The influence of procedural volume on short-term outcomes for robotic pancreatoduodenectomy-a cohort study and a learning curve analysis

Michal Kawka, Tamara M H Gall, Fiona Hand, Scarlet Nazarian, David Cunningham, David Nicol, Long R Jiao, Michal Kawka, Tamara M H Gall, Fiona Hand, Scarlet Nazarian, David Cunningham, David Nicol, Long R Jiao

Abstract

Background: An increasing number of robotic pancreatoduodenectomies (RPD) are reported, however, questions remain on the number of procedures needed for gaining technical proficiency in RPD. Therefore, we aimed to assess the influence of procedure volume on short-term RPD outcomes and assess the learning curve effect.

Methods: A retrospective review of consecutive RPD cases was undertaken. Non-adjusted cumulative sum (CUSUM) analysis was performed to identify the procedure volume threshold, following which before-threshold and after-threshold outcomes were compared.

Results: Since May 2017, 60 patients had undergone an RPD at our institution. The median operative time was 360 min (IQR 302.25-442 min). CUSUM analysis of operative time identified 21 cases as proficiency threshold, indicated by curve inflexion. Median operative time was significantly shorter after the threshold of 21 cases (470 vs 320 min, p < 0.001). No significant difference was found between before- and after-threshold groups in major Clavien-Dindo complications (23.8 vs 25.6%, p = 0.876).

Conclusions: A decrease in operative time after 21 RPD cases suggests a threshold of technical proficiency potentially associated with an initial adjustment to new instrumentation, port placement and standardisation of operative step sequence. RPD can be safely performed by surgeons with prior laparoscopic surgery experience.

Keywords: Learning curve; Pancreatoduodenectomy; Robotic surgery; Surgical outcomes.

Conflict of interest statement

Mr Michal Kawka, Miss Tamara MH Gall, Miss Fiona Hand, Miss Scarlet Nazarian, Professor David Cunningham, Professor David Nicol, and Professor Long R Jiao have no conflicts of interest, or no financial ties to disclose.

© 2023. The Author(s).

Figures

Fig. 1
Fig. 1
The learning curve for operative time. The red dotted line represents the inflexion point of the curve, which suggest the threshold of technical proficiency. RPD Robotic pancreatoduodenectomy. The first phase has a positive slope and is marked in green (learning phase), while the second phase has a negative slope and is marked in blue (proficiency phase)
Fig. 2
Fig. 2
The learning curve for all morbidity. CUSUM calculated based on average CD grade. No clear inflexion point was identified on the curve. CD Clavien-Dindo, RPD Robotic pancreatoduodenectomy

References

    1. Tan-Tam C, Segedi M, Chung SW. Whipple procedure: Patient selection and special considerations. Open Access Surg. 2016;9:51–63. doi: 10.2147/OAS.S99636.
    1. Are C, Dhir M, Ravipati L. History of pancreaticoduodenectomy: Early misconceptions, initial milestones and the pioneers. HPB. 2011;13(6):377–384. doi: 10.1111/j.1477-2574.2011.00305.x.
    1. Jaschinski T, Mosch G, Eikermann M, Neugebauer E, Sauerland S. Laparoscopic versus open surgery for suspected appendicitis (review) Cochrane Database Syst Rev. 2018 doi: 10.1002/14651858.CD001546.pub4.
    1. Keus F, De Jong JAF, Gooszen HG, Van Laarhoven CJHM. Laparoscopic versus small-incision cholecystectomy for patients with symptomatic cholecystolithiasis. Cochrane Database Syst Rev. 2006 doi: 10.1002/14651858.CD006231.
    1. Wang M, Peng B, Liu J, et al. Practice patterns and perioperative outcomes of laparoscopic pancreaticoduodenectomy in china a retrospective multicenter analysis of 1029 patients. Ann Surg. 2019;20(20):145–153.
    1. Palanivelu C, Senthilnathan P, Sabnis SC, et al. Randomized clinical trial of laparoscopic versus open pancreatoduodenectomy for periampullary tumours. Br J Surg. 2017;104(11):1443–1450. doi: 10.1002/bjs.10662.
    1. Poves I, Burdío F, Morató O, et al. Comparison of perioperative outcomes between laparoscopic and open approach for pancreatoduodenectomy: the Padulap randomized controlled trial. Ann Surg. 2018;268(5):731–739. doi: 10.1097/SLA.0000000000002893.
    1. van Hilst J, De Rooij T, Bosscha K, et al. Laparoscopic versus open pancreatoduodenectomy for pancreatic or periampullary tumours (LEOPARD-2): a multicentre, patient-blinded, randomised controlled phase 2/3 trial. Lancet Gastroenterol Hepatol. 2019;4(3):199–207. doi: 10.1016/S2468-1253(19)30004-4.
    1. Michal K, Sau M, Tamara GMH, Long JR. A better route to ALPPS: minimally invasive vs open ALPPS. Surg Endosc. 2020;34(6):2379–2389. doi: 10.1007/s00464-020-07437-3.
    1. Gall TMH, Alrawashdeh W, Soomro N, White S, Jiao LR. Shortening surgical training through robotics: randomized clinical trial of laparoscopic versus robotic surgical learning curves. BJS Open. 2020;4(6):1100–1108. doi: 10.1002/bjs5.50353.
    1. Boone BA, Zenati M, Hogg ME, et al. Assessment of quality outcomes for robotic pancreaticoduodenectomy: Identification of the learning curve. JAMA Surg. 2015;150(5):416–422. doi: 10.1001/jamasurg.2015.17.
    1. Zhang T, Zhao ZM, Gao YX, Lau WY, Liu R. The learning curve for a surgeon in robot-assisted laparoscopic pancreaticoduodenectomy: a retrospective study in a high-volume pancreatic center. Surg Endosc. 2019;33(9):2927–2933. doi: 10.1007/s00464-018-6595-0.
    1. Benizri EI, Germain A, Ayav A, et al. Short-term perioperative outcomes after robot-assisted and laparoscopic distal pancreatectomy. J Robot Surg. 2014;8(2):125–132. doi: 10.1007/s11701-013-0438-8.
    1. Shi Y, Wang W, Qiu W, et al. Learning curve from 450 cases of robot-assisted pancreaticoduocectomy in a high-volume pancreatic center. Ann Surg. 2021;274(6):e1277–e1283. doi: 10.1097/SLA.0000000000003664.
    1. Müller PC, Kuemmerli C, Cizmic A, et al. Learning curves in open, laparoscopic, and robotic pancreatic surgery. Ann Surg Open. 2022;3(1):e111. doi: 10.1097/AS9.0000000000000111.
    1. von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2015;147(8):573–578. doi: 10.7326/0003-4819-147-8-200710160-00010.
    1. Giulianotti PC, Mangano A, Bustos RE, et al. Operative technique in robotic pancreaticoduodenectomy (RPD) at University of Illinois at Chicago (UIC): 17 steps standardized technique: lessons learned since the first worldwide RPD performed in the year 2001. Surg Endosc. 2018;32(10):4329–4336. doi: 10.1007/s00464-018-6228-7.
    1. Gall TM, Pencavel TD, Cunningham D, Nicol D, Jiao LR. Transition from open and laparoscopic to robotic pancreaticoduodenectomy in a UK tertiary referral hepatobiliary and pancreatic centre—early experience of robotic pancreaticoduodenectomy. HPB. 2020;22(11):1637–1644. doi: 10.1016/j.hpb.2020.03.008.
    1. Sánchez-Velázquez P, Muller X, Malleo G, et al. Benchmarks in pancreatic surgery: a novel tool for unbiased outcome comparisons. Ann Surg. 2019;270(2):211–218. doi: 10.1097/SLA.0000000000003223.
    1. Schuh F, Mihaljevic AL, Probst P, et al. A simple classification of pancreatiic duct size and texture predicts postoperative pancreatic fisttula: a classsification o the international study group of pancreatic surgery (ISGPS) Ann Surg. 2021;3(2):58–66.
    1. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–213. doi: 10.1097/.
    1. Taieb J, Abdallah R. How I treat pancreatic cancer. ESMO open. 2020;4:e000818. doi: 10.1136/esmoopen-2020-000818.
    1. Asbun HJ, Moekotte AL, Vissers FL, et al. The Miami international evidence-based guidelines on minimally invasive pancreas resection. Ann Surg. 2020;271(1):1–14. doi: 10.1097/SLA.0000000000003590.
    1. Shyr BU, Chen SC, Shyr YM, Wang SE. Learning curves for robotic pancreatic surgery-from distal pancreatectomy to pancreaticoduodenectomy. Medicine. 2018;97(45):e13000. doi: 10.1097/MD.0000000000013000.
    1. Marino MV, Heng Chiow AK, Mirabella A, Vaccarella G, Komorowski AL. Rate of post-operative pancreatic fistula after robotic-assisted pancreaticoduodenectomy with pancreato-jejunostomy versus pancreato-gastrostomy: a retrospective case matched comparative study. J Clin Med. 2021;10(10):2181. doi: 10.3390/jcm10102181.
    1. Rice MK, Hodges JC, Bellon J, et al. Association of mentorship and a formal robotic proficiency skills curriculum with subsequent generations’ learning curve and safety for robotic pancreaticoduodenectomy. JAMA Surg. 2020;155(7):607–615. doi: 10.1001/jamasurg.2020.1040.
    1. Haney CM, Karadza E, Limen EF, et al. Training and learning curves in minimally invasive pancreatic surgery: from simulation to mastery. J Pancreatol. 2020;3(2):101–110. doi: 10.1097/JP9.0000000000000050.
    1. De Rooij T, Lu MZ, Steen MW, et al. Minimally invasive versus open pancreatoduodenectomy: systematic review and meta-analysis of comparative cohort and registry studies. Ann Surg. 2016;264(2):257–267. doi: 10.1097/SLA.0000000000001660.
    1. de Rooij T, van Hilst J, Bosscha K, et al. Minimally invasive versus open pancreatoduodenectomy (LEOPARD-2): study protocol for a randomized controlled trial. Trials. 2018;19(1):1–10. doi: 10.1186/s13063-017-2423-4.
    1. Zwart MJW, Nota CLM, de Rooij T, et al. Outcomes of a multicenter training program in robotic pancreatoduodenectomy (LAELAPS-3) Ann Surg. 2021;276:e886–e895. doi: 10.1097/SLA.0000000000004783.
    1. Takagi K, Umeda Y, Yoshida R, et al. Surgical training model and safe implementation of robotic pancreatoduodenectomy in Japan: a technical note. World J Surg Oncol. 2021;19(1):1–7. doi: 10.1186/s12957-021-02167-9.

Source: PubMed

3
구독하다