S., Fukunaga T. Age-related site-specific muscle wasting of upper and lower extremities and trunk in Japanese men and women. Age (Dordr) 2014;36:813–821. doi: 10.1007/s11357-013-9600-5.
    1. Bergmark A. Stability of the lumbar spine: A study in mechanical engineering. Acta Orthop Scand. Suppl. 1989;60:1–54. doi: 10.3109/17453678909154177.
    1. Gardner-Morse M., Stokes I.A., Liable J.P. Role of the muscles in lumbar spine stability in maximum extension efforts. J. Orthop Res. 1995;13:802–808. doi: 10.1002/jor.1100130521.

Source: PubMed

3
구독하다