Endocrine organs of cardiovascular diseases: Gut microbiota

Qiujin Jia, Yingyu Xie, Chunmiao Lu, Ao Zhang, Yanmin Lu, Shichao Lv, Junping Zhang, Qiujin Jia, Yingyu Xie, Chunmiao Lu, Ao Zhang, Yanmin Lu, Shichao Lv, Junping Zhang

Abstract

Gut microbiota (GM) is a collection of bacteria, fungi, archaea, viruses and protozoa, etc. They inhabit human intestines and play an essential role in human health and disease. Close information exchange between the intestinal microbes and the host performs a vital role in digestion, immune defence, nervous system regulation, especially metabolism, maintaining a delicate balance between itself and the human host. Studies have shown that the composition of GM and its metabolites are firmly related to the occurrence of various diseases. More and more researchers have demonstrated that the intestinal microbiota is a virtual 'organ' with endocrine function and the bioactive metabolites produced by it can affect the physiological role of the host. With deepening researches in recent years, clinical data indicated that the GM has a significant effect on the occurrence and development of cardiovascular diseases (CVD). This article systematically elaborated the relationship between metabolites of GM and its effects, the relationship between intestinal dysbacteriosis and cardiovascular risk factors, coronary heart disease, myocardial infarction, heart failure and hypertension and the possible pathogenic mechanisms. Regulating the GM is supposed to be a potential new therapeutic target for CVD.

Keywords: cardiovascular diseases; gut microbiota; metabolites; risk factors; treatment.

Conflict of interest statement

The authors confirm that there are no conflicts of interest.

© 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

Figures

Figure 1
Figure 1
Gut microbiota and its metabolites linked to cardiovascular diseases

References

    1. Tang WH, Kitai T, Hazen SL. Gut microbiota in cardiovascular health and disease. Circ Res. 2017;120:1183‐1196.
    1. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242‐249.
    1. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59‐65.
    1. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308:1635‐1638.
    1. Gill SR, Pop M, Deboy RT, et al. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355‐1359.
    1. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Curr Opin Clin Nutr Metab Care. 2007;10:729‐734.
    1. Cerf‐Bensussan N, Gaboriau‐Routhiau V. The immune system and the gut microbiota: friends or foes? Nat Rev Immunol. 2010;10:735‐744.
    1. Nicholson JK, Holmes E, Kinross J, et al. Host‐gut microbiota metabolic interactions. Science. 2012;336:1262‐1267.
    1. Zeisel SH, Warrier M. Trimethylamine N‐oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr. 2017;37:157‐181.
    1. Cho CE, Caudill MA. Trimethylamine‐N‐oxide: friend, foe, or simply caught in the cross‐fire? Trends Endocrinol Metab. 2017;28:121‐130.
    1. Koeth RA, Levison BS, Culley MK, et al. γ‐Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L‐carnitine to TMAO. Cell Metab. 2014;20:799‐812.
    1. Warrier M, Shih DM, Burrows ACM, et al. The TMAO‐generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep. 2015;10:326‐38.
    1. Spector R. New insight into the cause of atherosclerosis: implications for pharmacology. J Pharmacol Exp Ther. 2016;358:103‐108.
    1. Seldin MM, Meng Y, Qi H, et al. Trimethylamine N‐oxide promotes vascular inflammation through signaling of mitogen‐activated protein kinase and nuclear factor‐kB. J Am Heart Assoc. 2016;5:e002767 10.1161/JAHA.115.002767.
    1. Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111‐124.
    1. Chen ML, Zhu XH, Ran L, et al. Trimethylamine‐N‐oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3‐SOD2‐mtROS signaling pathway. J Am Heart Assoc. 2017;6:e002238 10.1161/JAHA.117.006347.
    1. Porez G, Prawitt J, Gross B, Staels B. Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease. J Lipid Res. 2012;53:1723‐1737.
    1. Begley M, Sleator RD, Gahan CG, Hill C. Contribution of three bile‐associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun. 2005;73:894‐904.
    1. Adorini L, Schoonjans K, Friedman SL. Megatrends in bile acid receptor research. Hepatol Commun. 2017;1:831‐835.
    1. Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiology. Gene Expr. 2018;18:71‐87.
    1. Zhang L, Xie C, Nichols RGL, et al. Farnesoid X receptor signaling shapes the gut microbiota and controls hepatic lipid metabolism. mSystems. 2016;1:e00070 10.1128/mSystems.00070-16.
    1. Ceulemans LJ, Verbeke L, Decuypere JP, et al. Farnesoid X receptor activation attenuates intestinal ischemia reperfusion injury in rats. PLoS ONE. 2017;12:e0169331.
    1. Huang W, Zhou L, Guo H, Xu Y. The role of short‐chain fatty acids in kidney injury induced by gut‐derived inflammatory response. Metabolism. 2017;68:20‐30.
    1. Marques FZ, Mackay CR, Kaye DM. Beyond gut feelings: how the gut microbiota regulates blood pressure. Nat Rev Cardiol. 2018;15:20‐32.
    1. Puddu A, Sanguineti R, Montecucco F, Viviani GL. Evidence for the gut microbiota short‐chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014:1‐9.
    1. Esgalhado M, Kemp JA, Damasceno NR, et al. Short‐chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiol. 2017;12:1413‐1425.
    1. Liu B, Qian J, Wang Q, et al. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion. PLoS ONE. 2014;9:e106184.
    1. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7:189‐200.
    1. Kim CH, Park J, Kim M. Gut microbiota‐derived short‐chain fatty acids, T cells, and inflammation. Immune Netw. 2014;14:277‐288.
    1. Woting A, Blaut M. The intestinal microbiota in metabolic disease. Nutrients. 2016;8:202.
    1. Lin MC, Ou TT, Chang CH. Protocatechuic acid inhibits oleic acid‐induced vascular smooth muscle cell proliferation through activation of AMP‐activated protein kinase and cell cycle arrest in G0/G1 phase. J Agric Food Chem. 2015;63:235‐241.
    1. Masella R, Santangelo C, D'Archivio M, et al. Protocatechuic acid and human disease prevention: biological activities and molecular mechanisms. Curr Med Chem. 2012;19:2901‐2917.
    1. Kang Z, Zhu H, Jiang W, Zhang S. Protocatechuic acid induces angiogenesis through PI3K‐Akt‐eNOS‐VEGF signalling pathway. Basic Clin Pharmacol Toxicol. 2013;113:221‐227.
    1. Varì R, D'Archivio M, Filesi C, et al. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK‐mediated Nrf2 activation in murine macrophages. J Nutr Biochem. 2011;22:409‐417.
    1. Ju DT, Liao HE, Shibu MA, et al. Nerve regeneration potential of protocatechuic acid in RSC96 Schwann cells by induction of cellular proliferation and migration through IGF‐IR‐PI3K‐Akt signaling. Chin J Physiol. 2015;58:412‐419.
    1. Semaming Y, Kumfu S, Pannangpetch P, et al. Protocatechuic acid exerts a cardioprotective effect in type 1 diabetic rats. J Endocrinol. 2014;223:13‐23.
    1. Bhattacharjee N, Dua TK, Khanra R, et al. Protocatechuic acid, a phenolic from Sansevieria roxburghiana leaves, suppresses diabetic cardiomyopathy via stimulating glucose metabolism, ameliorating oxidative stress, and inhibiting inflammation. Front Pharmacol. 2017;8:251.
    1. Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules. 2016;21:pii: E1558.
    1. Tiso M, Schechter AN. Nitrate reduction to nitrite, nitric oxide and ammonia by gut bacteria under physiological conditions. PLoS ONE. 2015;10:e0119712.
    1. Bogiatzi C, Gloor G, Allen‐Vercoe E, et al. Metabolic products of the intestinal microbiome and extremes of atherosclerosis. Atherosclerosis. 2018;273:91‐97.
    1. Ramezani A, Massy ZA, Meijers B, et al. Role of the gut microbiome in uremia: a potential therapeutic target. Am J Kidney Dis. 2016;67:483‐498.
    1. Chitalia VC, Shivanna S, Martorell J, et al. Uremic serum and solutes increase post‐vascular interventional thrombotic risk through altered stability of smooth muscle cell tissue factor. Circulation. 2013;127:365‐376.
    1. Rienks J, Barbaresko J, Nothlings U. Association of polyphenol biomarkers with cardiovascular disease and mortality risk: a systematic review and meta‐analysis of observational studies. Nutrients. 2017;9:415‐25.
    1. Dombkowski RA, Russell MJ, Olson KR. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol. 2004;286:678‐685.
    1. Nagpure BV, Bian JS. Interaction of hydrogen sulfide with nitric oxide in the cardiovascular system. Oxid Med Cell Longev. 2016;2016:6904327.
    1. Fu J, Bonder MJ, Cenit MC, et al. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117:817‐824.
    1. Nakaya K, Ikewaki K. Microbiota and HDL metabolism. Curr Opin Lipidol. 2018;29:18‐23.
    1. Miyake JH, Duong‐Polk XT, Taylor JM, et al. Transgenic expression of cholesterol‐7‐alpha‐hydroxylase prevents atherosclerosis in C57BL/6J mice. Arterioscler Thromb Vasc Biol. 2002;22:121‐126.
    1. Zong C, Yu Y, Song G, et al. Chitosan oligosaccharides promote reverse cholesterol transport and expression of scavenger receptor BI and CYP7A1 in mice. Exp Biol Med (Maywood). 2012;237:194‐200.
    1. Parseus A, Sommer N, Sommer F, et al. Microbiota‐induced obesity requires farnesoid X receptor. Gut. 2017;66:429‐437.
    1. Miyazaki‐Anzai S, Masuda M, Levi M, et al. Dual activation of the bile acid nuclear receptor FXR and G‐protein‐coupled receptor TGR5 protects mice against atherosclerosis. PLoS ONE. 2014;9:e108270.
    1. Liou AP, Paziuk M, Luevano JM Jr. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5:178ra41.
    1. Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME J. 2013;7:880‐884.
    1. Kvit KB, Kharchenko NV. Gut microbiota changes as a risk factor for obesity. Wiad Lek. 2017;70:231‐235.
    1. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non‐diabetic adults. PLoS ONE. 2010;5:e9085.
    1. Mandard S, Zandbergen F, van Straten E, et al. The fasting‐induced adipose factor/angiopoietin‐like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281:934‐944.
    1. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761‐1772.
    1. Tsukumo DM, Carvalho‐Filho MA, Carvalheira JB, et al. Loss‐of‐function mutation in Toll‐like receptor 4 prevents diet‐induced obesity and insulin resistance. Diabetes. 2007;56:1986‐1998.
    1. Davis JE, Gabler NK, Walker‐Daniels J, Spurlock ME. Tlr‐4 deficiency selectively protects against obesity induced by diets high in saturated fat. Obesity (Silver Spring). 2008;16:1248‐1255.
    1. Lafferty RA, Flatt PR, Irwin N. Emerging therapeutic potential for peptide YY for obesity‐diabetes. Peptides. 2018;100:269‐274.
    1. Brighton CA, Rievaj J, Kuhre RE, et al. Bile acids trigger GLP‐1 release predominantly by accessing basolaterally located G protein‐coupled bile acid receptors. Endocrinology. 2015;156:3961‐3970.
    1. Inagaki T, Moschetta A, Lee YK, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920‐3925.
    1. Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015;21:159‐165.
    1. Koren O, Spor A, Felin J, et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci USA. 2011;108:4592‐4598.
    1. Karlsson FH, Fåk F, Nookaew I, et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245.
    1. Yamashita T, Emoto T, Sasaki N, Hirata KI. Gut microbiota and coronary artery disease. Int Heart J. 2016;57:663‐671.
    1. Emoto T, Yamashita T, Kobayashi T, et al. Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease. Heart Vessels. 2017;32:39‐46.
    1. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57‐63.
    1. Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575‐1584.
    1. Senthong V, Li XS, Hudec T, et al. Plasma trimethylamine N‐oxide, a gut microbe‐generated phosphatidylcholine metabolite, is associated with atherosclerotic burden. J Am Coll Cardiol. 2016;67:2620‐2628.
    1. Zhou X, Li J, Guo J, et al. Gut‐dependent microbial translocation induces inflammation and cardiovascular events after ST‐elevation myocardial infarction. Microbiome. 2018;6:66.
    1. Wu ZX, Li SF, Chen H, et al. The changes of gut microbiota after acute myocardial infarction in rats. PLoS ONE. 2017;12:e0180717.
    1. Gan XT, Ettinger G, Huang CX, et al. Probiotic administration attenuates myocardial hypertrophy and heart failure after myocardial infarction in the rat. Circ Heart Fail. 2014;7:491‐499.
    1. Lam V, Su J, Hsu A, et al. Intestinal microbial metabolites are linked to severity of myocardial infarction in rats. PLoS ONE. 2016;11:e0160840.
    1. Tang TW, Chen HC, Chen CY, et al. Loss of gut microbiota alters immune system composition and cripples post‐infarction cardiac repair. Circulation. 2018. 10.1161/CIRCULATIONAHA.118.035235.
    1. Organ CL, Otsuka H, Bhushan S, et al. Choline diet and its gut microbe‐derived metabolite, trimethylamine N‐oxide, exacerbate pressure overload‐induced heart failure. Circ Heart Fail. 2016;9:e002314.
    1. Tang WH, Wang Z, Shrestha K, et al. Intestinal microbiota‐dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J Card Fail. 2015;21:91‐96.
    1. Tang WH, Wang Z, Fan Y, et al. Prognostic value of elevated levels of intestinal microbe‐generated metabolite trimethylamine‐N‐oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64:1908‐1914.
    1. Suzuki T, Heaney LM, Bhandari SS, et al. Trimethylamine N‐oxide and prognosis in acute heart failure. Heart. 2016;102:841‐848.
    1. Trøseid M, Ueland T, Hov JR, et al. Microbiota‐dependent metabolite trimethylamine‐N‐oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277:717‐726.
    1. Pasini E, Aquilani R, Testa C, et al. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4:220‐227.
    1. Pluznick JL, Protzko RJ, Gevorgyan H, et al. Olfactory receptor responding to gut microbiota‐derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci USA. 2013;110:4410‐4415.
    1. Miyamoto J, Kasubuchi M, Nakajima A, et al. The role of short‐chain fatty acid on blood pressure regulation. Curr Opin Nephrol Hypertens. 2016;25:379‐383.
    1. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5:202‐207.
    1. Kimura I, Inoue D, Maeda T, et al. Short‐chain fatty acids and ketones directly regulate sympathetic nervous system via G protein‐coupled receptor 41 (GPR41). Proc Natl Acad Sci USA. 2011;108:8030‐8035.
    1. Tang WH, Wang Z, Kennedy DJ, et al. Gut microbiota‐dependent trimethylamine N‐oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116:448‐455.
    1. Tomasova L, Dobrowolski L, Jurkowska H, et al. Intracolonic hydrogen sulfide lowers blood pressure in rats. Nitric Oxide. 2016;60:50‐58.
    1. Wilck N, Matus MG, Kearney SM, et al. Salt‐responsive gut commensal modulates TH17 axis and disease. Nature. 2017;551:585‐589.
    1. Yang T, Santisteban MM, Rodriguez V, et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331‐1340.
    1. Karbach SH, Schonfelder T, Brandao I, et al. Gut microbiota promote angiotensin II‐induced arterial hypertension and vascular dysfunction. J Am Heart Assoc. 2016;5:e003698.
    1. Durgan DJ, Ganesh BP, Cope JL, et al. Role of the gut microbiome in obstructive sleep apnea‐induced hypertension novelty and significance. Hypertension. 2016;67:469‐474.
    1. Daliri EB, Lee BH, Oh DH. Current perspectives on antihypertensive probiotics. Probiotics Antimicrob Proteins. 2017;9:91‐101.
    1. Guo Z, Zhang J, Wang Z, et al. Intestinal microbiota distinguish gout patients from healthy humans. Sci Rep. 2016;6:20602.
    1. Karlsson C, Ahrne S, Molin G, et al. Probiotic therapy to men with incipient arteriosclerosis initiates increased bacterial diversity in colon: a randomized controlled trial. Atherosclerosis. 2010;208:228‐233.
    1. Li Z, Shen Y, Chen Y, et al. High uric acid inhibits cardiomyocyte viability through the ERK/P38 pathway via oxidative stress. Cell Physiol Biochem. 2018;45:1156‐1164.
    1. Wang Y, Wu Y, Wang Y, et al. Antioxidant properties of probiotic bacteria. Nutrients. 2017;9:e521.
    1. Kinlay S, Michel T, Leopold JA. The Future of Vascular Biology and Medicine. Circulation. 2016;133:2603‐. 9
    1. Lopez‐Garcia E, Rodriguez‐Artalejo F, Li TY, et al. The Mediterranean‐style dietary pattern and mortality among men and women with cardiovascular disease. Am J Clin Nutr. 2014;99:172‐180.
    1. De Filippis F, Pellegrini N, Vannini L, et al. High‐level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65:1812‐1821.
    1. Marques FZ, Nelson E, Chu PY, et al. High‐fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135:964‐977.
    1. Chan YK, Brar MS, Kirjavainen PV, et al. High fat diet‐induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A‐FABP and cholesterol: a pilot study of high‐fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE‐/‐ mice. BMC Microbiol. 2016;16:264.
    1. Costanza AC, Moscavitch SD, Faria Neto HC, Mesquita ET. Probiotic therapy with Saccharomyces boulardii for heart failure patients: a randomized, double‐blind, placebo‐controlled pilot trial. Int J Cardiol. 2015;179:348‐350.
    1. Ebel B, Lemetais G, Beney L, et al. Impact of probiotics on risk factors for cardiovascular diseases. A review. Crit Rev Food Sci Nutr. 2014;54:175‐189.
    1. Kumar SA, Ward LC, Brown L. Inulin oligofructose attenuates metabolic syndrome in high‐carbohydrate, high‐fat diet‐fed rats. Br J Nutr. 2016;116:1502‐1511.
    1. Cammarota G, Ianiro G, Gasbarrini A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: a systematic review. J Clin Gastroenterol. 2014;48:693‐702.
    1. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143:913‐916.
    1. Kootte RS, Levin E, Salojärvi J, et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 2017;26:611‐619.
    1. Murphy EF, Cotter PD, Hogan A, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet‐induced obesity. Gut. 2013;62:220‐226.
    1. Tiihonen K, Tynkkynen S, Ouwehand A, et al. The effect of ageing with and without non‐steroidal anti‐inflammatory drugs on gastrointestinal microbiology and immunology. Br J Nutr. 2008;100:130‐137.
    1. Lam V, Su J, Koprowski S, et al. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 2012;26:1727‐1735.
    1. Conraads VM, Jorens PG, De Clerck LS, et al. Selective intestinal decontamination in advanced chronic heart failure: a pilot trial. Eur J Heart Fail. 2004;6:483‐491.
    1. Wang Z, Roberts AB, Buffa JA, et al. Non‐lethalInhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163:1585‐1595.
    1. Chen ML, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine‐N‐oxide (TMAO)‐induced atherosclerosis by regulating TMAO synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio. 2016;7:e02210‐e02215.
    1. Jensen AB, Ajslev TA, Brunak S, Sorensen TI. Long‐term risk of cardiovascular and cerebrovascular disease after removal of the colonic microbiota by colectomy: a cohort study based on the Danish National Patient Register from 1996 to 2014. BMJ Open. 2015;5:e008702.

Source: PubMed

3
구독하다