Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human

Clara Fonteneau, Jérome Redoute, Frédéric Haesebaert, Didier Le Bars, Nicolas Costes, Marie-Françoise Suaud-Chagny, Jérome Brunelin, Clara Fonteneau, Jérome Redoute, Frédéric Haesebaert, Didier Le Bars, Nicolas Costes, Marie-Françoise Suaud-Chagny, Jérome Brunelin

Abstract

A single transcranial direct current stimulation (tDCS) session applied over the dorsolateral prefrontal cortex (DLFPC) can be associated with procognitive effects. Furthermore, repeated DLPFC tDCS sessions are under investigation as a new therapeutic tool for a range of neuropsychiatric conditions. A possible mechanism explaining such beneficial effects is a modulation of meso-cortico-limbic dopamine transmission. We explored the spatial and temporal neurobiological effects of bifrontal tDCS on subcortical dopamine transmission during and immediately after the stimulation. In a double blind sham-controlled study, 32 healthy subjects randomly received a single session of either active (20 min, 2 mA; n = 14) or sham (n = 18) tDCS during a dynamic positron emission tomography scan using [11C]raclopride binding. During the stimulation period, no significant effect of tDCS was observed. After the stimulation period, compared with sham tDCS, active tDCS induced a significant decrease in [11C]raclopride binding potential ratio in the striatum, suggesting an increase in extracellular dopamine in a part of the striatum involved in the reward-motivation network. The present study provides the first evidence that bifrontal tDCS induces neurotransmitter release in polysynaptic connected subcortical areas. Therefore, levels of dopamine activity and reactivity should be a new element to consider for a general hypothesis of brain modulation by bifrontal tDCS.

Figures

Figure 1.
Figure 1.
(A) Study design. (B) Transcranial direct current stimulation bifrontal montage. (C) Hammersmith maximum probability brain atlas used as a striatal mask including the caudate nucleus, putamen, and nucleus accumbens. Abbreviations: DLPFC, Dorsolateral prefrontal cortex; tDCS, transcranial direct current stimulation.
Figure 2.
Figure 2.
(A) Kinetic analysis. (i) Time–activity curve in the striatum and the cerebellum (ii) Binding potential ratio in the striatum; for both groups across the 20 PET frames (5 min per frame). (B) Parametric analysis—Subsequent after-effects of the stimulation in different clusters when comparing the baseline period to the Post2 period (Puncorr < 0.001 at the voxel level, with a minimum of 10 contiguous voxels (80-mm3)). For the significant cluster (PFWE < 0.05 at the cluster level), the BPR kinetic curves for both groups across the 20 PET frames (5 min per frame) are extracted and are expressed as BPR ratio (% of baseline). The anatomical subparts of the striatum (i.e., caudate nucleus, putamen, and nucleus accumbens) were named based on the Hammersmith maximum probability brain atlas. Abbreviations: Bas., Baseline period; Stim, Stimulation period; Red curve, Active tDCS; Blue curve, Sham tDCS, BPR, Binding Potential Ratio; TACs, Time–Activity Curves.

References

    1. Adler CM, Elman I, Weisenfeld N, Kestler L, Pickar D, Breier A. 2000. Effects of acute metabolic stress on striatal dopamine release in healthy volunteers. Neuropsychopharmacology. 22:545–550.
    1. Bai S, Dokos S, Ho K-A, Loo C. 2014. A computational modelling study of transcranial direct current stimulation montages used in depression. NeuroImage. 87:332–344.
    1. Benedetti F. 2014. Placebo effects: from the neurobiological paradigm to translational implications. Neuron. 84:623–637.
    1. Bindman LJ, Lippold OCJ, Redfearn JWT. 1964. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol. 172:369.
    1. Bromberg-Martin ES, Matsumoto M, Hikosaka O. 2010. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 68:815–834.
    1. Brunelin J, Fecteau S, Suaud-Chagny M-F. 2013. Abnormal striatal dopamine transmission in schizophrenia. Curr Med Chem. 20:397–404.
    1. Brunelin J, Szekely D, Costes N, Mondino M, Bougerol T, Saoud M, Suaud-Chagny M-F, Poulet E, Polosan M. 2011. Theta burst stimulation in the negative symptoms of schizophrenia and striatal dopamine release. Schizophr Res. 131:264–265.
    1. Brunoni AR, Amadera J, Berbel B, Volz MS, Rizzerio BG, Fregni F. 2011. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int J Neuropsychopharmacol. 14:1133–1145.
    1. Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, Daskalakis ZJ, Bennabi D, Haffen E, Alonzo A, et al. . 2016. Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry. 208:522–531.
    1. Brunoni AR, Moffa AH, Sampaio-Junior B, Borrione L, Moreno ML, Fernandes RA, Veronezi BP, Nogueira BS, Aparicio LVM, Razza LB, et al. . 2017. Trial of electrical direct-current therapy versus escitalopram for depression. N Engl J Med. 376:2523–2533.
    1. Cho SS, Strafella AP. 2009. rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One. 4:e6725.
    1. Cools R. 2011. Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol. 21:402–407.
    1. Cools R, D’Esposito M. 2011. Inverted-U–shaped dopamine actions on human working memory and cognitive control. Biol Psychiatry. 69:e113–e125.
    1. Di Martino A, Scheres A, Margulies DS, Kelly AMC, Uddin LQ, Shehzad Z, Biswal B, Walters JR, Castellanos FX, Milham MP. 2008. Functional connectivity of human striatum: a resting state fMRI study. Cereb Cortex. 18:2735–2747.
    1. Draganski B, Kherif F, Kloppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner J, Frackowiak RSJ. 2008. Evidence for segregated and integrative connectivity patterns in the human basal ganglia. J Neurosci. 28:7143–7152.
    1. Egerton A, Mehta MA, Montgomery AJ, Lappin JM, Howes OD, Reeves SJ, Cunningham VJ, Grasby PM. 2009. The dopaminergic basis of human behaviors: a review of molecular imaging studies. Neurosci Biobehav Rev. 33:1109–1132.
    1. Fresnoza S, Stiksrud E, Klinker F, Liebetanz D, Paulus W, Kuo M-F, Nitsche MA. 2014. Dosage-dependent effect of dopamine D2 receptor activation on motor cortex plasticity in humans. J Neurosci. 34:10701–10709.
    1. Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ. 1991. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 11:690–699.
    1. Gousias IS, Rueckert D, Heckemann RA, Dyet LE, Boardman JP, Edwards AD, Hammers A. 2008. Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage. 40:672–684.
    1. Guay F, Mageau GA, Vallerand RJ. 2003. On the hierarchical structure of self-determined motivation: a test of top-down, bottom-up, reciprocal, and horizontal effects. Pers Soc Psychol Bull. 29:992–1004.
    1. Haber SN, Knutson B. 2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology. 35:4–26.
    1. Hall H, Kohler C, Gawell L, Farde L, Sedvall G. 1988. Raclopride, a new selective ligand for the dopamine-D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry. 12:559–568.
    1. Hammers A, Allom R, Koepp MJ, Free SL, Myers R, Lemieux L, Mitchell TN, Brooks DJ, Duncan JS. 2003. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp. 19:224–247.
    1. Hanganu A, Provost J-S, Monchi O. 2015. Neuroimaging studies of striatum in cognition part II: Parkinson’s disease. Front Syst Neurosci. 9:138.
    1. Hone-Blanchet A, Edden RA, Fecteau S. 2016. Online effects of transcranial direct current stimulation in real time on human prefrontal and striatal metabolites. Biol Psychiatry. 80:432–438.
    1. Horvath JC, Forte JD, Carter O. 2015. Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia. 66:213–236.
    1. Howe MW, Tierney PL, Sandberg SG, Phillips PEM, Graybiel AM. 2013. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature. 500:575–579.
    1. Jakoby BW, Bercier Y, Conti M, Casey ME, Bendriem B, Townsend DW. 2011. Physical and clinical performance of the mCT time-of-flight PET/CT scanner. Phys Med Biol. 56:2375–2389.
    1. Jansen JM, Daams JG, Koeter MWJ, Veltman DJ, van den Brink W, Goudriaan AE. 2013. Effects of non-invasive neurostimulation on craving: a meta-analysis. Neurosci Biobehav Rev. 37:2472–2480.
    1. Keeser D, Meindl T, Bor J, Palm U, Pogarell O, Mulert C, Brunelin J, Moller H-J, Reiser M, Padberg F. 2011. Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci. 31:15284–15293.
    1. Ko JH, Strafella AP. 2012. Dopaminergic neurotransmission in the human brain: new lessons from perturbation and imaging. The Neuroscientist. 18:149–168.
    1. Krause B, Cohen Kadosh R. 2014. Not all brains are created equal: the relevance of individual differences in responsiveness to transcranial electrical stimulation. Front Syst Neurosci. 8:25.
    1. Kuo M-F, Nitsche MA. 2015. Exploring prefrontal cortex functions in healthy humans by transcranial electrical stimulation. Neurosci Bull. 31:198–206.
    1. Kuo M-F, Paulus W, Nitsche MA. 2008. Boosting focally-induced brain plasticity by dopamine. Cereb Cortex. 18:648–651.
    1. Kuo M-F, Paulus W, Nitsche MA. 2014. Therapeutic effects of non-invasive brain stimulation with direct currents (tDCS) in neuropsychiatric diseases. NeuroImage. 85:948–960.
    1. Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, et al. . 2017. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol. 128:56–92.
    1. Leite J, Gonçalves OF, Carvalho S. 2014. Facilitative effects of bi-hemispheric tDCS in cognitive deficits of Parkinson disease patients. Med Hypotheses. 82:138–140.
    1. Levasseur-Moreau J, Brunelin J, Fecteau S. 2013. Non-invasive brain stimulation can induce paradoxical facilitation. Are these neuroenhancements transferable and meaningful to security services? Front Hum Neurosci. 7:449.
    1. Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF. 2012. The brain basis of emotion: a meta-analytic review. Behav Brain Sci. 35:121–143.
    1. Loo CK, Husain MM, McDonald WM, Aaronson S, O’Reardon JP, Alonzo A, Weickert CS, Martin DM, McClintock SM, Mohan A, et al. . 2018. International randomized-controlled trial of transcranial direct current stimulation in depression. Brain Stimulat. 11:125–133.
    1. Maia TV, Frank MJ. 2017. An integrative perspective on the role of dopamine in schizophrenia. Biol Psychiatry. 81:52–66.
    1. McLaren ME, Nissim NR, Woods AJ. 2018. The effects of medication use in transcranial direct current stimulation: a brief review. Brain Stimulat. 11:52–58.
    1. Monchi O, Petrides M, Strafella AP, Worsley KJ, Doyon J. 2006. Functional role of the basal ganglia in the planning and execution of actions. Ann Neurol. 59:257–264.
    1. Mondino M, Thiffault F, Fecteau S. 2015. Does non-invasive brain stimulation applied over the dorsolateral prefrontal cortex non-specifically influence mood and emotional processing in healthy individuals? Front Cell Neurosci. 9:399.
    1. Monte-Silva K, Liebetanz D, Grundey J, Paulus W, Nitsche MA. 2010. Dosage-dependent non-linear effect of l -dopa on human motor cortex plasticity: non-linear effect of l-dopa on plasticity. J Physiol. 588:3415–3424.
    1. Nitsche MA, Seeber A, Frommann K, Klein CC, Rochford C, Nitsche MS, Fricke K, Liebetanz D, Lang N, Antal A, et al. . 2005. Modulating parameters of excitability during and after transcranial direct current stimulation of the human motor cortex: cortical excitability and tDCS. J Physiol. 568:291–303.
    1. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA. 2015. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 16:305–312.
    1. Opitz A, Paulus W, Will S, Antunes A, Thielscher A. 2015. Determinants of the electric field during transcranial direct current stimulation. NeuroImage. 109:140–150.
    1. Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N, Kaymakanova F, Unger I, Falkai P, Meindl T, et al. . 2016. Prefrontal transcranial direct current stimulation for treatment of schizophrenia with predominant negative symptoms: a double-blind, sham-controlled proof-of-concept study. Schizophr Bull. 42:1253–1261.
    1. Pauli WM, O’Reilly RC, Yarkoni T, Wager TD. 2016. Regional specialization within the human striatum for diverse psychological functions. Proc Natl Acad Sci. 113:1907–1912.
    1. Peanlikhit T, Van Waes V, Pedron S, Risold P-Y, Haffen E, Etiévant A, Monnin J. 2017. The antidepressant-like effect of tDCS in mice: a behavioral and neurobiological characterization. Brain Stimulat. 10(4):748–756.
    1. Pena-Gomez C, Sala-Lonch R, Junque C, Clemente IC, Vidal D, Bargallo N, Falcon C, Valls-Sole J, Pascual-Leone A, Bartres-Faz D. 2012. Modulation of large-scale brain networks by transcranial direct current stimulation evidenced by resting-state functional MRI. Brain Stimulat. 5:252–263.
    1. Pinborg LH, Videbaek C, Ziebell M, Mackeprang T, Friberg L, Rasmussen H, Knudsen GM, Glenthoj BY. 2007. [123I]epidepride binding to cerebellar dopamine D2/D3 receptors is displaceable: implications for the use of cerebellum as a reference region. NeuroImage. 34:1450–1453.
    1. Plaisant O, Courtois R, Réveillère C, Mendelsohn GA, John OP. 2010. Validation par analyse factorielle du Big Five Inventory français (BFI-Fr). Analyse convergente avec le NEO-PI-R. Ann Méd-Psychol Rev Psychiatr. 168:97–106.
    1. Postuma RB. 2005. Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cereb Cortex. 16:1508–1521.
    1. Price JL, Drevets WC. 2012. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 16:61–71.
    1. Sampaio-Junior B, Tortella G, Borrione L, Moffa AH, Machado-Vieira R, Cretaz E, Fernandes da Silva A, Fraguas R, Aparício LV, Klein I, et al. . 2018. Efficacy and safety of transcranial direct current stimulation as an add-on treatment for bipolar depression: a randomized clinical trial. JAMA Psychiatry. 75:158.
    1. Seamans JK, Yang CR. 2004. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol. 74:1–58.
    1. Silvanto J, Pascual-Leone A. 2008. State-dependency of transcranial magnetic stimulation. Brain Topogr.. 21:1–10.
    1. Spielberger CD, Gorsuch RL, Lushene RE. 1970. Manual for the state-trait anxiety inventory.
    1. Stagg CJ, Best JG, Stephenson MC, O’Shea J, Wylezinska M, Kincses ZT, Morris PG, Matthews PM, Johansen-Berg H. 2009. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J Neurosci. 29:5202–5206.
    1. Strafella AP, Paus T, Barrett J, Dagher A. 2001. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 21:1–4.
    1. Taber MT, Fibiger HC. 1995. Electrical stimulation of the prefrontal cortex increases dopamine release in the nucleus accumbens of the rat: modulation by metabotropic glutamate receptors. J Neurosci. 15:3896–3904.
    1. Tanaka T, Takano Y, Tanaka S, Hironaka N, Kobayashi K, Hanakawa T, Watanabe K, Honda M. 2013. Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum. Front Syst Neurosci. 7:6.
    1. Trottier C, Mageau G, Trudel P, Halliwell WR. 2008. Validation de la version canadienne-française du Life Orientation Test-Revised. Can J Behav Sci Rev Can Sci Comport. 40:238–243.
    1. Wise RA. 2004. Dopamine, learning and motivation. Nat Rev Neurosci. 5:483–494.
    1. Wörsching J, Padberg F, Ertl-Wagner B, Kumpf U, Kirsch B, Keeser D. 2016. Imaging transcranial direct current stimulation (tDCS) of the prefrontal cortex—correlation or causality in stimulation-mediated effects? Neurosci Biobehav Rev. 69:333–356.
    1. Wörsching J, Padberg F, Helbich K, Hasan A, Koch L, Goerigk S, Stoecklein S, Ertl-Wagner B, Keeser D. 2017. Test-retest reliability of prefrontal transcranial Direct Current Stimulation (tDCS) effects on functional MRI connectivity in healthy subjects. NeuroImage. 155:187–201.

Source: PubMed

3
구독하다