Acute Neurofilament Light Chain Plasma Levels Correlate With Stroke Severity and Clinical Outcome in Ischemic Stroke Patients

Helle H Nielsen, Catarina B Soares, Sofie S Høgedal, Jonna S Madsen, Rikke B Hansen, Alex A Christensen, Charlotte Madsen, Bettina H Clausen, Lars Henrik Frich, Matilda Degn, Christian Sibbersen, Kate L Lambertsen, Helle H Nielsen, Catarina B Soares, Sofie S Høgedal, Jonna S Madsen, Rikke B Hansen, Alex A Christensen, Charlotte Madsen, Bettina H Clausen, Lars Henrik Frich, Matilda Degn, Christian Sibbersen, Kate L Lambertsen

Abstract

Background: Ischemic stroke causes increased blood-brain barrier permeability and release of markers of axonal damage and inflammation. To investigate diagnostic and prognostic roles of neurofilament light chain (NF-L), we assessed levels of NF-L, S100B, interleukin-6 (IL-6), E-selectin, vascular endothelial growth factor-A (VEGF-A), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) in patients with acute ischemic stroke or transient ischemic attack (TIA) and healthy controls. Methods: We studied neurofilament (NF) expression in 2 cases of human postmortem ischemic stroke, representing infarcts aged 3- to >7-days. In a prospective study, we measured plasma NF-L and inflammatory markers <8 h of symptom onset and at 72 h in acute ischemic stroke (n = 31), TIA (n = 9), and healthy controls (n = 29). We assessed whether NF-L, S100B, and IL-6 were associated with clinical severity on admission (Scandinavian Stroke Scale, SSS), diagnosis of ischemic stroke vs. TIA, and functional outcome at 3 months (modified Rankin Scale, mRS). Results: NF expression increased in ischemic neurons and in the infarcted brain parenchyma after stroke. Plasma NF-L levels were higher in stroke patients than in TIA patients and healthy controls, but IL-6 levels were similar. Higher acute NF-L levels were associated with lower SSS scores at admission and higher mRS scores at 3 months. No correlation was observed between NF-L and S100B, NF-L and IL-6, nor between S100B or IL-6 and SSS or mRS. Compared to controls, stroke patients had significantly higher VEGF-A and VCAM-1 at <8 h that remained elevated at 72 h, with significantly higher VEGF-A at <8 h; ICAM-1 was significantly increased at <8 h, while S100B and E-selectin were unchanged. Conclusions: Plasma NF-L levels, but not IL-6 and S100B, were significant predictors of clinical severity on admission and functional outcome at 3 months. Plasma NF-L is a promising biomarker of functional outcome after ischemic stroke.

Keywords: Scandinavian Stroke Scale; biomarkers; functional outcome; modified rankin scale; transient ischemic attack.

Copyright © 2020 Nielsen, Soares, Høgedal, Madsen, Hansen, Christensen, Madsen, Clausen, Frich, Degn, Sibbersen and Lambertsen.

Figures

Figure 1
Figure 1
Immunohistochemical staining of neurofilament-positive neurons in postmortem human ischemic brain tissue. (A,B) Neurofilament immunofluorescent staining in a >7-day-old right parietal lobe infarct demonstrating increased NF staining in the infarct (A) compared to the peri-infarct (B). Scale bar: 100 μm. (C,D) High magnifications of neurofilament-positive neurons in paraffin sections from a 3–7-day-old left temporal lobe infarct. Scale bar: 40 μm.
Figure 2
Figure 2
Neurofilament-light chain changes in patients with ischemic stroke. (A) NF-L concentrations (pg/mL) increased significantly in the blood of ischemic stroke patients compared to controls (CV = 3.9%). Line: median. Box: interquartile range. Whiskers: 5th–95th percentiles. Kruskal–Wallis test with Dunn's post-hoc test. (B) NF-L levels in the blood of patients with ischemic stroke correlated negatively with Scandinavian Stroke Scale (SSS). (C) NF-L levels in the blood correlated positively with modified Rankin Scale (mRS) measured 3 months after the ischemic stroke. (D) S100B concentrations (pg/mL) increased significantly in the blood of TIA patients compared to controls (CV = 11.5%). Line: median. Box: interquartile range. Whiskers: 5th–95th percentiles. Kruskal–Wallis test with Dunn's post hoc test. *p < 0.05, **p < 0.01. R: Spearman's rho; TIA, transient ischemic attack.
Figure 3
Figure 3
Interleukin-6 levels in patients with ischemic stroke. Blood IL-6 concentrations (pg/mL) were similar in healthy controls and ischemic stroke patients (CV = 4.1%). Line: median. Box: interquartile range. Whiskers: 5th–95th percentiles.
Figure 4
Figure 4
Endothelial and vascular markers in ischemic stroke patients. (A) E-selectin concentrations (pg/mL) were similar in healthy controls and ischemic stroke patients (CV = 6.6%). (B) VEGF-A concentrations (pg/mL) increased significantly in the first 8 h in ischemic stroke patients compared to healthy controls and showed a further significant increase 72 h after symptom onset (CV = 8.8%). (C) VCAM-1 concentrations (pg/mL) were significantly increased both acutely (<8 h) and later (72 h) in ischemic stroke patients compared to healthy controls (CV = 3.6%). (D) ICAM-1 concentrations (pg/mL) increased significantly in the first 8 h in ischemic stroke patients compared to healthy controls (CV = 5.8%). Line: median. Box: interquartile range. Whiskers: 5th–95th percentiles. Kruskal–Wallis test with Dunn's post-hoc test. *p < 0.05, **p < 0.01, ***p < 0.001.

References

    1. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. . Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. (2008) 359:1317–29. 10.1056/NEJMoa0804656
    1. Dirks M, Niessen LW, van Wijngaarden JD, Koudstaal PJ, Franke CL, van Oostenbrugge RJ, et al. . Promoting thrombolysis in acute ischemic stroke. Stroke. (2011) 42:1325–30. 10.1161/STROKEAHA.110.596940
    1. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, et al. . A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. (2015) 372:11–20. 10.1056/NEJMoa1411587
    1. Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, et al. . Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. (2009) 72:1322–9. 10.1212/WNL.0b013e3181a0fe3f
    1. Gaiottino J, Norgren N, Dobson R, Topping J, Nissim A, Malaspina A, et al. . Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE. (2013) 8:e75091. 10.1371/journal.pone.0075091
    1. Modvig S, Degn M, Roed H, Sorensen TL, Larsson HB, Langkilde AR, et al. . Cerebrospinal fluid levels of chitinase 3-like 1 and neurofilament light chain predict multiple sclerosis development and disability after optic neuritis. Mult Scler. (2015) 21:1761–70. 10.1177/1352458515574148
    1. Modvig S, Degn M, Sander B, Horwitz H, Wanscher B, Sellebjerg F, et al. . Cerebrospinal fluid neurofilament light chain levels predict visual outcome after optic neuritis. Mult Scler. (2016) 22:590–8. 10.1177/1352458515599074
    1. Duering M, Konieczny MJ, Tiedt S, Baykara E, Tuladhar AM, Leijsen EV, et al. . Serum neurofilament light chain levels are related to small vessel disease burden. J Stroke. (2018) 20:228–38. 10.5853/jos.2017.02565
    1. Onatsu J, Vanninen R, Jakala P, Mustonen P, Pulkki K, Korhonen M, et al. . Serum neurofilament light chain concentration correlates with infarct volume but not prognosis in acute ischemic stroke. J Stroke Cerebrovasc Dis. (2019) 28:2242–9. 10.1016/j.jstrokecerebrovasdis.2019.05.008
    1. Pedersen A, Stanne TM, Nilsson S, Klasson S, Rosengren L, Holmegaard L, et al. . Circulating neurofilament light in ischemic stroke: temporal profile and outcome prediction. J Neurol. (2019) 266:2796–806. 10.1007/s00415-019-09477-9
    1. Khalil M. Are neurofilaments valuable biomarkers for long-term disease prognostication in MS?. Mult Scler. (2018) 24:1270–1. 10.1177/1352458518791518
    1. Tiedt S, Duering M, Barro C, Kaya AG, Boeck J, Bode FJ, et al. . Serum neurofilament light: a biomarker of neuroaxonal injury after ischemic stroke. Neurology. (2018) 91:e1338–47. 10.1212/WNL.0000000000006282
    1. De Marchis GM, Katan M, Barro C, Fladt J, Traenka C, Seiffge DJ, et al. . Serum neurofilament light chain in patients with acute cerebrovascular events. Eur J Neurol. (2018) 25:562–8. 10.1111/ene.13554
    1. Smith CJ, Emsley HC, Gavin CM, Georgiou RF, Vail A, Barberan EM, et al. . Peak plasma interleukin-6 and other peripheral markers of inflammation in the first week of ischaemic stroke correlate with brain infarct volume, stroke severity and long-term outcome. BMC Neurol. (2004) 4:2. 10.1186/1471-2377-4-2
    1. Kuhle J, Barro C, Andreasson U, Derfuss T, Lindberg R, Sandelius A, et al. . Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin Chem Lab Med. (2016) 54:1655–61. 10.1515/cclm-2015-1195
    1. Group SSS. Multicenter trial of hemodilution in ischemic stroke–background and study protocol. Scand Stroke Study Group Stroke. (1985) 16:885–90. 10.1161/01.STR.16.5.885
    1. Shinohara Y, Minematsu K, Amano T, Ohashi Y. Modified rankin scale with expanded guidance scheme and interview questionnaire: interrater agreement and reproducibility of assessment. Cerebrovasc Dis. (2006) 21:271–8. 10.1159/000091226
    1. Gray LJ, Ali M, Lyden PD, Bath PM, Virtual International Stroke Trials Archive C . Interconversion of the national institutes of health stroke scale and scandinavian stroke scale in acute stroke. J Stroke Cerebrovasc Dis. (2009) 18:466–8. 10.1016/j.jstrokecerebrovasdis.2009.02.003
    1. Butt JH, Rostrup E, Hansen AS, Lambertsen KL, Kruuse C. Induction of migraine-like headache, but not aura, by cilostazol in patients with migraine with aura. Brain. (2018) 141:2943–51. 10.1093/brain/awy228
    1. Lambertsen KL, Ostergaard K, Clausen BH, Hansen S, Stenvang J, Thorsen SB, et al. . No effect of ablation of surfactant protein-D on acute cerebral infarction in mice. J Neuroinflamm. (2014) 11:123. 10.1186/1742-2094-11-123
    1. Clausen BH, Degn M, Sivasaravanaparan M, Fogtmann T, Andersen MG, Trojanowsky MD, et al. . Conditional ablation of myeloid TNF increases lesion volume after experimental stroke in mice, possibly via altered ERK1/2 signaling. Sci Rep. (2016) 6:29291. 10.1038/srep29291
    1. Clausen BH, Lambertsen KL, Dagnaes-Hansen F, Babcock AA, von Linstow CU, Meldgaard M, et al. . Cell therapy centered on IL-1Ra is neuroprotective in experimental stroke. Acta Neuropathol. (2016) 131:775–91. 10.1007/s00401-016-1541-5
    1. Lambertsen KL, Finsen B, Clausen BH. Post-stroke inflammation-target or tool for therapy? Acta Neuropathol. (2018) 137:693–714. 10.1007/s00401-018-1930-z
    1. Hartig W, Krueger M, Hofmann S, Preissler H, Markel M, Frydrychowicz C, et al. . Up-regulation of neurofilament light chains is associated with diminished immunoreactivities for MAP2 and tau after ischemic stroke in rodents and in a human case. J Chem Neuroanat. (2016) 78:140–8. 10.1016/j.jchemneu.2016.09.004
    1. Mages B, Aleithe S, Altmann S, Blietz A, Nitzsche B, Barthel H, et al. . Impaired neurofilament integrity and neuronal morphology in different models of focal cerebral ischemia and human stroke tissue. Front Cell Neurosci. (2018) 12:161. 10.3389/fncel.2018.00161
    1. Hedreen JC, Koliatsos VE. Phosphorylated neurofilaments in neuronal perikarya and dendrites in human brain following axonal damage. J Neuropathol Exp Neurol. (1994) 53:663–71. 10.1097/00005072-199411000-00013
    1. Merali Z, Huang K, Mikulis D, Silver F, Kassner A. Evolution of blood-brain-barrier permeability after acute ischemic stroke. PLoS ONE. (2017) 12:e0171558. 10.1371/journal.pone.0171558
    1. Kang DW, Latour LL, Chalela JA, Dambrosia J, Warach S. Early ischemic lesion recurrence within a week after acute ischemic stroke. Ann Neurol. (2003) 54:66–74. 10.1002/ana.10592
    1. Kang DW, Latour LL, Chalela JA, Dambrosia JA, Warach S. Early and late recurrence of ischemic lesion on MRI: evidence for a prolonged stroke-prone state?. Neurology. (2004) 63:2261–5. 10.1212/01.WNL.0000147295.50029.67
    1. Amarenco P, Lavallee PC, Monteiro Tavares L, Labreuche J, Albers GW, Abboud H, et al. Five-year risk of stroke after TIA or minor ischemic stroke. N Engl J Med. (2018) 378:2182–90. 10.1056/NEJMoa1802712
    1. Sellner J, Patel A, Dassan P, Brown MM, Petzold A. Hyperacute detection of neurofilament heavy chain in serum following stroke: a transient sign. Neurochem Res. (2011) 36:2287–91. 10.1007/s11064-011-0553-8
    1. Singh P, Yan J, Hull R, Read S, O'Sullivan J, Henderson RD, et al. . Levels of phosphorylated axonal neurofilament subunit H (pNfH) are increased in acute ischemic stroke. J Neurol Sci. (2011) 304:117–21. 10.1016/j.jns.2011.01.025
    1. Traenka C, Disanto G, Seiffge DJ, Gensicke H, Hert L, Grond-Ginsbach C, et al. . Serum neurofilament light chain levels are associated with clinical characteristics and outcome in patients with cervical artery dissection. Cerebrovasc Dis. (2015) 40:222–7. 10.1159/000440774
    1. Katan M, Fluri F, Morgenthaler NG, Schuetz P, Zweifel C, Bingisser R, et al. . Copeptin: a novel, independent prognostic marker in patients with ischemic stroke. Ann Neurol. (2009) 66:799–808. 10.1002/ana.21783
    1. Rost NS, Biffi A, Cloonan L, Chorba J, Kelly P, Greer D, et al. . Brain natriuretic peptide predicts functional outcome in ischemic stroke. Stroke. (2012) 43:441–5. 10.1161/STROKEAHA.111.629212
    1. Winbeck K, Poppert H, Etgen T, Conrad B, Sander D. Prognostic relevance of early serial C-reactive protein measurements after first ischemic stroke. Stroke. (2002) 33:2459–64. 10.1161/01.STR.0000029828.51413.82
    1. Hjalmarsson C, Bjerke M, Andersson B, Blennow K, Zetterberg H, Aberg ND, et al. . Neuronal and glia-related biomarkers in cerebrospinal fluid of patients with acute ischemic stroke. J Cent Nerv Syst Dis. (2014) 6:51–8. 10.4137/JCNSD.S13821
    1. Foerch C, Singer OC, Neumann-Haefelin T, du Mesnil de Rochemont R, Steinmetz H, Sitzer M. Evaluation of serum S100B as a surrogate marker for long-term outcome and infarct volume in acute middle cerebral artery infarction. Arch Neurol. (2005) 62:1130–4. 10.1001/archneur.62.7.1130
    1. Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A, et al. . The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis. (2010) 30:85–92. 10.1159/000314624
    1. Tarkowski E, Rosengren L, Blomstrand C, Wikkelso C, Jensen C, Ekholm S, et al. . Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke. (1995) 26:1393–8. 10.1161/01.STR.26.8.1393
    1. Beridze M, Sanikidze T, Shakarishvili R, Intskirveli N, Bornstein NM. Selected acute phase CSF factors in ischemic stroke: findings and prognostic value. BMC Neurol. (2011) 11:41. 10.1186/1471-2377-11-41
    1. Vila N, Castillo J, Davalos A, Chamorro A. Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke. (2000) 31:2325–9. 10.1161/01.STR.31.10.2325
    1. Perini F, Morra M, Alecci M, Galloni E, Marchi M, Toso V. Temporal profile of serum anti-inflammatory and pro-inflammatory interleukins in acute ischemic stroke patients. Neurol Sci. (2001) 22:289–96. 10.1007/s10072-001-8170-y
    1. Wytrykowska A, Prosba-Mackiewicz M, Nyka WM. IL-1β, TNF-α, and IL-6 levels in gingival fluid and serum of patients with ischemic stroke. J Oral Sci. (2016) 58:509–13. 10.2334/josnusd.16-0278
    1. Ferrarese C, Mascarucci P, Zoia C, Cavarretta R, Frigo M, Begni B, et al. . Increased cytokine release from peripheral blood cells after acute stroke. J Cereb Blood Flow Metab. (1999) 19:1004–9. 10.1097/00004647-199909000-00008
    1. Slevin M, Krupinski J, Slowik A, Kumar P, Szczudlik A, Gaffney J. Serial measurement of vascular endothelial growth factor and transforming growth factor-beta1 in serum of patients with acute ischemic stroke. Stroke. (2000) 31:1863–70. 10.1161/01.STR.31.8.1863
    1. Lee SC, Lee KY, Kim YJ, Kim SH, Koh SH, Lee YJ. Serum VEGF levels in acute ischaemic strokes are correlated with long-term prognosis. Eur J Neurol. (2010) 17:45–51. 10.1111/j.1468-1331.2009.02731.x
    1. Matsuo R, Ago T, Kamouchi M, Kuroda J, Kuwashiro T, Hata J, et al. . Clinical significance of plasma VEGF value in ischemic stroke - research for biomarkers in ischemic stroke (REBIOS) study. BMC Neurol. (2013) 13:32. 10.1186/1471-2377-13-32
    1. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. . VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. (2003) 111:1843–51. 10.1172/JCI200317977
    1. Ma Y, Zechariah A, Qu Y, Hermann DM. Effects of vascular endothelial growth factor in ischemic stroke. J Neurosci Res. (2012) 90:1873–82. 10.1002/jnr.23088
    1. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C, et al. . VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest. (2000) 106:829–38. 10.1172/JCI9369
    1. Zhang ZG, Zhang L, Tsang W, Soltanian-Zadeh H, Morris D, Zhang R, et al. . Correlation of VEGF and angiopoietin expression with disruption of blood-brain barrier and angiogenesis after focal cerebral ischemia. J Cereb Blood Flow Metab. (2002) 22:379–92. 10.1097/00004647-200204000-00002
    1. Yilmaz G, Granger DN. Cell adhesion molecules and ischemic stroke. Neurol Res. (2008) 30:783–93. 10.1179/174313208X341085
    1. Richard S, Lagerstedt L, Burkhard PR, Debouverie M, Turck N, Sanchez JC. E-selectin and vascular cell adhesion molecule-1 as biomarkers of 3-month outcome in cerebrovascular diseases. J Inflamm. (2015) 12:61. 10.1186/s12950-015-0106-z
    1. Bitsch A, Klene W, Murtada L, Prange H, Rieckmann P. A longitudinal prospective study of soluble adhesion molecules in acute stroke. Stroke. (1998) 29:2129–35. 10.1161/01.STR.29.10.2129
    1. Prugger C, Luc G, Haas B, Morange PE, Ferrieres J, Amouyel P, et al. . Multiple biomarkers for the prediction of ischemic stroke: the PRIME study. Arterioscler Thromb Vasc Biol. (2013) 33:659–66. 10.1161/ATVBAHA.112.300109
    1. Kozuka K, Kohriyama T, Nomura E, Ikeda J, Kajikawa H, Nakamura S. Endothelial markers and adhesion molecules in acute ischemic stroke–sequential change and differences in stroke subtype. Atherosclerosis. (2002) 161:161–8. 10.1016/S0021-9150(01)00635-9
    1. Cherian P, Hankey GJ, Eikelboom JW, Thom J, Baker RI, McQuillan A, et al. . Endothelial and platelet activation in acute ischemic stroke and its etiological subtypes. Stroke. (2003) 34:2132–7. 10.1161/01.STR.0000086466.32421.F4
    1. Tuttolomondo A, Di Sciacca R, Di Raimondo D, Serio A, D'Aguanno G, La Placa S, et al. . Plasma levels of inflammatory and thrombotic/fibrinolytic markers in acute ischemic strokes: relationship with TOAST subtype, outcome and infarct site. J Neuroimmunol. (2009) 215:84–9. 10.1016/j.jneuroim.2009.06.019

Source: PubMed

3
구독하다