Salivary MicroRNA Signature for Diagnosis of Endometriosis

Sofiane Bendifallah, Stéphane Suisse, Anne Puchar, Léa Delbos, Mathieu Poilblanc, Philippe Descamps, Francois Golfier, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Yohann Dabi, Emile Daraï, Sofiane Bendifallah, Stéphane Suisse, Anne Puchar, Léa Delbos, Mathieu Poilblanc, Philippe Descamps, Francois Golfier, Ludmila Jornea, Delphine Bouteiller, Cyril Touboul, Yohann Dabi, Emile Daraï

Abstract

Background: Endometriosis diagnosis constitutes a considerable economic burden for the healthcare system with diagnostic tools often inconclusive with insufficient accuracy. We sought to analyze the human miRNAome to define a saliva-based diagnostic miRNA signature for endometriosis.

Methods: We performed a prospective ENDO-miRNA study involving 200 saliva samples obtained from 200 women with chronic pelvic pain suggestive of endometriosis collected between January and June 2021. The study consisted of two parts: (i) identification of a biomarker based on genome-wide miRNA expression profiling by small RNA sequencing using next-generation sequencing (NGS) and (ii) development of a saliva-based miRNA diagnostic signature according to expression and accuracy profiling using a Random Forest algorithm.

Results: Among the 200 patients, 76.5% (n = 153) were diagnosed with endometriosis and 23.5% (n = 47) without (controls). Small RNA-seq of 200 saliva samples yielded ~4642 M raw sequencing reads (from ~13.7 M to ~39.3 M reads/sample). Quantification of the filtered reads and identification of known miRNAs yielded ~190 M sequences that were mapped to 2561 known miRNAs. Of the 2561 known miRNAs, the feature selection with Random Forest algorithm generated after internally cross validation a saliva signature of endometriosis composed of 109 miRNAs. The respective sensitivity, specificity, and AUC for the diagnostic miRNA signature were 96.7%, 100%, and 98.3%.

Conclusions: The ENDO-miRNA study is the first prospective study to report a saliva-based diagnostic miRNA signature for endometriosis. This could contribute to improving early diagnosis by means of a non-invasive tool easily available in any healthcare system.

Keywords: diagnostic; endometriosis; miRNA; saliva; signature.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow chart of ENDO-miRNA study.
Figure 2
Figure 2
Overall composition of processed reads. RNA reads, miRNAs + piRNAs + rRNAs + tRNAs + mRNAs + others; Filtered Reads, reads with no adapters + reads with low quality bases + reads too short; Not Characterized/Mappable reads, mapped reads to GRCh38 that could not be characterized as a particular type; Not Characterized/Not Mappable reads, reads that could not be mapped.

References

    1. Giudice L.C. Clinical Practice. Endometriosis. N. Engl. J. Med. 2010;362:2389–2398. doi: 10.1056/NEJMcp1000274.
    1. Zondervan K.T., Becker C.M., Missmer S.A. Endometriosis. N. Engl. J. Med. 2020;382:1244–1256. doi: 10.1056/NEJMra1810764.
    1. van der Zanden M., Teunissen D.A.M., van der Woord I.W., Braat D.D.M., Nelen W.L.D.M., Nap A.W. Barriers and Facilitators to the Timely Diagnosis of Endometriosis in Primary Care in the Netherlands. Fam. Pract. 2020;37:131–136. doi: 10.1093/fampra/cmz041.
    1. Duffy J.M.N., Adamson G.D., Benson E., Bhattacharya S., Bhattacharya S., Bofill M., Brian K., Collura B., Curtis C., Evers J.L.H., et al. Top 10 Priorities for Future Infertility Research: An International Consensus Development Study. Hum. Reprod. Oxf. Engl. 2020;35:2715–2724. doi: 10.1093/humrep/deaa242.
    1. Nisenblat V., Bossuyt P.M., Farquhar C., Johnson N., Hull M.L. Imaging Modalities for the Non-Invasive Diagnosis of Endometriosis. Cochrane Database Syst. Rev. 2016 doi: 10.1002/14651858.CD009591.pub2.
    1. Bazot M., Lafont C., Rouzier R., Roseau G., Thomassin-Naggara I., Daraï E. Diagnostic Accuracy of Physical Examination, Transvaginal Sonography, Rectal Endoscopic Sonography, and Magnetic Resonance Imaging to Diagnose Deep Infiltrating Endometriosis. Fertil. Steril. 2009;92:1825–1833. doi: 10.1016/j.fertnstert.2008.09.005.
    1. Bazot M., Darai E., Hourani R., Thomassin I., Cortez A., Uzan S., Buy J.-N. Deep Pelvic Endometriosis: MR Imaging for Diagnosis and Prediction of Extension of Disease. Radiology. 2004;232:379–389. doi: 10.1148/radiol.2322030762.
    1. Lorusso F., Scioscia M., Rubini D., Stabile Ianora A.A., Scardigno D., Leuci C., De Ceglie M., Sardaro A., Lucarelli N., Scardapane A. Magnetic Resonance Imaging for Deep Infiltrating Endometriosis: Current Concepts, Imaging Technique and Key Findings. Insights Imaging. 2021;12:105. doi: 10.1186/s13244-021-01054-x.
    1. Soliman A.M., Rahal Y., Robert C., Defoy I., Nisbet P., Leyland N., Singh S. Impact of Endometriosis on Fatigue and Productivity Impairment in a Cross-Sectional Survey of Canadian Women. JOGC. 2021;43:10–18. doi: 10.1016/j.jogc.2020.06.022.
    1. Surrey E., Soliman A.M., Trenz H., Blauer-Peterson C., Sluis A. Impact of Endometriosis Diagnostic Delays on Healthcare Resource Utilization and Costs. Adv. Ther. 2020;37:1087–1099. doi: 10.1007/s12325-019-01215-x.
    1. As-Sanie S., Soliman A.M., Evans K., Erpelding N., Lanier R., Katz N.P. Healthcare Utilization and Cost Burden among Women with Endometriosis by Opioid Prescription Status in the First Year after Diagnosis: A Retrospective Claims Database Analysis. J. Med. Econ. 2020;23:371–377. doi: 10.1080/13696998.2019.1707212.
    1. Dai Y., Shi B., Huang X., Duan J., Qiu Y., Ha C., Huang R., Xiao D., Liu J., Xuan J. Cost-Effectiveness Analysis of Dienogest Compared With Gonadotropin-Releasing Hormone Agonist After Conservative Surgery for Endometriosis in China. Clin. Ther. 2021;43:1276–1284.e1. doi: 10.1016/j.clinthera.2021.07.002.
    1. Simoens S., Dunselman G., Dirksen C., Hummelshoj L., Bokor A., Brandes I., Brodszky V., Canis M., Colombo G.L., DeLeire T., et al. The Burden of Endometriosis: Costs and Quality of Life of Women with Endometriosis and Treated in Referral Centres. Hum. Reprod. Oxf. Engl. 2012;27:1292–1299. doi: 10.1093/humrep/des073.
    1. Nisenblat V., Prentice L., Bossuyt P.M., Farquhar C., Hull M.L., Johnson N. Combination of the Non-Invasive Tests for the Diagnosis of Endometriosis. Cochrane Database Syst. Rev. 2016;2016:CD012281. doi: 10.1002/14651858.CD012281.
    1. Nisenblat V., Bossuyt P.M., Shaikh R., Farquhar C., Jordan V., Scheffers C.S., Mol B.W.J., Johnson N., Hull M.L. Blood Biomarkers for the Non-Invasive Diagnosis of Endometriosis. Cochrane Database Syst. Rev. 2016;2016:CD012179. doi: 10.1002/14651858.CD012179.
    1. Surrey E., Carter C.M., Soliman A.M., Khan S., DiBenedetti D.B., Snabes M.C. Patient-Completed or Symptom-Based Screening Tools for Endometriosis: A Scoping Review. Arch. Gynecol. Obstet. 2017;296:153–165. doi: 10.1007/s00404-017-4406-9.
    1. Akter S., Xu D., Nagel S.C., Bromfield J.J., Pelch K.E., Wilshire G.B., Joshi T. GenomeForest: An Ensemble Machine Learning Classifier for Endometriosis. AMIA Jt. Summits Transl. Sci. Proc. AMIA Jt. Summits Transl. Sci. 2020;2020:33–42.
    1. Kleczyk E.J., Peri A., Yadav T., Komera R., Peri M., Guduru V., Amirtharaj S., Huang M. Predicting Endometriosis Onset Using Machine Learning Algorithms. Res. Sq. 2020 doi: 10.21203/-135736/v1. in review.
    1. Vanhie A., O D., Peterse D., Beckers A., Cuéllar A., Fassbender A., Meuleman C., Mestdagh P., D’Hooghe T. Plasma MiRNAs as Biomarkers for Endometriosis. Hum. Reprod. Oxf. Engl. 2019;34:1650–1660. doi: 10.1093/humrep/dez116.
    1. Agrawal S., Tapmeier T., Rahmioglu N., Kirtley S., Zondervan K., Becker C. The MiRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int. J. Mol. Sci. 2018;19:599. doi: 10.3390/ijms19020599.
    1. Santamaria-Martos F., Benítez I., Ortega F., Zapater A., Giron C., Pinilla L., Pascual L., Cortijo A., Dalmases M., Fernandez-Real J.M., et al. Circulating MicroRNA Profile as a Potential Biomarker for Obstructive Sleep Apnea Diagnosis. Sci. Rep. 2019;9:13456. doi: 10.1038/s41598-019-49940-1.
    1. Ghafouri-Fard S., Shoorei H., Taheri M. Role of Non-Coding RNAs in the Pathogenesis of Endometriosis. Front. Oncol. 2020;10:1370. doi: 10.3389/fonc.2020.01370.
    1. Panir K., Schjenken J.E., Robertson S.A., Hull M.L. Non-Coding RNAs in Endometriosis: A Narrative Review. Hum. Reprod. Update. 2018;24:497–515. doi: 10.1093/humupd/dmy014.
    1. Bartel D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell. 2004;116:281–297. doi: 10.1016/S0092-8674(04)00045-5.
    1. Hammond S.M. RNAi, MicroRNAs, and Human Disease. Cancer Chemother. Pharmacol. 2006;58((Suppl. 1)):S63–S68. doi: 10.1007/s00280-006-0318-2.
    1. Bartel D.P. MicroRNAs: Target Recognition and Regulatory Functions. Cell. 2009;136:215–233. doi: 10.1016/j.cell.2009.01.002.
    1. Nematian S.E., Mamillapalli R., Kadakia T.S., Majidi Zolbin M., Moustafa S., Taylor H.S. Systemic Inflammation Induced by MicroRNAs: Endometriosis-Derived Alterations in Circulating MicroRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J. Clin. Endocrinol. Metab. 2018;103:64–74. doi: 10.1210/jc.2017-01199.
    1. Anastasiu C.V., Moga M.A., Elena Neculau A., Bălan A., Scârneciu I., Dragomir R.M., Dull A.-M., Chicea L.-M. Biomarkers for the Noninvasive Diagnosis of Endometriosis: State of the Art and Future Perspectives. Int. J. Mol. Sci. 2020;21:1750. doi: 10.3390/ijms21051750.
    1. Kang J.-W., Eun Y.-G., Lee Y.-C. Diagnostic Value of Salivary MiRNA in Head and Neck Squamous Cell Cancer: Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2021;22:7026. doi: 10.3390/ijms22137026.
    1. Rapado-González Ó., Majem B., Álvarez-Castro A., Díaz-Peña R., Abalo A., Suárez-Cabrera L., Gil-Moreno A., Santamaría A., López-López R., Muinelo-Romay L., et al. A Novel Saliva-Based MiRNA Signature for Colorectal Cancer Diagnosis. J. Clin. Med. 2019;8:2029. doi: 10.3390/jcm8122029.
    1. Setti G., Pezzi M.E., Viani M.V., Pertinhez T.A., Cassi D., Magnoni C., Bellini P., Musolino A., Vescovi P., Meleti M. Salivary MicroRNA for Diagnosis of Cancer and Systemic Diseases: A Systematic Review. Int. J. Mol. Sci. 2020;21:907. doi: 10.3390/ijms21030907.
    1. Patel R.S., Jakymiw A., Yao B., Pauley B.A., Carcamo W.C., Katz J., Cheng J.Q., Chan E.K.L. High Resolution of MicroRNA Signatures in Human Whole Saliva. Arch. Oral Biol. 2011;56:1506–1513. doi: 10.1016/j.archoralbio.2011.05.015.
    1. Bossuyt P.M., Reitsma J.B., Bruns D.E., Gatsonis C.A., Glasziou P.P., Irwig L., Lijmer J.G., Moher D., Rennie D., de Vet H.C.W., et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. BMJ. 2015;351:h5527. doi: 10.1136/bmj.h5527.
    1. Dreiseitl S., Ohno-Machado L. Logistic Regression and Artificial Neural Network Classification Models: A Methodology Review. J. Biomed. Inform. 2002;35:352–359. doi: 10.1016/S1532-0464(03)00034-0.
    1. Crown W.H. Potential Application of Machine Learning in Health Outcomes Research and Some Statistical Cautions. Value Health J. Int. Soc. Pharm. Outcomes Res. 2015;18:137–140. doi: 10.1016/j.jval.2014.12.005.
    1. Ghassemi M., Naumann T., Schulam P., Beam A.L., Chen I.Y., Ranganath R. A Review of Challenges and Opportunities in Machine Learning for Health. AMIA. 2020;2020:191–200.
    1. Sanal M.G., Paul K., Kumar S., Ganguly N.K. Artificial Intelligence and Deep Learning: The Future of Medicine and Medical Practice. J. Assoc. Physicians India. 2019;67:71–73.
    1. Goyal A., Kuchana M., Ayyagari K.P.R. Machine Learning Predicts Live-Birth Occurrence before in-Vitro Fertilization Treatment. Sci. Rep. 2020;10:20925. doi: 10.1038/s41598-020-76928-z.
    1. Subramanian M., Wojtusciszyn A., Favre L., Boughorbel S., Shan J., Letaief K.B., Pitteloud N., Chouchane L. Precision Medicine in the Era of Artificial Intelligence: Implications in Chronic Disease Management. J. Transl. Med. 2020;18:472. doi: 10.1186/s12967-020-02658-5.
    1. Lopez-Rincon A., Mendoza-Maldonado L., Martinez-Archundia M., Schönhuth A., Kraneveld A.D., Garssen J., Tonda A. Machine Learning-Based Ensemble Recursive Feature Selection of Circulating MiRNAs for Cancer Tumor Classification. Cancers. 2020;12:1785. doi: 10.3390/cancers12071785.
    1. Lopez-Rincon A., Martinez-Archundia M., Martinez-Ruiz G.U., Schoenhuth A., Tonda A. Automatic Discovery of 100-MiRNA Signature for Cancer Classification Using Ensemble Feature Selection. BMC Bioinform. 2019;20:480. doi: 10.1186/s12859-019-3050-8.
    1. Metselaar P.I., Mendoza-Maldonado L., Li Yim A.Y.F., Abarkan I., Henneman P., Te Velde A.A., Schönhuth A., Bosch J.A., Kraneveld A.D., Lopez-Rincon A. Recursive Ensemble Feature Selection Provides a Robust MRNA Expression Signature for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci. Rep. 2021;11:4541. doi: 10.1038/s41598-021-83660-9.
    1. Metzemaekers J., Haazebroek P., Smeets M.J.G.H., English J., Blikkendaal M.D., Twijnstra A.R.H., Adamson G.D., Keckstein J., Jansen F.W. EQUSUM: Endometriosis QUality and Grading Instrument for SUrgical Performance: Proof of Concept Study for Automatic Digital Registration and Classification Scoring for r-ASRM, EFI and Enzian. Hum. Reprod. Open. 2020;2020:hoaa053. doi: 10.1093/hropen/hoaa053.
    1. Potla P., Ali S.A., Kapoor M. A Bioinformatics Approach to MicroRNA-Sequencing Analysis. Osteoarthr. Cartil. Open. 2021;3:100131. doi: 10.1016/j.ocarto.2020.100131.
    1. LaRocca D., Barns S., Hicks S.D., Brindle A., Williams J., Uhlig R., Johnson P., Neville C., Middleton F.A. Comparison of Serum and Saliva MiRNAs for Identification and Characterization of MTBI in Adult Mixed Martial Arts Fighters. PLoS ONE. 2019;14:e0207785. doi: 10.1371/journal.pone.0207785.
    1. Gyvyte U., Juzenas S., Salteniene V., Kupcinskas J., Poskiene L., Kucinskas L., Jarmalaite S., Stuopelyte K., Steponaitiene R., Hemmrich-Stanisak G., et al. MiRNA Profiling of Gastrointestinal Stromal Tumors by Next-Generation Sequencing. Oncotarget. 2017;8:37225–37238. doi: 10.18632/oncotarget.16664.
    1. Gyvyte U., Kupcinskas J., Juzenas S., Inciuraite R., Poskiene L., Salteniene V., Link A., Fassan M., Franke A., Kupcinskas L., et al. Identification of Long Intergenic Non-Coding RNAs (LincRNAs) Deregulated in Gastrointestinal Stromal Tumors (GISTs) PLoS ONE. 2018;13:e0209342. doi: 10.1371/journal.pone.0209342.
    1. Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009;10:R25. doi: 10.1186/gb-2009-10-3-r25.
    1. Griffiths-Jones S., Saini H.K., van Dongen S., Enright A.J. MiRBase: Tools for MicroRNA Genomics. Nucleic Acids Res. 2008;36:D154–D158. doi: 10.1093/nar/gkm952.
    1. Gao L., Zhang L. Construction and Comprehensive Analysis of a CeRNA Network to Reveal Potential Prognostic Biomarkers for Lung Adenocarcinoma. BMC Cancer. 2021;21:849. doi: 10.1186/s12885-021-08462-8.
    1. Li Q., Liu G., Bao Y., Wu Y., You Q. Evaluation and Application of Tools for the Identification of Known MicroRNAs in Plants. Appl. Plant Sci. 2021;9:e11414. doi: 10.1002/aps3.11414.
    1. Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8.
    1. Bargaje R., Hariharan M., Scaria V., Pillai B. Consensus MiRNA Expression Profiles Derived from Interplatform Normalization of Microarray Data. RNA. 2010;16:16–25. doi: 10.1261/rna.1688110.
    1. Nguyen J.-M., Jézéquel P., Gillois P., Silva L., Ben Azzouz F., Lambert-Lacroix S., Juin P., Campone M., Gaultier A., Moreau-Gaudry A., et al. Random Forest of Perfect Trees: Concept, Performance, Applications, and Perspectives. Bioinform. Oxf. Engl. 2021 doi: 10.1093/bioinformatics/btab074.
    1. Lecointre L., Bund V., Sangnier E., Ouldamer L., Bendifallah S., Koskas M., Bolze P.-A., Collinet P., Canlorbe G., Touboul C., et al. Status of Surgical Management of Borderline Ovarian Tumors in France: Are Recommendations Being Followed? Multicentric French Study by the FRANCOGYN Group. Ann. Surg. Oncol. 2021;28:7616–7623. doi: 10.1245/s10434-021-09852-9.
    1. Geoffron S., Lier A., de Kermadec E., Sermondade N., Varinot J., Thomassin-Naggara I., Bendifallah S., Daraï E., Chabbert-Buffet N., Kolanska K. Fertility Preservation in Women with Malignant and Borderline Ovarian Tumors: Experience of the French ESGO-Certified Center and Pregnancy-Associated Cancer Network (CALG) Gynecol. Oncol. 2021;161:817–824. doi: 10.1016/j.ygyno.2021.03.030.
    1. Harrell F.E.J., Lee K.L., Mark D.B. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat. Med. 1996;15:361–387. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>;2-4.
    1. Steyerberg E.W., Eijkemans M.J., Harrell F.E.J., Habbema J.D. Prognostic Modelling with Logistic Regression Analysis: A Comparison of Selection and Estimation Methods in Small Data Sets. Stat. Med. 2000;19:1059–1079. doi: 10.1002/(SICI)1097-0258(20000430)19:8<1059::AID-SIM412>;2-0.
    1. Kern F., Krammes L., Danz K., Diener C., Kehl T., Küchler O., Fehlmann T., Kahraman M., Rheinheimer S., Aparicio-Puerta E., et al. Validation of Human MicroRNA Target Pathways Enables Evaluation of Target Prediction Tools. Nucleic Acids Res. 2021;49:127–144. doi: 10.1093/nar/gkaa1161.
    1. Wan N., Weinberg D., Liu T.-Y., Niehaus K., Ariazi E.A., Delubac D., Kannan A., White B., Bailey M., Bertin M., et al. Machine Learning Enables Detection of Early-Stage Colorectal Cancer by Whole-Genome Sequencing of Plasma Cell-Free DNA. BMC Cancer. 2019;19:832. doi: 10.1186/s12885-019-6003-8.
    1. Monnaka V.U., Hernandes C., Heller D., Podgaec S. Overview of MiRNAs for the Non-Invasive Diagnosis of Endometriosis: Evidence, Challenges and Strategies. A Systematic Review. Einstein Sao Paulo Braz. 2021;19:eRW5704. doi: 10.31744/einstein_journal/2021RW5704.
    1. Courts C., Madea B. Specific Micro-RNA Signatures for the Detection of Saliva and Blood in Forensic Body-fluid Identification. J. Forensic Sci. 2011;56:1464–1470. doi: 10.1111/j.1556-4029.2011.01894.x.
    1. El-Mogy M., Lam B., Haj-Ahmad T.A., McGowan S., Yu D., Nosal L., Rghei N., Roberts P., Haj-Ahmad Y. Diversity and Signature of Small RNA in Different Bodily Fluids Using next Generation Sequencing. BMC Genom. 2018;19:408. doi: 10.1186/s12864-018-4785-8.
    1. Kraus V.B., Burnett B., Coindreau J., Cottrell S., Eyre D., Gendreau M., Gardiner J., Garnero P., Hardin J., Henrotin Y., et al. Application of Biomarkers in the Development of Drugs Intended for the Treatment of Osteoarthritis. Osteoarthr. Cartil. 2011;19:515–542. doi: 10.1016/j.joca.2010.08.019.
    1. Moustafa S., Burn M., Mamillapalli R., Nematian S., Flores V., Taylor H.S. Accurate Diagnosis of Endometriosis Using Serum MicroRNAs. Am. J. Obstet. Gynecol. 2020;223:557.e1–557.e11. doi: 10.1016/j.ajog.2020.02.050.
    1. Maged A.M., Deeb W.S., El Amir A., Zaki S.S., El Sawah H., Al Mohamady M., Metwally A.A., Katta M.A. Diagnostic Accuracy of Serum MiR-122 and MiR-199a in Women with Endometriosis. Int. J. Gynaecol. Obstet. Off. Organ Int. Fed. Gynaecol. Obstet. 2018;141:14–19. doi: 10.1002/ijgo.12392.
    1. Chen Y., Wu Y., Yao H., Luo H., Lin B., Zhang X., Liang X., Sun R., Zhao S., Li Y., et al. MiRNA Expression Profile of Saliva in Subjects of Yang Deficiency Constitution and Yin Deficiency Constitution. Cell. Physiol. Biochem. 2018;49:2088–2098. doi: 10.1159/000493769.

Source: PubMed

3
구독하다