A longitudinal study on deep brain stimulation of the medial forebrain bundle for treatment-resistant depression

Albert J Fenoy, Paul E Schulz, Sudhakar Selvaraj, Christina L Burrows, Giovanna Zunta-Soares, Kathryn Durkin, Paolo Zanotti-Fregonara, Joao Quevedo, Jair C Soares, Albert J Fenoy, Paul E Schulz, Sudhakar Selvaraj, Christina L Burrows, Giovanna Zunta-Soares, Kathryn Durkin, Paolo Zanotti-Fregonara, Joao Quevedo, Jair C Soares

Abstract

Deep brain stimulation (DBS) to the superolateral branch of the medial forebrain bundle (MFB) has been reported to lead to rapid antidepressant effects. In this longitudinal study, we expand upon the initial results we reported at 26 weeks (Fenoy et al., 2016), showing sustained antidepressant effects of MFB DBS on six patients with treatment-resistant depression (TRD) over 1 year. The Montgomery-Åsberg Depression Rating Scale (MADRS) was used as the primary assessment tool. Deterministic fiber tracking was used to individually map the target area; analysis was performed to compare modulated fiber tracts between patients. Intraoperatively, upon stimulation at target, responders reported immediate increases in energy and motivation. An insertional effect was seen during the 4-week sham stimulation phase from baseline (28% mean MADRS reduction, p = 0.02). However, after 1 week of initiating stimulation, three of six patients had a > 50% decrease in MADRS scores relative to baseline (43% mean MADRS reduction, p = 0.005). One patient withdrew from study participation. At 52 weeks, four of remaining five patients have > 70% decrease in MADRS scores relative to baseline (73% mean MADRS reduction, p = 0.007). Evaluation of modulated fiber tracts reveals significant common orbitofrontal connectivity to the target region in all responders. Neuropsychological testing and 18F-fluoro-deoxyglucose-positron emission tomography cerebral metabolism evaluations performed at baseline and at 52 weeks showed minimal changes and verified safety. This longitudinal evaluation of MFB DBS demonstrated rapid antidepressant effects, as initially reported by Schlaepfer et al. (2013), and supports the use of DBS for TRD.

Conflict of interest statement

Dr. Soares receives grant/research support from Bristol-Meyers Squibb, Forest Laboratories, Merck and Elan Pharmaceuticals, and is a consultant for Pfizer, Abbot, and Astellas Pharma, Inc. Dr. Zanotti-Fregonara has received fees as a speaker for Eli Lilly. The remaining authors declare no conflict of interest.

Figures

Fig. 1. Study protocol.
Fig. 1. Study protocol.
DBS, deep brain stimulation; SE, side effects; PET, positron emission tomography; Hz, Hertz; us, microseconds; V, volts; MADRS, Montgomery-Åsburg Depression Rating Scale, HAM-A, Hamilton Anxiety Scale; YMRS, Young Mania Rating Scale; CGI, Clinical Global Impressions
Fig. 2. MADRS scores recorded over time.
Fig. 2. MADRS scores recorded over time.
Initiation = bilateral DBS ON at t = 4w OFF following MADRS assessment. End-sham = 4w OFF. DBS initiation begun after End-Sham assessment. Mean % change MADRS baseline–12 w ON = 64%; mean % change MADRS baseline–52 w = 73%. MADRS, Montgomery-Åsburg Depression Rating Scale. Insert: Chronology of > 50% treatment response by month ( ±) for each patient for 12 months
Fig. 3. Representation of active cathodal contacts…
Fig. 3. Representation of active cathodal contacts in two planes for each of the six patients presented in this series, superimposed upon the deterministic tractography-defined target of the medial forebrain bundle for Patient 1; this is presented on adaptations of stereotactic atlas slices from Schaltenbrand and Wahren.
a H.v. 4.5, axial view b F.p. 3.0, Coronal view. STN = subthalamic nucleus; RN = red nucleus; SNr = substantia nigra; Mmt = mammillothalamic tract; Fx = fornix; V3 = 3rd ventricle
Fig. 4. Depiction of modulated fiber tracts…
Fig. 4. Depiction of modulated fiber tracts (assuming an isotropic model) from active cathodal contacts in patients #1–#6.
Chronological order of implantation. Significant orbitofrontal connectivity to the MFB target region seen in all responder patients but minimally seen in the non-responder Patient no. 3

References

    1. Fenoy AJ, et al. Deep brain stimulation of the medial forebrain bundle: distinctive responses in resistant depression. J. Affect. Disord. 2016;203:143–151. doi: 10.1016/j.jad.2016.05.064.
    1. Schlaepfer TE, Bewernick BH, Kayser S, Madler B, Coenen VA. Rapid effects of deep brain stimulation for treatment-resistant major depression. Biol. Psychiatry. 2013;73:1204–1212. doi: 10.1016/j.biopsych.2013.01.034.
    1. Nemeroff CB. Prevalence and management of treatment-resistant depression. J. Clin. Psychiatry. 2007;68(Suppl 8):17–25.
    1. Rush AJ, et al. Combining medications to enhance depression outcomes (CO-MED): acute and long-term outcomes of a single-blind randomized study. Am. J. Psychiatry. 2011;168:689–701. doi: 10.1176/appi.ajp.2011.10111645.
    1. Berlim MT, Turecki G. Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can. J. Psychiatry. 2007;52:46–54. doi: 10.1177/070674370705200108.
    1. Lozano AM, et al. Subcallosal cingulate gyrus deep brain stimulation for treatment-resistant depression. Biol. Psychiatry. 2008;64:461–467. doi: 10.1016/j.biopsych.2008.05.034.
    1. Holtzheimer PE, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch. Gen. Psychiatry. 2012;69:150–158. doi: 10.1001/archgenpsychiatry.2011.1456.
    1. Mayberg HS, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–660. doi: 10.1016/j.neuron.2005.02.014.
    1. Holtzheimer PE, et al. Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–849. doi: 10.1016/S2215-0366(17)30371-1.
    1. Maloney DA, Jr, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol. Psychiatry. 2009;65:267–275. doi: 10.1016/j.biopsych.2008.08.029.
    1. Dougherty DD, et al. A randomized sham-controlled trial of deep brain stimulation of the ventral capsule/ventral striatum for chronic treatment-resistant depression. Biol. Psychiatry. 2015;78:240–248. doi: 10.1016/j.biopsych.2014.11.023.
    1. Bergfeld IO, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2016;73:456–464. doi: 10.1001/jamapsychiatry.2016.0152.
    1. Bewernick BH, et al. Nucleus accumbens deep brain stimulation decreases ratings of depression and anxiety in treatment-resistant depression. Biol. Psychiatry. 2010;67:110–116. doi: 10.1016/j.biopsych.2009.09.013.
    1. Bewernick BH, et al. Deep brain stimulation to the medial forebrain bundle for depression- long-term outcomes and a novel data analysis strategy. Brain Stimul. 2017;10:664–671. doi: 10.1016/j.brs.2017.01.581.
    1. Gálvez JF, et al. The medial forebrain bundle as a deep brain stimulation target for treatment resistant depression: a review of published data. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2015;58:59–70. doi: 10.1016/j.pnpbp.2014.12.003.
    1. Nestler EJ, Carlezon WA., Jr The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry. 2006;59:1151–1159. doi: 10.1016/j.biopsych.2005.09.018.
    1. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013;14:609–625. doi: 10.1038/nrn3381.
    1. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured clinical interview for DSM-IV axis I disorders (SCID I) Washington DC: American Psychiatric Press; 1997.
    1. Hamilton M. Development of a rating scale for primary depressive illness. Br. J. Soc. Clin. Psychol. 1967;6:278–296. doi: 10.1111/j.2044-8260.1967.tb00530.x.
    1. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry. 1979;134:382–389. doi: 10.1192/bjp.134.4.382.
    1. Jones SH, Thornicroft G, Coffey M, Dunn G. A brief mental health outcome scale-reliability and validity of the Global Assessment of Functioning (GAF) Br. J. Psychiatry. 1995;166:654–659. doi: 10.1192/bjp.166.5.654.
    1. First MB, Spitzer RL, Gibbon M, Williams JBW, Benjamin LS. Structured clinical interview for DSM-IV Axis II personality disorders (SCID II) Washington, DC: American Psychiatric Press; 1996.
    1. Millon T, Millon C, Davis R. Millon Clinical Multiaxial Inventory-III (MCMI-III) manual. Minneapolis, MN (: National Computer Systems; 1994.
    1. Hamilton M. (1976). Hamilton Anxiety Scale. In: Guy W. (ed) ECDEU Assessment Manual for Psychopharmacology. RevEd, Rockville, MD, 193–198.
    1. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br. J. Psychiatry. 1978;133:429–435. doi: 10.1192/bjp.133.5.429.
    1. Busner J, Targum SD. The Clinical Global Impressions Scale: applying a Research Tool in Clinical Practice. Psychiatry. 2007;4:28–37.
    1. Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J. Neuropsychiatry Clin. Neurosci. 2012;24:223–236. doi: 10.1176/appi.neuropsych.11080180.
    1. Fenoy AJ, Simpson RK., Jr. Management of device-related wound complications in deep brain stimulation surgery. J. Neurosurg. 2012;11:1324–1332. doi: 10.3171/2012.1.JNS111798.
    1. Fenoy AJ, Simpson RK., Jr. Risks of common complications in deep brain stimulation surgery: management and avoidance. J. Neurosurg. 2014;120:132–139. doi: 10.3171/2013.10.JNS131225.
    1. Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS Scales. J. Pers. Soc. Psychol. 1988;54:1063–1070. doi: 10.1037/0022-3514.54.6.1063.
    1. Butson CR, Cooper SE, Henderson JM, McIntyre CC. Patient-specific analysis of the volume of tissue activated during deep brain stimulation. Neuroimage. 2007;34:661–670. doi: 10.1016/j.neuroimage.2006.09.034.
    1. Hammers A, et al. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum. Brain Mapp. 2013;19:224–247. doi: 10.1002/hbm.10123.
    1. Perez-Caballero L, et al. Early responses to deep brain stimulation in depression are modulated by anti-inflammatory drugs. Mol. Psychiatry. 2014;19:607–614. doi: 10.1038/mp.2013.63.
    1. Chang SY, Shon YM, Agnesi F, Lee KH. Microthalamotomy effect during deep brain stimulation: potential involvement of adenosine and glutamate efflux. Conf. Proc. IEEE Eng. Med Biol. Soc. 2009;2009:3294–3297.
    1. Fenoy AJ, Goetz L, Chabardès S, Xia Y. Deep brain stimulation: are astrocytes a key driver behind the scene? CNS Neurosci. Ther. 2014;20:191–201. doi: 10.1111/cns.12223.
    1. Riva-Posse P, et al. Defining critical white matter pathways mediating successful subcallosal cingulate deep brain stimulation for treatment-resistant depression. Biol. Psychiatry. 2014;76:963–969. doi: 10.1016/j.biopsych.2014.03.029.
    1. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. Oxford, UK: Oxford University Press; 1998.
    1. le Gros Clark WE. The termination of ascending tracts in the thalamus of the macaque monkey. J. Anat. 1936;71(Pt 1):7–40.
    1. Parent A, Hazrati LN. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 1995;20:128–154. doi: 10.1016/0165-0173(94)00008-D.
    1. Legault M, Rompré PP, Wise RA. Chemical stimulation of the ventral hippocampus elevates nucleus accumbens dopamine by activating dopaminergic neurons of the ventral tegmental area. J. Neurosci. 2000;20:1635–1642. doi: 10.1523/JNEUROSCI.20-04-01635.2000.
    1. Wise RA. Brain reward circuitry: insights from unsensed incentives. Neuron. 2002;36:229–240. doi: 10.1016/S0896-6273(02)00965-0.
    1. Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 2014;76:351–359. doi: 10.1016/j.neuropharm.2013.03.019.
    1. Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropyschopharmalcology. 2010;35:4–26. doi: 10.1038/npp.2009.129.
    1. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013;14:609–625. doi: 10.1038/nrn3381.
    1. Tye KM, et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature. 2013;493:537–541. doi: 10.1038/nature11740.
    1. Chaudhury D, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–536. doi: 10.1038/nature11713.
    1. Taber MT, Das S, Fibiger HC. Cortical regulation of subcortical dopamine release: mediation via the ventral tegmental area. J. Neurochem. 1995;65:1407–1410. doi: 10.1046/j.1471-4159.1995.65031407.x.
    1. Fujita M, et al. Downregulation of brain phosphodiesterase type IV measured with 11C-(R)-rolipram positron emission tomography in major depressive disorder. Biol. Psychiatry. 2012;72:548–554. doi: 10.1016/j.biopsych.2012.04.030.
    1. Yatham LN, Clark CC, Zis AP. A preliminary study of the effects of electroconvulsive therapy on regional brain glucose metabolism in patients with major depression. J. ECT. 2000;16:171–176. doi: 10.1097/00124509-200006000-00008.
    1. Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. New York: 3rd edn. Thieme; 1977.

Source: PubMed

3
구독하다