A Bioinformatics Approach to MicroRNA-Sequencing Analysis Based on Human Saliva Samples of Patients with Endometriosis

Sofiane Bendifallah, Yohann Dabi, Stéphane Suisse, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Anne Puchar, Emile Daraï, Sofiane Bendifallah, Yohann Dabi, Stéphane Suisse, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Anne Puchar, Emile Daraï

Abstract

Endometriosis, defined by the presence of endometrium-like tissue outside the uterus, affects 2-10% of the female population, i.e., around 190 million women, worldwide. The aim of the prospective ENDO-miRNA study was to develop a bioinformatics approach for microRNA-sequencing analysis of 200 saliva samples for miRNAome expression and to test its diagnostic accuracy for endometriosis. Among the 200 patients, 76.5% (n = 153) had confirmed endometriosis and 23.5% (n = 47) had no endometriosis (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). The number of expressed miRNAs ranged from 1250 (outlier) to 2561 per sample. Some 2561 miRNAs were found to be differentially expressed in the saliva samples of patients with endometriosis compared with the control patients. Among these, 1.17% (n = 30) were up- or downregulated. Among these, the F1-score, sensitivity, specificity, and AUC ranged from 11-86.8%, 5.8-97.4%, 10.6-100%, and 39.3-69.2%, respectively. Here, we report a bioinformatic approach to saliva miRNA sequencing and analysis. We underline the advantages of using saliva over blood in terms of ease of collection, reproducibility, stability, safety, non-invasiveness. This report describes the whole saliva transcriptome to make miRNA quantification a validated, standardized, and reliable technique for routine use. The methodology could be applied to build a saliva signature of endometriosis.

Keywords: NGS; bioinformatics; endometriosis; miRNA; saliva.

Conflict of interest statement

S. Suisse is a former employee of Ziwig, Inc. The remaining authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

Figures

Figure 1
Figure 1
(A) Distribution of expressed miRs in the 200 saliva samples; (B) distribution of expressed miRNAs in the samples by diagnosis.
Figure 2
Figure 2
Overall composition of processed reads for saliva sample RNA reads = miRNAs + piRNAs + rRNAs + tRNAs + mRNAs + other; filtered reads = reads with no adapters + reads with low quality bases + reads too short; not characterized/mappable reads = mapped reads to GRCh38 that could not be characterized as a particular type; not characterized/not mappable reads = reads that could not be mapped.
Figure 3
Figure 3
Volcano plot of expressed miRNAs in saliva for endometriosis.
Figure 4
Figure 4
Small RNA-seq defines differentially expressed miRNAs in the saliva of endometriosis patients.
Figure 5
Figure 5
Clustering of accuracy values. In blue: F1-Score; In orange: Sensitivity; In grey: Specificity.

References

    1. Bartel D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5.
    1. Bartel D.P. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002.
    1. Agrawal S., Tapmeier T., Rahmioglu N., Kirtley S., Zondervan K., Becker C. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int. J. Mol. Sci. 2018;19:599. doi: 10.3390/ijms19020599.
    1. Vickers K.C., Palmisano B.T., Shoucri B.M., Shamburek R.D., Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011;13:423–433. doi: 10.1038/ncb2210.
    1. Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39:7223–7233. doi: 10.1093/nar/gkr254.
    1. Setti G., Pezzi M.E., Viani M.V., Pertinhez T.A., Cassi D., Magnoni C., Bellini P., Musolino A., Vescovi P., Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020;21:E907. doi: 10.3390/ijms21030907.
    1. Lopez-Rincon A., Martinez-Archundia M., Martinez-Ruiz G.U., Schoenhuth A., Tonda A. Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinform. 2019;20:480. doi: 10.1186/s12859-019-3050-8.
    1. Kang J.-W., Eun Y.-G., Lee Y.-C. Diagnostic Value of Salivary miRNA in Head and Neck Squamous Cell Cancer: Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021;22:7026. doi: 10.3390/ijms22137026.
    1. LaRocca D., Barns S., Hicks S.D., Brindle A., Williams J., Uhlig R., Johnson P., Neville C., Middleton F.A. Comparison of serum and saliva miRNAs for identification and characterization of mTBI in adult mixed martial arts fighters. PLoS ONE. 2019;14:e0207785. doi: 10.1371/journal.pone.0207785.
    1. Rapado-González Ó., Majem B., Álvarez-Castro A., Díaz-Peña R., Abalo A., Suárez-Cabrera L., Gil-Moreno A., Santamaría A., López-López R., Muinelo-Romay L., et al. A Novel Saliva-Based miRNA Signature for Colorectal Cancer Diagnosis. J. Clin. Med. 2019;8:E2029. doi: 10.3390/jcm8122029.
    1. Monnaka V.U., Hernandes C., Heller D., Podgaec S. Overview of miRNAs for the non-invasive diagnosis of endometriosis: Evidence, challenges and strategies. A systematic review. Einstein. 2021;19:eRW5704. doi: 10.31744/einstein_journal/2021RW5704.
    1. Moustafa S., Burn M., Mamillapalli R., Nematian S., Flores V., Taylor H.S. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obs. Gynecol. 2020;223:557.e1–557.e11. doi: 10.1016/j.ajog.2020.02.050.
    1. Potla P., Ali S.A., Kapoor M. A bioinformatics approach to microRNA-sequencing analysis. Osteoarthr. Cartil. Open. 2021;3:100131. doi: 10.1016/j.ocarto.2020.100131.
    1. Gyvyte U., Juzenas S., Salteniene V., Kupcinskas J., Poskiene L., Kucinskas L., Jarmalaite S., Stuopelyte K., Steponaitiene R., Hemmrich-Stanisak G., et al. MiRNA profiling of gastrointestinal stromal tumors by next-generation sequencing. Oncotarget. 2017;8:37225–37238. doi: 10.18632/oncotarget.16664.
    1. Lopez-Rincon A., Mendoza-Maldonado L., Martinez-Archundia M., Schönhuth A., Kraneveld A.D., Garssen J., Tonda A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating miRNAs for Cancer Tumor Classification. Cancers. 2020;12:E1785. doi: 10.3390/cancers12071785.
    1. Panir K., Schjenken J.E., Robertson S.A., Hull M.L. Non-coding RNAs in endometriosis: A narrative review. Hum. Reprod Update. 2018;24:497–515. doi: 10.1093/humupd/dmy014.
    1. Canis M., Donnez J.G., Guzick D.S., Halme J.K., Rock J.A., Schenken R.S., Vernon M.W. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67:817–821. doi: 10.1016/s0015-0282(97)81391-x.
    1. Gyvyte U., Kupcinskas J., Juzenas S., Inciuraite R., Poskiene L., Salteniene V., Link A., Fassan M., Franke A., Kupcinskas L., et al. Identification of long intergenic non-coding RNAs (lincRNAs) deregulated in gastrointestinal stromal tumors (GISTs) PLoS ONE. 2018;13:e0209342. doi: 10.1371/journal.pone.0209342.
    1. Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25.
    1. Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J. mirbase: Tools for microRNA genomics. Nucleic Acids Res. 2008;36:D154–D158. doi: 10.1093/nar/gkm952.
    1. Gao L., Zhang L. Construction and comprehensive analysis of a ceRNA network to reveal potential prognostic biomarkers for lung adenocarcinoma. BMC Cancer. 2021;21:849. doi: 10.1186/s12885-021-08462-8.
    1. Li Q., Liu G., Bao Y., Wu Y., You Q. Evaluation and application of tools for the identification of known microRNAs in plants. Appl. Plant Sci. 2021;9:e11414. doi: 10.1002/aps3.11414.
    1. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.
    1. Bargaje R., Hariharan M., Scaria V., Pillai B. Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA. 2010;16:16–25. doi: 10.1261/rna.1688110.
    1. Harrell F.E., Lee K.L., Mark D.B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996;15:361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Steyerberg E.W., Eijkemans M.J., Harrell F.E., Habbema J.D. Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets. Stat. Med. 2000;19:1059–1079. doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>;2-0.
    1. Nisenblat V., Sharkey D.J., Wang Z., Evans S.F., Healey M., Ohlsson Teague E.M.C., Print C.G., Robertson S.A., Hull M.L. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J. Clin. Endocrinol. Metab. 2019;104:1999–2022. doi: 10.1210/jc.2018-01464.
    1. Courts C., Madea B. Specific Micro-RNA Signatures for the Detection of Saliva and Blood in Forensic Body-fluid Identification. J. Forensic Sci. 2011;56:1464–1470. doi: 10.1111/j.1556-4029.2011.01894.x.
    1. El-Mogy M., Lam B., Haj-Ahmad T.A., McGowan S., Yu D., Nosal L., Rghei N., Roberts P., Haj-Ahmad Y. Diversity and signature of small RNA in different bodily fluids using next generation sequencing. BMC Genom. 2018;19:408. doi: 10.1186/s12864-018-4785-8.
    1. Ghassemi M., Naumann T., Schulam P., Beam A.L., Chen I.Y., Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA Jt Summits Transl. Sci. Proc. 2020;2020:191–200.
    1. Alexiou A., Zisis D., Kavakiotis I., Miliotis M., Koussounadis A., Karagkouni D., Hatzigeorgiou A.G. DIANA-mAP: Analyzing miRNA from Raw NGS Data to Quantification. Genes. 2020;12:46. doi: 10.3390/genes12010046.
    1. Park N.J., Zhou H., Elashoff D., Henson B.S., Kastratovic D.A., Abemayor E., Wong D.T. Salivary microRNA: Discovery, characterization, and clinical utility for oral cancer detection. Clin. Cancer Res. 2009;15:5473–5477. doi: 10.1158/1078-0432.CCR-09-0736.
    1. Hanson E.K., Lubenow H., Ballantyne J. Identification of forensically relevant body fluids using a panel of differentially expressed microRNAs. Anal. Biochem. 2009;387:303–314. doi: 10.1016/j.ab.2009.01.037.
    1. Patel R.S., Jakymiw A., Yao B., Pauley B.A., Carcamo W.C., Katz J., Cheng J.Q., Chan E.K.L. High resolution of microRNA signatures in human whole saliva. Arch. Oral Biol. 2011;56:1506–1513. doi: 10.1016/j.archoralbio.2011.05.015.
    1. Wingfield M., O’Herlihy C., Finn M.M., Tallon D.F., Fottrell P.F. Follicular and luteal phase salivary progesterone profiles in women with endometriosis and infertility. Gynecol. Endocrinol. 1994;8:21–25. doi: 10.3109/09513599409028453.
    1. Petrelluzzi K.F.S., Garcia M.C., Petta C.A., Grassi-Kassisse D.M., Spadari-Bratfisch R.C. Salivary cortisol concentrations, stress and quality of life in women with endometriosis and chronic pelvic pain. Stress. 2008;11:390–397. doi: 10.1080/10253890701840610.
    1. Andreasen D., Fog J.U., Biggs W., Salomon J., Dahslveen I.K., Baker A., Mouritzen P. Improved microRNA quantification in total RNA from clinical samples. Methods. 2010;50:S6–S9. doi: 10.1016/j.ymeth.2010.01.006.
    1. Chen Y., Wu Y., Yao H., Luo H., Lin B., Zhang X., Liang X., Sun R., Zhao S., Li Y., et al. miRNA Expression Profile of Saliva in Subjects of Yang Deficiency Constitution and Yin Deficiency Constitution. Cell Physiol Biochem. 2018;49:2088–2098. doi: 10.1159/000493769.
    1. Metselaar P.I., Mendoza-Maldonado L., Li Yim A.Y.F., Abarkan I., Henneman P., Te Velde A.A., Schönhuth A., Bosch J.A., Kraneveld A.D., Lopez-Rincon A. Recursive ensemble feature selection provides a robust mRNA expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci. Rep. 2021;11:4541. doi: 10.1038/s41598-021-83660-9.
    1. Vanhie A., D O., Peterse D., Beckers A., Cuéllar A., Fassbender A., Meuleman C., Mestdagh P., D’Hooghe T. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. 2019;34:1650–1660. doi: 10.1093/humrep/dez116.
    1. Kuokkanen S., Chen B., Ojalvo L., Benard L., Santoro N., Pollard J.W. Genomic profiling of microRNAs and messenger RNAs reveals hormonal regulation in microRNA expression in human endometrium. Biol. Reprod. 2010;82:791–801. doi: 10.1095/biolreprod.109.081059.
    1. Altmäe S., Martinez-Conejero J.A., Esteban F.J., Ruiz-Alonso M., Stavreus-Evers A., Horcajadas J.A., Salumets A. MicroRNAs miR-30b, miR-30d, and miR-494 regulate human endometrial receptivity. Reprod. Sci. 2013;20:308–317. doi: 10.1177/1933719112453507.
    1. Rekker K., Saare M., Roost A.M., Kaart T., Sõritsa D., Karro H., Sõritsa A., Simón C., Salumets A., Peters M. Circulating miR-200-family micro-RNAs have altered plasma levels in patients with endometriosis and vary with blood collection time. Fertil. Steril. 2015;104:938–946. doi: 10.1016/j.fertnstert.2015.06.029.
    1. Coenen-Stass A.M.L., Magen I., Brooks T., Ben-Dov I.Z., Greensmith L., Hornstein E., Fratta P. Evaluation of methodologies for microRNA biomarker detection by next generation sequencing. RNA Biol. 2018;15:1133–1145. doi: 10.1080/15476286.2018.1514236.
    1. ZIWIG Multicenter Validation of the Salivary miRNA Signature of Endometriosis—The ENDOmiARN Salive Test. Study. [(accessed on 1 April 2022)];2022 Available online: .
    1. Zondervan K.T., Becker C.M., Missmer S.A. Endometriosis. N. Engl. J. Med. 2020;382:1244–1256. doi: 10.1056/NEJMra1810764.

Source: PubMed

3
구독하다