MicroRNome analysis generates a blood-based signature for endometriosis

Sofiane Bendifallah, Yohann Dabi, Stéphane Suisse, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Anne Puchar, Emile Daraï, Sofiane Bendifallah, Yohann Dabi, Stéphane Suisse, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Anne Puchar, Emile Daraï

Abstract

Endometriosis, characterized by endometrial-like tissue outside the uterus, is thought to affect 2-10% of women of reproductive age: representing about 190 million women worldwide. Numerous studies have evaluated the diagnostic value of blood biomarkers but with disappointing results. Thus, the gold standard for diagnosing endometriosis remains laparoscopy. We performed a prospective trial, the ENDO-miRNA study, using both Artificial Intelligence (AI) and Machine Learning (ML), to analyze the current human miRNome to differentiate between patients with and without endometriosis, and to develop a blood-based microRNA (miRNA) diagnostic signature for endometriosis. Here, we present the first blood-based diagnostic signature obtained from a combination of two robust and disruptive technologies merging the intrinsic quality of miRNAs to condense the endometriosis phenotype (and its heterogeneity) with the modeling power of AI. The most accurate signature provides a sensitivity, specificity, and Area Under the Curve (AUC) of 96.8%, 100%, and 98.4%, respectively, and is sufficiently robust and reproducible to replace the gold standard of diagnostic surgery. Such a diagnostic approach for this debilitating disorder could impact recommendations from national and international learned societies.

Conflict of interest statement

S. Suisse is a former employee of Ziwig, Inc. The remaining authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript.

© 2022. The Author(s).

Figures

Figure 1
Figure 1
Flow chart of the ENDO-miRNA study.
Figure 2
Figure 2
Relative importance of each miRNA in the final signature.
Figure 3
Figure 3
Network, pathways, and functions for the relevant miRNAs associated with PI3K/Akt, MAPK pathways (with the Copyright permission of KEGG https://www.kegg.jp/kegg/kegg1.html with the reference number Ref: 220,170).

References

    1. Giudice LC. Clinical practice. Endometriosis. N. Engl. J. Med. 2010;362(25):2389–2398. doi: 10.1056/NEJMcp1000274.
    1. Zondervan KT, Becker CM, Missmer SA. Endometriosis. Longo DL, ed. N. Engl. J. Med. 2020;382(13):1244–1256. doi: 10.1056/NEJMra1810764.
    1. Simoens S, Dunselman G, Dirksen C, et al. The burden of endometriosis: Costs and quality of life of women with endometriosis and treated in referral centres. Hum. Reprod. Oxf. Engl. 2012;27(5):1292–1299. doi: 10.1093/humrep/des073.
    1. Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K, Becker C. The miRNA mirage: How close are we to finding a non-invasive diagnostic biomarker in endometriosis? A systematic review. Int. J. Mol. Sci. 2018;19(2):E599. doi: 10.3390/ijms19020599.
    1. Surrey E, Carter CM, Soliman AM, Khan S, DiBenedetti DB, Snabes MC. Patient-completed or symptom-based screening tools for endometriosis: A scoping review. Arch. Gynecol. Obstet. 2017;296(2):153–165. doi: 10.1007/s00404-017-4406-9.
    1. van der Zanden M, Teunissen DAM, van der Woord IW, Braat DDM, Nelen WLDM, Nap AW. Barriers and facilitators to the timely diagnosis of endometriosis in primary care in the Netherlands. Fam. Pract. 2020;37(1):131–136. doi: 10.1093/fampra/cmz041.
    1. Hudson QJ, Perricos A, Wenzl R, Yotova I. Challenges in uncovering non-invasive biomarkers of endometriosis. Exp. Biol. Med. Maywood NJ. 2020;245(5):437–447. doi: 10.1177/1535370220903270.
    1. Horne AW, Saunders PTK, Abokhrais IM, Hogg L. Endometriosis Priority Setting Partnership Steering Group (appendix). Top ten endometriosis research priorities in the UK and Ireland. Lancet Lond. Engl. 2017;389(10085):2191–2192. doi: 10.1016/S0140-6736(17)31344-2.
    1. Bazot M, Clarisse L, Rouzier R, Roseau G, Thomassin-Naggara I, Daraï E. Diagnostic accuracy of physical examination, transvaginal sonography, rectal endoscopic sonography, and magnetic resonance imaging to diagnose deep infiltrating endometriosis. Fertil. Steril. 2009;92(6):1825–1833. doi: 10.1016/j.fertnstert.2008.09.005.
    1. Bazot M, Darai E, Hourani R, et al. Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology. 2004;232(2):379–389. doi: 10.1148/radiol.2322030762.
    1. Lorusso F, Scioscia M, Rubini D, et al. Magnetic resonance imaging for deep infiltrating endometriosis: Current concepts, imaging technique and key findings. Insights Imaging. 2021;12(1):105. doi: 10.1186/s13244-021-01054-x.
    1. Nisenblat V, Bossuyt PM, Farquhar C, Johnson N, Hull ML. Imaging modalities for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD009591.pub2.
    1. Nisenblat V, Prentice L, Bossuyt PM, Farquhar C, Hull ML, Johnson N. Combination of the non-invasive tests for the diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD012281.
    1. Vanhie AOD, Peterse D, et al. Plasma miRNAs as biomarkers for endometriosis. Hum. Reprod. Oxf. Engl. 2019;34(9):1650–1660. doi: 10.1093/humrep/dez116.
    1. Moustafa S, Burn M, Mamillapalli R, Nematian S, Flores V, Taylor HS. Accurate diagnosis of endometriosis using serum microRNAs. Am. J. Obstet. Gynecol. 2020;223(4):557.e1–557.e11. doi: 10.1016/j.ajog.2020.02.050.
    1. Marí-Alexandre J, Sánchez-Izquierdo D, Gilabert-Estellés J, Barceló-Molina M, Braza-Boïls A, Sandoval J. miRNAs regulation and its role as biomarkers in endometriosis. Int. J. Mol. Sci. 2016;17(1):E93. doi: 10.3390/ijms17010093.
    1. Monnaka VU, Hernandes C, Heller D, Podgaec S. Overview of miRNAs for the non-invasive diagnosis of endometriosis: evidence, challenges and strategies. A systematic review. Einstein Sao Paulo Braz. 2021;19:eRW5704. doi: 10.31744/einstein_journal/2021RW5704.
    1. Nisenblat V, Bossuyt PM, Shaikh R, et al. Blood biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD012179.
    1. Anastasiu CV, Moga MA, Elena Neculau A, et al. Biomarkers for the noninvasive diagnosis of endometriosis: State of the art and future perspectives. Int. J. Mol. Sci. 2020;21(5):E1750. doi: 10.3390/ijms21051750.
    1. Wu J, Huang H, Huang W, Wang L, Xia X, Fang X. Analysis of exosomal lncRNA, miRNA and mRNA expression profiles and ceRNA network construction in endometriosis. Epigenomics. 2020;12(14):1193–1213. doi: 10.2217/epi-2020-0084.
    1. Zafari N, Tarafdari AM, Izadi P, et al. A panel of plasma miRNAs 199b-3p, 224-5p and Let-7d-3p as non-invasive diagnostic biomarkers for endometriosis. Reprod. Sci. Thousand Oaks Calif. 2021;28(4):991–999. doi: 10.1007/s43032-020-00415-z.
    1. Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi: 10.1016/s0092-8674(04)00045-5.
    1. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y.
    1. Bartel DP. MicroRNAs: Target recognition and regulatory functions. Cell. 2009;136(2):215–233. doi: 10.1016/j.cell.2009.01.002.
    1. Hammond SM. RNAi, microRNAs, and human disease. Cancer Chemother. Pharmacol. 2006;58(Suppl 1):s63–68. doi: 10.1007/s00280-006-0318-2.
    1. Ghafouri-Fard S, Shoorei H, Taheri M. Role of non-coding RNAs in the pathogenesis of endometriosis. Front. Oncol. 2020;10:1370. doi: 10.3389/fonc.2020.01370.
    1. Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: An updated list of essential items for reporting diagnostic accuracy studies. BMJ. 2015;351:h5527. doi: 10.1136/bmj.h5527.
    1. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: A methodology review. J. Biomed. Inform. 2002;35(5–6):352–359. doi: 10.1016/S1532-0464(03)00034-0.
    1. Crown WH. Potential application of machine learning in health outcomes research and some statistical cautions. Value Health J. Int. Soc. Pharmacoecon. Outcomes Res. 2015;18(2):137–140. doi: 10.1016/j.jval.2014.12.005.
    1. Ghassemi M, Naumann T, Schulam P, Beam AL, Chen IY, Ranganath R. A review of challenges and opportunities in machine learning for health. AMIA Jt. Summits Transl. Sci. Proc. AMIA Jt. Summits Transl. Sci. 2020;2020:191–200.
    1. Sanal MG, Paul K, Kumar S, Ganguly NK. Artificial intelligence and deep learning: The future of medicine and medical practice. J. Assoc. Physicians India. 2019;67(4):71–73.
    1. Akter S, Xu D, Nagel SC, et al. GenomeForest: An ensemble machine learning classifier for endometriosis. AMIA Jt. Summits Transl. Sci. Proc. AMIA Jt. Summits Transl. Sci. 2020;2020:33–42.
    1. Goyal A, Kuchana M, Ayyagari KPR. Machine learning predicts live-birth occurrence before in-vitro fertilization treatment. Sci. Rep. 2020;10(1):20925. doi: 10.1038/s41598-020-76928-z.
    1. Subramanian M, Wojtusciszyn A, Favre L, et al. Precision medicine in the era of artificial intelligence: Implications in chronic disease management. J. Transl. Med. 2020;18(1):472. doi: 10.1186/s12967-020-02658-5.
    1. Santamaria-Martos F, Benítez I, Ortega F, et al. Circulating microRNA profile as a potential biomarker for obstructive sleep apnea diagnosis. Sci. Rep. 2019;9(1):13456. doi: 10.1038/s41598-019-49940-1.
    1. Lopez-Rincon A, Mendoza-Maldonado L, Martinez-Archundia M, et al. Machine learning-based ensemble recursive feature selection of circulating miRNAs for cancer tumor classification. Cancers. 2020;12(7):E1785. doi: 10.3390/cancers12071785.
    1. Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinform. 2019;20(1):480. doi: 10.1186/s12859-019-3050-8.
    1. Metselaar PI, Mendoza-Maldonado L, Li Yim AYF, et al. Recursive ensemble feature selection provides a robust mRNA expression signature for myalgic encephalomyelitis/chronic fatigue syndrome. Sci. Rep. 2021;11(1):4541. doi: 10.1038/s41598-021-83660-9.
    1. Metzemaekers J, Haazebroek P, Smeets MJGH, et al. EQUSUM: Endometriosis QUality and grading instrument for SUrgical performance: Proof of concept study for automatic digital registration and classification scoring for r-ASRM, EFI and Enzian. Hum. Reprod. Open. 2020;2020(4):hoaa053. doi: 10.1093/hropen/hoaa053.
    1. Canlorbe G, Castela M, Bendifallah S, et al. Micro-RNA signature of lymphovascular space involvement in type 1 endometrial cancer. Histol. Histopathol. 2017;32(9):941–950. doi: 10.14670/HH-11-859.
    1. Canlorbe G, Wang Z, Laas E, et al. Identification of microRNA expression profile related to lymph node status in women with early-stage grade 1–2 endometrial cancer. Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc. 2016;29(4):391–401. doi: 10.1038/modpathol.2016.30.
    1. de Foucher T, Sbeih M, Uzan J, et al. Identification of micro-RNA expression profile related to recurrence in women with ESMO low-risk endometrial cancer. J. Transl. Med. 2018;16(1):131. doi: 10.1186/s12967-018-1515-6.
    1. Pantaleo MA, Ravegnini G, Astolfi A, et al. Integrating miRNA and gene expression profiling analysis revealed regulatory networks in gastrointestinal stromal tumors. Epigenomics. 2016;8(10):1347–1366. doi: 10.2217/epi-2016-0030.
    1. Gyvyte U, Juzenas S, Salteniene V, et al. MiRNA profiling of gastrointestinal stromal tumors by next-generation sequencing. Oncotarget. 2017;8(23):37225–37238. doi: 10.18632/oncotarget.16664.
    1. Gyvyte U, Kupcinskas J, Juzenas S, et al. Identification of long intergenic non-coding RNAs (lincRNAs) deregulated in gastrointestinal stromal tumors (GISTs) PLoS One. 2018;13(12):e0209342. doi: 10.1371/journal.pone.0209342.
    1. Potla P, Ali SA, Kapoor M. A bioinformatics approach to microRNA-sequencing analysis. Osteoarthr. Cartil. Open. 2021;3(1):100131. doi: 10.1016/j.ocarto.2020.100131.
    1. Li Q, Liu G, Bao Y, Wu Y, You Q. Evaluation and application of tools for the identification of known microRNAs in plants. Appl. Plant Sci. 2021;9(3):e11414. doi: 10.1002/aps3.11414.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
    1. Bargaje R, Hariharan M, Scaria V, Pillai B. Consensus miRNA expression profiles derived from interplatform normalization of microarray data. RNA N Y N. 2010;16(1):16–25. doi: 10.1261/rna.1688110.
    1. Nguyen JM, Jézéquel P, Gillois P, et al. Random forest of perfect trees: Concept, performance, applications, and perspectives. Bioinform. Oxf. Engl. 2021 doi: 10.1093/bioinformatics/btab074.
    1. Lecointre L, Bund V, Sangnier E, et al. Status of surgical management of borderline ovarian tumors in France: Are recommendations being followed? Multicentric French Study by the FRANCOGYN Group. Ann. Surg. Oncol. 2021 doi: 10.1245/s10434-021-09852-9.
    1. Geoffron S, Lier A, de Kermadec E, et al. Fertility preservation in women with malignant and borderline ovarian tumors: Experience of the French ESGO-certified center and pregnancy-associated cancer network (CALG) Gynecol. Oncol. 2021 doi: 10.1016/j.ygyno.2021.03.030.
    1. Harrell FEJ, Lee KL, Mark DB. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 1996;15(4):361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Steyerberg EW, Eijkemans MJ, Harrell FEJ, Habbema JD. Prognostic modelling with logistic regression analysis: A comparison of selection and estimation methods in small data sets. Stat. Med. 2000;19(8):1059–1079. doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>;2-0.
    1. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27.
    1. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. Publ. Protein Soc. 2019;28(11):1947–1951. doi: 10.1002/pro.3715.
    1. Akter S, Xu D, Nagel SC, et al. Machine learning classifiers for endometriosis using transcriptomics and methylomics data. Front. Genet. 2019;10:766. doi: 10.3389/fgene.2019.00766.
    1. Gater A, Taylor F, Seitz C, Gerlinger C, Wichmann K, Haberland C. Development and content validation of two new patient-reported outcome measures for endometriosis: The Endometriosis Symptom Diary (ESD) and Endometriosis Impact Scale (EIS) J. Patient-Rep. Outcomes. 2020;4(1):13. doi: 10.1186/s41687-020-0177-3.
    1. Verket NJ, Falk RS, Qvigstad E, Tanbo TG, Sandvik L. Development of a prediction model to aid primary care physicians in early identification of women at high risk of developing endometriosis: Cross-sectional study. BMJ Open. 2019;9(12):e030346. doi: 10.1136/bmjopen-2019-030346.
    1. Yang RQ, Teng H, Xu XH, et al. Microarray analysis of microRNA deregulation and angiogenesis-related proteins in endometriosis. Genet. Mol. Res. GMR. 2016 doi: 10.4238/gmr.15027826.
    1. ’t Hoen PAC, Ariyurek Y, Thygesen HH, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Res. 2008;36(21):e141–e141. doi: 10.1093/nar/gkn705.
    1. Setti G, Pezzi ME, Viani MV, et al. Salivary microRNA for diagnosis of cancer and systemic diseases: A systematic review. Int. J. Mol. Sci. 2020;21(3):907. doi: 10.3390/ijms21030907.
    1. Liu S, Qiu J, Tang X, Cui H, Zhang Q, Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp. Cell Res. 2019;381(2):215–222. doi: 10.1016/j.yexcr.2019.05.010.
    1. Fang Y, Hong X. miR-124-3p inhibits microglial secondary inflammation after basal ganglia hemorrhage by targeting TRAF6 and repressing the activation of NLRP3 inflammasome. Front. Neurol. 2021;12:653321. doi: 10.3389/fneur.2021.653321.
    1. Liu F, Qiu F, Chen H. miR-124-3p ameliorates isoflurane-induced learning and memory impairment via targeting STAT3 and inhibiting neuroinflammation. NeuroImmunoModulation. 2021 doi: 10.1159/000515661.

Source: PubMed

3
구독하다