Differential expression of 5-alpha reductase isozymes in the prostate and its clinical implications

Kai Wang, Dong-Dong Fan, Song Jin, Nian-Zeng Xing, Yi-Nong Niu, Kai Wang, Dong-Dong Fan, Song Jin, Nian-Zeng Xing, Yi-Nong Niu

Abstract

The development of human benign or malignant prostatic diseases is closely associated with androgens, primarily testosterone (T) and dihydrotestosterone (DHT). T is converted to DHT by 5-alpha reductase (5-AR) isozymes. Differential expression of 5-AR isozymes is observed in both human benign and malignant prostatic tissues. 5-AR inhibitors (5-ARI) are commonly used for the treatment of benign prostatic hyperplasia (BPH) and were once promoted as chemopreventive agents for prostate cancer (PCa). This review discusses the role of the differential expression of 5-AR in the normal development of the human prostate and in the pathogenesis and progression of BPH and PCa.

Figures

Figure 1
Figure 1
Pathway of steroid biosynthesis and the conversion of T to DHT by 5-AR. C21 precursors (pregnenolone and progesterone) are converted to C19 adrenal androgens (DHEA and androstenedione) by sequential hydroxylase and lyase activities. Circulating adrenal androgens enter the prostate and can be converted to T or androstanedione by a series of reactions involving the activity of 3β and 17β enzymes. T is then converted to the potent androgen DHT by the activity of 5-AR. 17α: 17α-hydroxylase; 17,20: 17,20-lyase; 21: 21-hydroxylase; 3β: 3-HSD (hydroxysteroid dehydrogenase); 17β: 17-HSD (hydroxysteroid dehydrogenase); DHEA: dihydroepiandrosterone; AKR1C: aldo-keto reductase; 3α-diol: 5α-androstane-3α, 17β-diol; 3β-diol: 5α-androstane-3β, 17β-diol.

References

    1. Roehrborn CG, Mcconnell JD. 9th ed. Ch. 86. Wein: campbell-Walsh Urology; 2007. Benign Prostatic Hyperplasia: etiology, Pathophysiology, Epidemiology, and Natural History; pp. 2–80.
    1. Klein EA, Platz EA, Yhompson IM. 9th ed. Ch. 90. Wein: Campbell-Walsh Urology; 2007. Epidemiology, Etiology, and Prevention of Prostate Cancer; pp. 1–43.
    1. Hamilton RJ, Freedland SJ. 5-alpha reductase inhibitors and prostate cancer prevention: where do we turn now? BMC Med. 2011;9:105.
    1. Wilson EM, French FS. Binding properties of androgen receptors. Evidence for identical receptors in rat testis, epididymis, and prostate. J Biol Chem. 1976;251:5620–9.
    1. Wilbert DM, Griffin JE, Wilson JD. Characterization of the cytosol androgen receptor of the human prostate. J Clin Endocrinol Metab. 1983;56:113–20.
    1. Saartok T, Dahlberg E, Gustafsson JA. Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 1984;114:2100–6.
    1. Cilotti A, Danza G, Serio M. Clinical application of 5alpha-reductase inhibitors. J Endocrinol Invest. 2001;24:199–203.
    1. Li J, Ding Z, Wang Z, Lu JF, Maity SN, et al. Androgen regulation of 5alpha-reductase isoenzymes in prostate cancer: implications for prostate cancer prevention. PLoS One. 2011;6:e28840.
    1. Normington K, Russell DW. Tissue distribution and kinetic characteristics of rat steroid 5 alpha-reductase isozymes. Evidence for distinct physiological functions. J Biol Chem. 1992;267:19548–54.
    1. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, et al. Tissue distribution and ontogeny of steroid 5 alpha-reductase isozyme expression. J Clin Invest. 1993;92:903–10.
    1. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 2008;99:81–6.
    1. Aggarwal S, Thareja S, Verma A, Bhardwaj TR, Kumar M. An overview on 5alpha-reductase inhibitors. Steroids. 2010;75:109–53.
    1. Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994;63:25–61.
    1. Langlois VS, Zhang D, Cooke GM, Trudeau VL. Evolution of steroid-5alpha-reductases and comparison of their function with 5beta-reductase. Gen Comp Endocrinol. 2010;166:489–97.
    1. Traish AM. 5alpha-Reductases in Human Physiology: an Unfolding Story. Endocr Pract. 2012;18:965–75.
    1. Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142:203–17.
    1. Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol. 2012;2012:1–18.
    1. Zhu YS, Sun GH. 5alpha-reductase isozymes in the prostate. J Med Sci. 2005;25:1–12.
    1. Lunacek A, Schwentner C, Oswald J, Fritsch H, Sergi C, et al. Fetal distribution of 5alpha-reductase 1 and 5alpha-reductase 2, and their input on human prostate development. J Urol. 2007;178:716–21.
    1. Zhu YS, Katz MD, Imperato-McGinley J. Natural potent androgens: lessons from human genetic models. Baillieres Clin Endocrinol Metab. 1998;12:83–113.
    1. Godoy A, Kawinski E, Li Y, Oka D, Alexiev B, et al. 5alpha-reductase type 3 expression in human benign and malignant tissues: a comparative analysis during prostate cancer progression. Prostate. 2011;71:1033–46.
    1. Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science. 1974;186:1213–5.
    1. Walsh PC, Madden JD, Harrod MJ, Goldstein JL, MacDonald PC, et al. Familial incomplete male pseudohermaphroditism, type 2. Decreased dihydrotestosterone formation in pseudovaginal perineoscrotal hypospadias. N Engl J Med. 1974;291:944–9.
    1. Akgun S, Ertel NH, Imperato-McGinley J, Sayli BS, Shackleton C. Familial male pseudohermaphroditism due to 5-alpha-reductase deficiency in a Turkish village. Am J Med. 1986;81:267–74.
    1. Imperato-McGinley J, Akgun S, Ertel NH, Sayli B, Shackleton C. The coexistence of male pseudohermaphrodites with 17-ketosteroid reductase deficiency and 5 alpha-reductase deficiency within a Turkish kindred. Clin Endocrinol (Oxf) 1987;27:135–43.
    1. Imperato-McGinley J, Miller M, Wilson JD, Peterson RE, Shackleton C, et al. A cluster of male pseudohermaphrodites with 5 alpha-reductase deficiency in Papua New Guinea. Clin Endocrinol (Oxf) 1991;34:293–8.
    1. Leme DCF, Soardi FC, Petroli RJ, Lusa AL, de Paiva ES, et al. Molecular diagnosis of 5alpha-reductase type II deficiency in Brazilian siblings with 46, XY disorder of sex development. Int J Mol Sci. 2011;12:9471–80.
    1. Andersson S, Berman DM, Jenkins EP, Russell DW. Deletion of steroid 5 alpha-reductase 2 gene in male pseudohermaphroditism. Nature. 1991;354:159–61.
    1. Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mol Cell Endocrinol. 2002;198:51–9.
    1. Cai LQ, Zhu YS, Katz MD, Herrera C, Baez J, et al. 5 alpha-reductase-2 gene mutations in the Dominican Republic. J Clin Endocrinol Metab. 1996;81:1730–5.
    1. Thiele S, Hoppe U, Holterhus PM, Hiort O. Isoenzyme type 1 of 5alpha-reductase is abundantly transcribed in normal human genital skin fibroblasts and may play an important role in masculinization of 5alpha-reductase type 2 deficient males. Eur J Endocrinol. 2005;152:875–80.
    1. Marker PC, Donjacour AA, Dahiya R, Cunha GR. Hormonal, cellular, and molecular control of prostatic development. Dev Biol. 2003;253:165–74.
    1. Veltri R, Rodriguez R. 9th ed. Ch. 85. Wein: Campbell-Walsh Urology; 2007. Molecular Biology, Endocrinology, and Physiology of the Prostate and Seminal Vesicles; pp. 1–95.
    1. Habib FK, Ross M, Bayne CW, Grigor K, Buck AC, et al. The localisation and expression of 5 alpha-reductase types I and II mRNAs in human hyperplastic prostate and in prostate primary cultures. J Endocrinol. 1998;156:509–17.
    1. Shirakawa T, Okada H, Acharya B, Zhang Z, Hinata N, et al. Messenger RNA levels and enzyme activities of 5 alpha-reductase types 1 and 2 in human benign prostatic hyperplasia (BPH) tissue. Prostate. 2004;58:33–40.
    1. Niu Y, Ge R, Hu L, Diaz C, Wang Z, et al. Reduced levels of 5-alpha reductase 2 in adult prostate tissue and implications for BPH therapy. Prostate. 2011;71:1317–24.
    1. Thomas LN, Douglas RC, Vessey JP, Gupta R, Fontaine D, et al. 5alpha-reductase type 1 immunostaining is enhanced in some prostate cancers compared with benign prostatic hyperplasia epithelium. J Urol. 2003;170:2019–25.
    1. Thomas LN, Lazier CB, Gupta R, Norman RW, Troyer DA, et al. Differential alterations in 5alpha-reductase type 1 and type 2 levels during development and progression of prostate cancer. Prostate. 2005;63:231–9.
    1. Titus MA, Gregory CW, Ford OR, Schell MJ, Maygarden SJ, et al. Steroid 5alpha-reductase isozymes I and II in recurrent prostate cancer. Clin Cancer Res. 2005;11:4365–71.
    1. Thomas LN, Douglas RC, Lazier CB, Too CK, Rittmaster RS, et al. Type 1 and type 2 5alpha-reductase expression in the development and progression of prostate cancer. Eur Urol. 2008;53:244–52.
    1. Olsson M, Ekstrom L, Guillemette C, Belanger A, Rane A, et al. Correlation between circulatory, local prostatic, and intra-prostatic androgen levels. Prostate. 2011;71:909–14.
    1. Kashiwagi B, Shibata Y, Ono Y, Suzuki R, Honma S, et al. Changes in testosterone and dihydrotestosterone levels in male rat accessory sex organs, serum, and seminal fluid after castration: establishment of a new highly sensitive simultaneous androgen measurement method. J Androl. 2005;26:586–91.
    1. Bruchovsky N, Wilson JD. The conversion of testosterone to 5-alpha-androstan-17-beta-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem. 1968;243:2012–21.
    1. Anderson KM, Liao S. Selective retention of dihydrotestosterone by prostatic nuclei. Nature. 1968;219:277–9.
    1. Huggins CS. The effect of castration on benign hypertrophy of the prostate in man. J Urol. 1940:705–7.
    1. Iehlé C, Radvanyi F, Gil Diez de Medina S, Ouafik LH, Gérard H, et al. Differences in steroid 5alpha-reductase iso-enzymes expression between normal and pathological human prostate tissue. J Steroid Biochem Mol Biol. 1999;68:189–95.
    1. Frye SV. Discovery and clinical development of dutasteride, a potent dual 5-alpha-reductase inhibitor. Curr Top Med Chem. 2006;6:405–21.
    1. Zhao XF, Yang Y, Wang W, Qiu Z, Zhang P, et al. Effects of competitive and noncompetitive 5alpha-reductase inhibitors on serum and intra-prostatic androgens in beagle dogs. Chin Med J (Engl) 2013;126:711–5.
    1. Clark RV, Hermann DJ, Cunningham GR, Wilson TH, Morrill BB, et al. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5alpha-reductase inhibitor. J Clin Endocrinol Metab. 2004;89:2179–84.
    1. Gormley GJ, Stoner E, Bruskewitz RC, Imperato-McGinley J, Walsh PC, et al. The effect of finasteride in men with benign prostatic hyperplasia. The Finasteride Study Group. N Engl J Med. 1992;327:1185–91.
    1. Nickel JC. Comparison of clinical trials with finasteride and dutasteride. Rev Urol. 2004;6(Suppl 9):S31–9.
    1. Span PN, Voller MC, Smals AG, Sweep FG, Schalken JA, et al. Selectivity of finasteride as an in vivo inhibitor of 5-alpha-reductase isozyme enzymatic activity in the human prostate. J Urol. 1999;161:332–7.
    1. Schmidt LJ, Tindall DJ. Steroid 5 alpha-reductase inhibitors targeting BPH and prostate cancer. J Steroid Biochem Mol Biol. 2011;125:32–8.
    1. McConnell JD, Bruskewitz R, Walsh P, Andriole G, Lieber M, et al. The effect of finasteride on the risk of acute urinary retention and the need for surgical treatment among men with benign prostatic hyperplasia. Finasteride Long-Term Efficacy and Safety Study Group. N Engl J Med. 1998;338:557–63.
    1. Roehrborn CG, Boyle P, Nickel JC, Hoefner K, Andriole G. Efficacy and safety of a dual inhibitor of 5-alpha-reductase types 1 and 2 (dutasteride) in men with benign prostatic hyperplasia. Urology. 2002;60:434–41.
    1. Nickel JC, Gilling P, Tammela TL, Morrill B, Wilson TH, et al. Comparison of dutasteride and finasteride for treating benign prostatic hyperplasia: the Enlarged Prostate International Comparator Study (EPICS) BJU Int. 2011;108:388–94.
    1. McConnell JD, Roehrborn CG, Bautista OM, Andriole GJ, Dixon CM, et al. The long-term effect of doxazosin, finasteride, and combination therapy on the clinical progression of benign prostatic hyperplasia. N Engl J Med. 2003;349:2387–98.
    1. Kirby RS, Roehrborn C, Boyle P, Bartsch G, Jardin A, et al. Efficacy and tolerability of doxazosin and finasteride, alone or in combination, in treatment of symptomatic benign prostatic hyperplasia: the Prospective European Doxazosin and Combination Therapy (PREDICT) trial. Urology. 2003;61:119–26.
    1. Roehrborn CG, Siami P, Barkin J, Damiao R, Major-Walker K, et al. The effects of combination therapy with dutasteride and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year results from the CombAT study. Eur Urol. 2010;57:123–31.
    1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA A Cancer Journal for Clinicians. 2012;62:10–29.
    1. Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, et al. The influence of finasteride on the development of prostate cancer. N Engl J Med. 2003;349:215–24.
    1. Andriole G, Bostwick D, Brawley O, Gomella L, Marberger M, et al. Chemoprevention of prostate cancer in men at high risk: rationale and design of the reduction by dutasteride of prostate cancer events (REDUCE) trial. J Urol. 2004;172:1314–7.
    1. Fleshner N, Gomella LG, Cookson MS, Finelli A, Evans A, et al. Delay in the progression of low-risk prostate cancer: rationale and design of the Reduction by Dutasteride of Clinical Progression Events in Expectant Management (REDEEM) trial. Contemp Clin Trials. 2007;28:763–9.
    1. Andriole GL, Bostwick DG, Brawley OW, Gomella LG, Marberger M, et al. Effect of dutasteride on the risk of prostate cancer. N Engl J Med. 2010;362:1192–202.
    1. Schroder FH, Bangma CH, Wolff JM, Alcaraz A, Montorsi F, et al. Can dutasteride delay or prevent the progression of prostate cancer in patients with biochemical failure after radical therapy? Rationale and design of the Avodart after Radical Therapy for Prostate Cancer Study. BJU Int. 2009;103:590–6.
    1. Schroder F, Bangma C, Angulo JC, Alcaraz A, Colombel M, et al. Dutasteride treatment over 2 years delays prostate-specific antigen progression in patients with biochemical failure after radical therapy for prostate cancer: results from the randomised, placebo-controlled Avodart After Radical Therapy for Prostate Cancer Study (ARTS) Eur Urol. 2013;63:779–87.
    1. Fleshner NE, Lucia MS, Egerdie B, Aaron L, Eure G, et al. Dutasteride in localised prostate cancer management: the REDEEM randomised, double-blind, placebo-controlled trial. Lancet. 2012;379:1103–11.
    1. Kramer BS, Hagerty KL, Justman S, Somerfield MR, Albertsen PC, et al. Use of 5-alpha-reductase inhibitors for prostate cancer chemoprevention: American Society of Clinical Oncology/American Urological Association 2008 Clinical Practice Guideline. J Clin Oncol. 2009;27:1502–16.

Source: PubMed

3
구독하다